mirror of
https://github.com/coleam00/ai-agents-masterclass.git
synced 2025-11-29 00:23:14 +00:00
Masterclass 3 - Chatbot UI for AI Agent
This commit is contained in:
28
3-agent-ui/.env.example
Normal file
28
3-agent-ui/.env.example
Normal file
@@ -0,0 +1,28 @@
|
||||
# Rename this file to .env once you have filled in the below environment variables!
|
||||
|
||||
# Get your Open AI API Key by following these instructions -
|
||||
# https://help.openai.com/en/articles/4936850-where-do-i-find-my-openai-api-key
|
||||
# You only need this environment variable set if you set LLM_MODEL to a GPT model
|
||||
OPENAI_API_KEY=
|
||||
|
||||
# Get your Anthropic API Key in your account settings -
|
||||
# https://console.anthropic.com/settings/keys
|
||||
# You only need this environment variable set if you set LLM_MODEL to a Claude model
|
||||
ANTHROPIC_API_KEY=
|
||||
|
||||
# See all Open AI models you can use here -
|
||||
# https://platform.openai.com/docs/models
|
||||
# And all Anthropic models you can use here -
|
||||
# https://docs.anthropic.com/en/docs/about-claude/models
|
||||
# A good default to go with here is gpt-4o or claude-3-5-sonnet-20240620
|
||||
LLM_MODEL=gpt-4o
|
||||
|
||||
# Get your personal Asana access token through the developer console in Asana.
|
||||
# Feel free to follow these instructions -
|
||||
# https://developers.asana.com/docs/personal-access-token
|
||||
ASANA_ACCESS_TOKEN=
|
||||
|
||||
# The Asana project ID is in the URL when you visit a project in the Asana UI.
|
||||
# If your URL is https://app.asana.com/0/123456789/1212121212, then your
|
||||
# Asana project ID is 123456789
|
||||
ASANA_PROJECT_ID=
|
||||
135
3-agent-ui/agent-with-ui.py
Normal file
135
3-agent-ui/agent-with-ui.py
Normal file
@@ -0,0 +1,135 @@
|
||||
import asana
|
||||
from asana.rest import ApiException
|
||||
from openai import OpenAI
|
||||
from dotenv import load_dotenv
|
||||
from datetime import datetime
|
||||
import streamlit as st
|
||||
import json
|
||||
import os
|
||||
|
||||
from langchain_core.tools import tool
|
||||
from langchain_openai import ChatOpenAI
|
||||
from langchain_anthropic import ChatAnthropic
|
||||
from langchain_core.messages import SystemMessage, AIMessage, HumanMessage, ToolMessage
|
||||
|
||||
load_dotenv()
|
||||
|
||||
model = os.getenv('LLM_MODEL', 'gpt-4o')
|
||||
|
||||
configuration = asana.Configuration()
|
||||
configuration.access_token = os.getenv('ASANA_ACCESS_TOKEN', '')
|
||||
api_client = asana.ApiClient(configuration)
|
||||
|
||||
tasks_api_instance = asana.TasksApi(api_client)
|
||||
|
||||
@tool
|
||||
def create_asana_task(task_name, due_on="today"):
|
||||
"""
|
||||
Creates a task in Asana given the name of the task and when it is due
|
||||
|
||||
Example call:
|
||||
|
||||
create_asana_task("Test Task", "2024-06-24")
|
||||
Args:
|
||||
task_name (str): The name of the task in Asana
|
||||
due_on (str): The date the task is due in the format YYYY-MM-DD. If not given, the current day is used
|
||||
Returns:
|
||||
str: The API response of adding the task to Asana or an error message if the API call threw an error
|
||||
"""
|
||||
if due_on == "today":
|
||||
due_on = str(datetime.now().date())
|
||||
|
||||
task_body = {
|
||||
"data": {
|
||||
"name": task_name,
|
||||
"due_on": due_on,
|
||||
"projects": [os.getenv("ASANA_PROJECT_ID", "")]
|
||||
}
|
||||
}
|
||||
|
||||
try:
|
||||
api_response = tasks_api_instance.create_task(task_body, {})
|
||||
return json.dumps(api_response, indent=2)
|
||||
except ApiException as e:
|
||||
return f"Exception when calling TasksApi->create_task: {e}"
|
||||
|
||||
def prompt_ai(messages, nested_calls=0):
|
||||
if nested_calls > 5:
|
||||
raise "AI is tool calling too much!"
|
||||
|
||||
# First, prompt the AI with the latest user message
|
||||
tools = [create_asana_task]
|
||||
asana_chatbot = ChatOpenAI(model=model) if "gpt" in model.lower() else ChatAnthropic(model=model)
|
||||
asana_chatbot_with_tools = asana_chatbot.bind_tools(tools)
|
||||
|
||||
stream = asana_chatbot_with_tools.stream(messages)
|
||||
first = True
|
||||
for chunk in stream:
|
||||
if first:
|
||||
gathered = chunk
|
||||
first = False
|
||||
else:
|
||||
gathered = gathered + chunk
|
||||
|
||||
yield chunk
|
||||
|
||||
has_tool_calls = len(gathered.tool_calls) > 0
|
||||
|
||||
# Second, see if the AI decided it needs to invoke a tool
|
||||
if has_tool_calls:
|
||||
# If the AI decided to invoke a tool, invoke it
|
||||
available_functions = {
|
||||
"create_asana_task": create_asana_task
|
||||
}
|
||||
|
||||
# Add the tool request to the list of messages so the AI knows later it invoked the tool
|
||||
messages.append(gathered)
|
||||
|
||||
|
||||
# Next, for each tool the AI wanted to call, call it and add the tool result to the list of messages
|
||||
for tool_call in gathered.tool_calls:
|
||||
tool_name = tool_call["name"].lower()
|
||||
selected_tool = available_functions[tool_name]
|
||||
tool_output = selected_tool.invoke(tool_call["args"])
|
||||
messages.append(ToolMessage(tool_output, tool_call_id=tool_call["id"]))
|
||||
|
||||
# Call the AI again so it can produce a response with the result of calling the tool(s)
|
||||
additional_stream = prompt_ai(messages, nested_calls + 1)
|
||||
for additional_chunk in additional_stream:
|
||||
yield additional_chunk
|
||||
|
||||
|
||||
def main():
|
||||
st.title("Asana Chatbot")
|
||||
|
||||
# Initialize chat history
|
||||
if "messages" not in st.session_state:
|
||||
st.session_state.messages = [
|
||||
SystemMessage(content=f"You are a personal assistant who helps manage tasks in Asana. The current date is: {datetime.now().date()}")
|
||||
]
|
||||
|
||||
# Display chat messages from history on app rerun
|
||||
for message in st.session_state.messages:
|
||||
message_json = json.loads(message.json())
|
||||
message_type = message_json["type"]
|
||||
if message_type in ["human", "ai", "system"]:
|
||||
with st.chat_message(message_type):
|
||||
st.markdown(message_json["content"])
|
||||
|
||||
# React to user input
|
||||
if prompt := st.chat_input("What would you like to do today?"):
|
||||
# Display user message in chat message container
|
||||
st.chat_message("user").markdown(prompt)
|
||||
# Add user message to chat history
|
||||
st.session_state.messages.append(HumanMessage(content=prompt))
|
||||
|
||||
# Display assistant response in chat message container
|
||||
with st.chat_message("assistant"):
|
||||
stream = prompt_ai(st.session_state.messages)
|
||||
response = st.write_stream(stream)
|
||||
|
||||
st.session_state.messages.append(AIMessage(content=response))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
9
3-agent-ui/requirements.txt
Normal file
9
3-agent-ui/requirements.txt
Normal file
@@ -0,0 +1,9 @@
|
||||
asana==5.0.0
|
||||
openai==1.10.0
|
||||
python-dotenv==0.13.0
|
||||
langchain==0.2.6
|
||||
langchain-anthropic==0.1.16
|
||||
langchain-community==0.2.6
|
||||
langchain-core==0.2.10
|
||||
langchain-openai==0.1.10
|
||||
streamlit==1.36.0
|
||||
7
madlibs/requirements.txt
Normal file
7
madlibs/requirements.txt
Normal file
@@ -0,0 +1,7 @@
|
||||
openai==1.10.0
|
||||
python-dotenv==0.13.0
|
||||
langchain==0.2.6
|
||||
langchain-community==0.2.6
|
||||
langchain-core==0.2.10
|
||||
langchain-openai==0.1.10
|
||||
streamlit==1.36.0
|
||||
Reference in New Issue
Block a user