mirror of
https://github.com/coleam00/ai-agents-masterclass.git
synced 2025-11-29 00:23:14 +00:00
n8n + Python + LangChain AI Agent
This commit is contained in:
37
n8n-langchain-agent-advanced/.env.example
Normal file
37
n8n-langchain-agent-advanced/.env.example
Normal file
@@ -0,0 +1,37 @@
|
||||
# Rename this file to .env once you have filled in the below environment variables!
|
||||
|
||||
# The bearer token value that you set for the Header credentials in n8n
|
||||
# -> Click into the webhook node in n8n
|
||||
# -> select the "Credential for Header Auth" dropdown
|
||||
# -> Click "- Create New Credentials -"
|
||||
# -> For the Name field, enter "Authorization" (not including quotes)
|
||||
# -> For the Value field enter "Bearer [N8N_BEARER_TOKEN]", but
|
||||
# replace N8N_BEARER_TOKEN with your webhook "password"
|
||||
N8N_BEARER_TOKEN=
|
||||
|
||||
# Production URL for your n8n workflow that summarizes Slack conversations
|
||||
# Make sure your n8n workflow is switched to active so this works!
|
||||
SUMMARIZE_SLACK_CONVERSATION_WEBHOOK=
|
||||
|
||||
# Production URL for your n8n workflow that sends a Slack message
|
||||
SEND_SLACK_MESSAGE_WEBHOOK=
|
||||
|
||||
# Production URL for your n8n workflow that creates a Google Doc in your Drive
|
||||
UPLOAD_GOOGLE_DOC_WEBHOOK=
|
||||
|
||||
# See all Open AI models you can use here -
|
||||
# https://platform.openai.com/docs/models
|
||||
# And all Anthropic models you can use here -
|
||||
# https://docs.anthropic.com/en/docs/about-claude/models
|
||||
# A good default to go with here is gpt-4o or claude-3-5-sonnet-20240620
|
||||
LLM_MODEL=gpt-4o
|
||||
|
||||
# Get your Open AI API Key by following these instructions -
|
||||
# https://help.openai.com/en/articles/4936850-where-do-i-find-my-openai-api-key
|
||||
# You only need this environment variable set if you set LLM_MODEL to a GPT model
|
||||
OPENAI_API_KEY=
|
||||
|
||||
# Get your Anthropic API Key in your account settings -
|
||||
# https://console.anthropic.com/settings/keys
|
||||
# You only need this environment variable set if you set LLM_MODEL to a Claude model
|
||||
ANTHROPIC_API_KEY=
|
||||
96
n8n-langchain-agent-advanced/n8n-langchain-agent.py
Normal file
96
n8n-langchain-agent-advanced/n8n-langchain-agent.py
Normal file
@@ -0,0 +1,96 @@
|
||||
from datetime import datetime
|
||||
import streamlit as st
|
||||
import asyncio
|
||||
import json
|
||||
import uuid
|
||||
import os
|
||||
|
||||
from langchain_core.messages import SystemMessage, AIMessage, HumanMessage
|
||||
|
||||
from runnable import get_runnable
|
||||
|
||||
@st.cache_resource
|
||||
def create_chatbot_instance():
|
||||
return get_runnable()
|
||||
|
||||
chatbot = create_chatbot_instance()
|
||||
|
||||
@st.cache_resource
|
||||
def get_thread_id():
|
||||
return str(uuid.uuid4())
|
||||
|
||||
thread_id = get_thread_id()
|
||||
|
||||
system_message = f"""
|
||||
You are a personal assistant who helps with research, managing Google Drive, and managing Slack.
|
||||
You never give IDs to the user since those are just for you to keep track of.
|
||||
The link to any Google Doc is: https://docs.google.com/document/d/[document ID]
|
||||
The current date is: {datetime.now().date()}
|
||||
"""
|
||||
|
||||
async def prompt_ai(messages):
|
||||
config = {
|
||||
"configurable": {
|
||||
"thread_id": thread_id
|
||||
}
|
||||
}
|
||||
|
||||
async for event in chatbot.astream_events(
|
||||
{"messages": messages}, config, version="v2"
|
||||
):
|
||||
if event["event"] == "on_chat_model_stream":
|
||||
yield event["data"]["chunk"].content
|
||||
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# ~~~~~~~~~~~~~~~~~~ Main Function with UI Creation ~~~~~~~~~~~~~~~~~~~~
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
async def main():
|
||||
st.title("n8n LangChain Agent")
|
||||
|
||||
# Initialize chat history
|
||||
if "messages" not in st.session_state:
|
||||
st.session_state.messages = [
|
||||
SystemMessage(content=system_message)
|
||||
]
|
||||
|
||||
# Display chat messages from history on app rerun
|
||||
for message in st.session_state.messages:
|
||||
message_json = json.loads(message.json())
|
||||
message_type = message_json["type"]
|
||||
if message_type in ["human", "ai", "system"]:
|
||||
with st.chat_message(message_type):
|
||||
st.markdown(message_json["content"])
|
||||
|
||||
# React to user input
|
||||
if prompt := st.chat_input("What would you like to do today?"):
|
||||
# Display user message in chat message container
|
||||
st.chat_message("user").markdown(prompt)
|
||||
# Add user message to chat history
|
||||
st.session_state.messages.append(HumanMessage(content=prompt))
|
||||
|
||||
# Display assistant response in chat message container
|
||||
response_content = ""
|
||||
with st.chat_message("assistant"):
|
||||
message_placeholder = st.empty() # Placeholder for updating the message
|
||||
# Run the async generator to fetch responses
|
||||
async for chunk in prompt_ai(st.session_state.messages):
|
||||
if isinstance(chunk, str):
|
||||
response_content += chunk
|
||||
elif isinstance(chunk, list):
|
||||
for chunk_text in chunk:
|
||||
if "text" in chunk_text:
|
||||
response_content += chunk_text["text"]
|
||||
else:
|
||||
raise Exception("Chunk is not a string or list.")
|
||||
|
||||
# Update the placeholder with the current response content
|
||||
message_placeholder.markdown(response_content)
|
||||
|
||||
st.session_state.messages.append(AIMessage(content=response_content))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
10
n8n-langchain-agent-advanced/requirements.txt
Normal file
10
n8n-langchain-agent-advanced/requirements.txt
Normal file
@@ -0,0 +1,10 @@
|
||||
python-dotenv==0.13.0
|
||||
langchain==0.2.12
|
||||
langchain-anthropic==0.1.22
|
||||
langchain-community==0.2.11
|
||||
langchain-core==0.2.28
|
||||
langchain-openai==0.1.20
|
||||
streamlit==1.36.0
|
||||
langgraph==0.1.19
|
||||
aiosqlite==0.20.0
|
||||
requests==2.32.3
|
||||
129
n8n-langchain-agent-advanced/runnable.py
Normal file
129
n8n-langchain-agent-advanced/runnable.py
Normal file
@@ -0,0 +1,129 @@
|
||||
from langgraph.graph.message import AnyMessage, add_messages
|
||||
from langgraph.checkpoint.aiosqlite import AsyncSqliteSaver
|
||||
from langchain_core.runnables import RunnableConfig
|
||||
from langgraph.graph import END, StateGraph
|
||||
from typing_extensions import TypedDict
|
||||
from typing import Annotated, Literal, Dict
|
||||
from dotenv import load_dotenv
|
||||
import os
|
||||
|
||||
from langchain_openai import ChatOpenAI
|
||||
from langchain_anthropic import ChatAnthropic
|
||||
from langchain_core.messages import ToolMessage, AIMessage
|
||||
|
||||
from tools import available_functions
|
||||
|
||||
load_dotenv()
|
||||
model = os.getenv('LLM_MODEL', 'gpt-4o')
|
||||
|
||||
tools = [tool for _, tool in available_functions.items()]
|
||||
chatbot = ChatOpenAI(model=model, streaming=True) if "gpt" in model.lower() else ChatAnthropic(model=model, streaming=True)
|
||||
chatbot_with_tools = chatbot.bind_tools(tools)
|
||||
|
||||
### State
|
||||
class GraphState(TypedDict):
|
||||
"""
|
||||
Represents the state of our graph.
|
||||
|
||||
Attributes:
|
||||
messages: List of chat messages.
|
||||
"""
|
||||
messages: Annotated[list[AnyMessage], add_messages]
|
||||
|
||||
async def call_model(state: GraphState, config: RunnableConfig) -> Dict[str, AnyMessage]:
|
||||
"""
|
||||
Function that calls the model to generate a response.
|
||||
|
||||
Args:
|
||||
state (GraphState): The current graph state
|
||||
|
||||
Returns:
|
||||
dict: The updated state with a new AI message
|
||||
"""
|
||||
print("---CALL MODEL---")
|
||||
messages = list(filter(
|
||||
lambda m: not isinstance(m, AIMessage) or hasattr(m, "response_metadata") and m.response_metadata,
|
||||
state["messages"]
|
||||
))
|
||||
|
||||
# Invoke the chatbot with the binded tools
|
||||
response = await chatbot_with_tools.ainvoke(messages, config)
|
||||
print("Response from model:", response)
|
||||
|
||||
# We return an object because this will get added to the existing list
|
||||
return {"messages": response}
|
||||
|
||||
def tool_node(state: GraphState) -> Dict[str, AnyMessage]:
|
||||
"""
|
||||
Function that handles all tool calls.
|
||||
|
||||
Args:
|
||||
state (GraphState): The current graph state
|
||||
|
||||
Returns:
|
||||
dict: The updated state with tool messages
|
||||
"""
|
||||
print("---TOOL NODE---")
|
||||
messages = state["messages"]
|
||||
last_message = messages[-1] if messages else None
|
||||
|
||||
outputs = []
|
||||
|
||||
if last_message and last_message.tool_calls:
|
||||
for call in last_message.tool_calls:
|
||||
tool = available_functions.get(call['name'], None)
|
||||
|
||||
if tool is None:
|
||||
raise Exception(f"Tool '{call['name']}' not found.")
|
||||
|
||||
print(f"\n\nInvoking tool: {call['name']} with args {call['args']}")
|
||||
output = tool.invoke(call['args'])
|
||||
print(f"Result of invoking tool: {output}\n\n")
|
||||
|
||||
outputs.append(ToolMessage(
|
||||
output if isinstance(output, str) else json.dumps(output),
|
||||
tool_call_id=call['id']
|
||||
))
|
||||
|
||||
return {'messages': outputs}
|
||||
|
||||
def should_continue(state: GraphState) -> Literal["__end__", "tools"]:
|
||||
"""
|
||||
Determine whether to continue or end the workflow based on if there are tool calls to make.
|
||||
|
||||
Args:
|
||||
state (GraphState): The current graph state
|
||||
|
||||
Returns:
|
||||
str: The next node to execute or END
|
||||
"""
|
||||
print("---SHOULD CONTINUE---")
|
||||
messages = state["messages"]
|
||||
last_message = messages[-1] if messages else None
|
||||
|
||||
# If there is no function call, then we finish
|
||||
if not last_message or not last_message.tool_calls:
|
||||
return END
|
||||
else:
|
||||
return "tools"
|
||||
|
||||
def get_runnable():
|
||||
workflow = StateGraph(GraphState)
|
||||
|
||||
# Define the nodes and how they connect
|
||||
workflow.add_node("agent", call_model)
|
||||
workflow.add_node("tools", tool_node)
|
||||
|
||||
workflow.set_entry_point("agent")
|
||||
|
||||
workflow.add_conditional_edges(
|
||||
"agent",
|
||||
should_continue
|
||||
)
|
||||
workflow.add_edge("tools", "agent")
|
||||
|
||||
# Compile the LangGraph graph into a runnable
|
||||
memory = AsyncSqliteSaver.from_conn_string(":memory:")
|
||||
app = workflow.compile(checkpointer=memory)
|
||||
|
||||
return app
|
||||
124
n8n-langchain-agent-advanced/tools.py
Normal file
124
n8n-langchain-agent-advanced/tools.py
Normal file
@@ -0,0 +1,124 @@
|
||||
from dotenv import load_dotenv
|
||||
import requests
|
||||
import json
|
||||
import os
|
||||
|
||||
from langchain_core.tools import tool
|
||||
|
||||
load_dotenv()
|
||||
|
||||
N8N_BEARER_TOKEN = os.environ["N8N_BEARER_TOKEN"]
|
||||
SUMMARIZE_SLACK_CONVERSATION_WEBHOOK = os.environ["SUMMARIZE_SLACK_CONVERSATION_WEBHOOK"]
|
||||
SEND_SLACK_MESSAGE_WEBHOOK = os.environ["SEND_SLACK_MESSAGE_WEBHOOK"]
|
||||
UPLOAD_GOOGLE_DOC_WEBHOOK = os.environ["UPLOAD_GOOGLE_DOC_WEBHOOK"]
|
||||
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# ~~~~~~~~~~~~ Helper Function for Invoking n8n Webhooks ~~~~~~~~~~~~~~~
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
def invoke_n8n_webhook(method, url, function_name, payload=None):
|
||||
"""
|
||||
Helper function to make a GET or POST request.
|
||||
|
||||
Args:
|
||||
method (str): HTTP method ('GET' or 'POST')
|
||||
url (str): The API endpoint
|
||||
function_name (str): The name of the tool the AI agent invoked
|
||||
payload (dict, optional): The payload for POST requests
|
||||
|
||||
Returns:
|
||||
str: The API response in JSON format or an error message
|
||||
"""
|
||||
headers = {
|
||||
"Authorization": f"Bearer {N8N_BEARER_TOKEN}",
|
||||
"Content-Type": "application/json"
|
||||
}
|
||||
|
||||
try:
|
||||
if method == "GET":
|
||||
response = requests.get(url, headers=headers)
|
||||
elif method == "POST":
|
||||
response = requests.post(url, headers=headers, json=payload)
|
||||
else:
|
||||
return f"Unsupported method: {method}"
|
||||
|
||||
response.raise_for_status()
|
||||
return json.dumps(response.json(), indent=2)
|
||||
except Exception as e:
|
||||
return f"Exception when calling {function_name}: {e}"
|
||||
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# ~~~~~~~~~~~~~~~~~~~ n8n AI Agent Tool Functions ~~~~~~~~~~~~~~~~~~~~~~
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
@tool
|
||||
def summarize_slack_conversation():
|
||||
"""
|
||||
Gets the latest messages in a Slack channel and summarizes the conversation
|
||||
|
||||
Example call:
|
||||
|
||||
summarize_slack_conversation()
|
||||
Args:
|
||||
None
|
||||
Returns:
|
||||
str: The API response with the Slack conversation summary or an error if there was an issue
|
||||
"""
|
||||
return invoke_n8n_webhook(
|
||||
"GET",
|
||||
SUMMARIZE_SLACK_CONVERSATION_WEBHOOK,
|
||||
"summarize_slack_conversation"
|
||||
)
|
||||
|
||||
@tool
|
||||
def send_slack_message(message):
|
||||
"""
|
||||
Sends a message in a Slack channel
|
||||
|
||||
Example call:
|
||||
|
||||
send_slack_message("Greetings!")
|
||||
Args:
|
||||
message (str): The message to send in the Slack channel
|
||||
Returns:
|
||||
str: The API response with the result of sending the Slack message or an error if there was an issue
|
||||
"""
|
||||
return invoke_n8n_webhook(
|
||||
"POST",
|
||||
SEND_SLACK_MESSAGE_WEBHOOK,
|
||||
"send_slack_message",
|
||||
{"message": message}
|
||||
)
|
||||
|
||||
@tool
|
||||
def create_google_doc(document_title, document_text):
|
||||
"""
|
||||
Creates a Google Doc in Google Drive with the text specified.
|
||||
|
||||
Example call:
|
||||
|
||||
create_google_doc("9/20 Meeting Notes", "Meeting notes for 9/20...")
|
||||
Args:
|
||||
document_title (str): The name of the Google Doc
|
||||
document_text (str): The text to put in the new Google Doc
|
||||
Returns:
|
||||
str: The API response with the result of creating the Google Doc or an error if there was an issue
|
||||
"""
|
||||
return invoke_n8n_webhook(
|
||||
"POST",
|
||||
UPLOAD_GOOGLE_DOC_WEBHOOK,
|
||||
"create_google_doc",
|
||||
{"document_title": document_title, "document_text": document_text}
|
||||
)
|
||||
|
||||
# Maps the function names to the actual function object in the script
|
||||
# This mapping will also be used to create the list of tools to bind to the agent
|
||||
available_functions = {
|
||||
"summarize_slack_conversation": summarize_slack_conversation,
|
||||
"send_slack_message": send_slack_message,
|
||||
"create_google_doc": create_google_doc
|
||||
}
|
||||
37
n8n-langchain-agent/.env.example
Normal file
37
n8n-langchain-agent/.env.example
Normal file
@@ -0,0 +1,37 @@
|
||||
# Rename this file to .env once you have filled in the below environment variables!
|
||||
|
||||
# The bearer token value that you set for the Header credentials in n8n
|
||||
# -> Click into the webhook node in n8n
|
||||
# -> select the "Credential for Header Auth" dropdown
|
||||
# -> Click "- Create New Credentials -"
|
||||
# -> For the Name field, enter "Authorization" (not including quotes)
|
||||
# -> For the Value field enter "Bearer [N8N_BEARER_TOKEN]", but
|
||||
# replace N8N_BEARER_TOKEN with your webhook "password"
|
||||
N8N_BEARER_TOKEN=
|
||||
|
||||
# Production URL for your n8n workflow that summarizes Slack conversations
|
||||
# Make sure your n8n workflow is switched to active so this works!
|
||||
SUMMARIZE_SLACK_CONVERSATION_WEBHOOK=
|
||||
|
||||
# Production URL for your n8n workflow that sends a Slack message
|
||||
SEND_SLACK_MESSAGE_WEBHOOK=
|
||||
|
||||
# Production URL for your n8n workflow that creates a Google Doc in your Drive
|
||||
UPLOAD_GOOGLE_DOC_WEBHOOK=
|
||||
|
||||
# See all Open AI models you can use here -
|
||||
# https://platform.openai.com/docs/models
|
||||
# And all Anthropic models you can use here -
|
||||
# https://docs.anthropic.com/en/docs/about-claude/models
|
||||
# A good default to go with here is gpt-4o or claude-3-5-sonnet-20240620
|
||||
LLM_MODEL=gpt-4o
|
||||
|
||||
# Get your Open AI API Key by following these instructions -
|
||||
# https://help.openai.com/en/articles/4936850-where-do-i-find-my-openai-api-key
|
||||
# You only need this environment variable set if you set LLM_MODEL to a GPT model
|
||||
OPENAI_API_KEY=
|
||||
|
||||
# Get your Anthropic API Key in your account settings -
|
||||
# https://console.anthropic.com/settings/keys
|
||||
# You only need this environment variable set if you set LLM_MODEL to a Claude model
|
||||
ANTHROPIC_API_KEY=
|
||||
119
n8n-langchain-agent/n8n-langchain-agent.py
Normal file
119
n8n-langchain-agent/n8n-langchain-agent.py
Normal file
@@ -0,0 +1,119 @@
|
||||
from langchain_core.messages import SystemMessage, AIMessage, ToolMessage, HumanMessage
|
||||
from langchain_anthropic import ChatAnthropic
|
||||
from langchain_openai import ChatOpenAI
|
||||
from dotenv import load_dotenv
|
||||
from datetime import datetime
|
||||
import streamlit as st
|
||||
import asyncio
|
||||
import json
|
||||
import os
|
||||
|
||||
from tools import available_functions
|
||||
|
||||
load_dotenv()
|
||||
model = os.getenv('LLM_MODEL', 'gpt-4o')
|
||||
|
||||
system_message = f"""
|
||||
You are a personal assistant who helps with research, managing Google Drive, and managing Slack.
|
||||
You never give IDs to the user since those are just for you to keep track of.
|
||||
The link to any Google Doc is: https://docs.google.com/document/d/[document ID]
|
||||
The current date is: {datetime.now().date()}
|
||||
"""
|
||||
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~ AI Prompting Function ~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
def get_chunk_text(chunk):
|
||||
response_content = ""
|
||||
chunk_content = chunk.content
|
||||
if isinstance(chunk_content, str):
|
||||
response_content += chunk_content
|
||||
elif isinstance(chunk_content, list):
|
||||
for chunk_text in chunk_content:
|
||||
if "text" in chunk_text:
|
||||
response_content += chunk_text["text"]
|
||||
|
||||
return response_content
|
||||
|
||||
def prompt_ai(messages):
|
||||
# First, prompt the AI with the latest user message
|
||||
tools = [tool for _, tool in available_functions.items()]
|
||||
n8n_chatbot = ChatOpenAI(model=model) if "gpt" in model.lower() else ChatAnthropic(model=model)
|
||||
n8n_chatbot_with_tools = n8n_chatbot.bind_tools(tools)
|
||||
|
||||
stream = n8n_chatbot_with_tools.stream(messages)
|
||||
first = True
|
||||
for chunk in stream:
|
||||
if first:
|
||||
gathered = chunk
|
||||
first = False
|
||||
else:
|
||||
gathered = gathered + chunk
|
||||
|
||||
yield get_chunk_text(chunk)
|
||||
|
||||
has_tool_calls = len(gathered.tool_calls) > 0
|
||||
|
||||
# Second, see if the AI decided it needs to invoke a tool
|
||||
if has_tool_calls:
|
||||
# Add the tool request to the list of messages so the AI knows later it invoked the tool
|
||||
messages.append(gathered)
|
||||
|
||||
# If the AI decided to invoke a tool, invoke it
|
||||
# For each tool the AI wanted to call, call it and add the tool result to the list of messages
|
||||
for tool_call in gathered.tool_calls:
|
||||
tool_name = tool_call["name"].lower()
|
||||
selected_tool = available_functions[tool_name]
|
||||
print(f"\nInvoking tool: {tool_call['name']} with args {tool_call['args']}")
|
||||
tool_output = selected_tool.invoke(tool_call["args"])
|
||||
print(f"Result of invoking tool: {tool_output}\n")
|
||||
messages.append(ToolMessage(tool_output, tool_call_id=tool_call["id"]))
|
||||
|
||||
# Call the AI again so it can produce a response with the result of calling the tool(s)
|
||||
additional_stream = prompt_ai(messages)
|
||||
for additional_chunk in additional_stream:
|
||||
yield additional_chunk
|
||||
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# ~~~~~~~~~~~~~~~~~~ Main Function with UI Creation ~~~~~~~~~~~~~~~~~~~~
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
async def main():
|
||||
st.title("n8n LangChain Agent")
|
||||
|
||||
# Initialize chat history
|
||||
if "messages" not in st.session_state:
|
||||
st.session_state.messages = [
|
||||
SystemMessage(content=system_message)
|
||||
]
|
||||
|
||||
# Display chat messages from history on app rerun
|
||||
for message in st.session_state.messages:
|
||||
message_json = json.loads(message.json())
|
||||
message_type = message_json["type"]
|
||||
if message_type in ["human", "ai", "system"]:
|
||||
with st.chat_message(message_type):
|
||||
st.markdown(message_json["content"])
|
||||
|
||||
# React to user input
|
||||
if prompt := st.chat_input("What would you like to do today?"):
|
||||
# Display user message in chat message container
|
||||
st.chat_message("user").markdown(prompt)
|
||||
# Add user message to chat history
|
||||
st.session_state.messages.append(HumanMessage(content=prompt))
|
||||
|
||||
# Display assistant response in chat message container
|
||||
with st.chat_message("assistant"):
|
||||
stream = prompt_ai(st.session_state.messages)
|
||||
response = st.write_stream(stream)
|
||||
|
||||
st.session_state.messages.append(AIMessage(content=response))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
8
n8n-langchain-agent/requirements.txt
Normal file
8
n8n-langchain-agent/requirements.txt
Normal file
@@ -0,0 +1,8 @@
|
||||
python-dotenv==0.13.0
|
||||
langchain==0.2.12
|
||||
langchain-anthropic==0.1.22
|
||||
langchain-community==0.2.11
|
||||
langchain-core==0.2.28
|
||||
langchain-openai==0.1.20
|
||||
streamlit==1.36.0
|
||||
requests==2.32.3
|
||||
124
n8n-langchain-agent/tools.py
Normal file
124
n8n-langchain-agent/tools.py
Normal file
@@ -0,0 +1,124 @@
|
||||
from dotenv import load_dotenv
|
||||
import requests
|
||||
import json
|
||||
import os
|
||||
|
||||
from langchain_core.tools import tool
|
||||
|
||||
load_dotenv()
|
||||
|
||||
N8N_BEARER_TOKEN = os.environ["N8N_BEARER_TOKEN"]
|
||||
SUMMARIZE_SLACK_CONVERSATION_WEBHOOK = os.environ["SUMMARIZE_SLACK_CONVERSATION_WEBHOOK"]
|
||||
SEND_SLACK_MESSAGE_WEBHOOK = os.environ["SEND_SLACK_MESSAGE_WEBHOOK"]
|
||||
UPLOAD_GOOGLE_DOC_WEBHOOK = os.environ["UPLOAD_GOOGLE_DOC_WEBHOOK"]
|
||||
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# ~~~~~~~~~~~~ Helper Function for Invoking n8n Webhooks ~~~~~~~~~~~~~~~
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
def invoke_n8n_webhook(method, url, function_name, payload=None):
|
||||
"""
|
||||
Helper function to make a GET or POST request.
|
||||
|
||||
Args:
|
||||
method (str): HTTP method ('GET' or 'POST')
|
||||
url (str): The API endpoint
|
||||
function_name (str): The name of the tool the AI agent invoked
|
||||
payload (dict, optional): The payload for POST requests
|
||||
|
||||
Returns:
|
||||
str: The API response in JSON format or an error message
|
||||
"""
|
||||
headers = {
|
||||
"Authorization": f"Bearer {N8N_BEARER_TOKEN}",
|
||||
"Content-Type": "application/json"
|
||||
}
|
||||
|
||||
try:
|
||||
if method == "GET":
|
||||
response = requests.get(url, headers=headers)
|
||||
elif method == "POST":
|
||||
response = requests.post(url, headers=headers, json=payload)
|
||||
else:
|
||||
return f"Unsupported method: {method}"
|
||||
|
||||
response.raise_for_status()
|
||||
return json.dumps(response.json(), indent=2)
|
||||
except Exception as e:
|
||||
return f"Exception when calling {function_name}: {e}"
|
||||
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# ~~~~~~~~~~~~~~~~~~~ n8n AI Agent Tool Functions ~~~~~~~~~~~~~~~~~~~~~~
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
@tool
|
||||
def summarize_slack_conversation():
|
||||
"""
|
||||
Gets the latest messages in a Slack channel and summarizes the conversation
|
||||
|
||||
Example call:
|
||||
|
||||
summarize_slack_conversation()
|
||||
Args:
|
||||
None
|
||||
Returns:
|
||||
str: The API response with the Slack conversation summary or an error if there was an issue
|
||||
"""
|
||||
return invoke_n8n_webhook(
|
||||
"GET",
|
||||
SUMMARIZE_SLACK_CONVERSATION_WEBHOOK,
|
||||
"summarize_slack_conversation"
|
||||
)
|
||||
|
||||
@tool
|
||||
def send_slack_message(message):
|
||||
"""
|
||||
Sends a message in a Slack channel
|
||||
|
||||
Example call:
|
||||
|
||||
send_slack_message("Greetings!")
|
||||
Args:
|
||||
message (str): The message to send in the Slack channel
|
||||
Returns:
|
||||
str: The API response with the result of sending the Slack message or an error if there was an issue
|
||||
"""
|
||||
return invoke_n8n_webhook(
|
||||
"POST",
|
||||
SEND_SLACK_MESSAGE_WEBHOOK,
|
||||
"send_slack_message",
|
||||
{"message": message}
|
||||
)
|
||||
|
||||
@tool
|
||||
def create_google_doc(document_title, document_text):
|
||||
"""
|
||||
Creates a Google Doc in Google Drive with the text specified.
|
||||
|
||||
Example call:
|
||||
|
||||
create_google_doc("9/20 Meeting Notes", "Meeting notes for 9/20...")
|
||||
Args:
|
||||
document_title (str): The name of the Google Doc
|
||||
document_text (str): The text to put in the new Google Doc
|
||||
Returns:
|
||||
str: The API response with the result of creating the Google Doc or an error if there was an issue
|
||||
"""
|
||||
return invoke_n8n_webhook(
|
||||
"POST",
|
||||
UPLOAD_GOOGLE_DOC_WEBHOOK,
|
||||
"create_google_doc",
|
||||
{"document_title": document_title, "document_text": document_text}
|
||||
)
|
||||
|
||||
# Maps the function names to the actual function object in the script
|
||||
# This mapping will also be used to create the list of tools to bind to the agent
|
||||
available_functions = {
|
||||
"summarize_slack_conversation": summarize_slack_conversation,
|
||||
"send_slack_message": send_slack_message,
|
||||
"create_google_doc": create_google_doc
|
||||
}
|
||||
Reference in New Issue
Block a user