chore(docs): update docs(ko, ja) & i18n ko translation data (#1744)

* add i18n translation data(ko_KR.json)

* update README.ko.md

* update README.ja.md

* update Changelog_KO.md

* add Changelog_JA.md

* add faq_ko.md

* add faq_ja.md
This commit is contained in:
Pengoose
2024-01-21 20:18:59 +09:00
committed by GitHub
parent b7d02d3cf2
commit f29f39cdef
7 changed files with 934 additions and 117 deletions

View File

@@ -3,107 +3,255 @@
<h1>Retrieval-based-Voice-Conversion-WebUI</h1>
VITSに基づく使いやすい音声変換voice changerframework<br><br>
[![madewithlove](https://img.shields.io/badge/made_with-%E2%9D%A4-red?style=for-the-badge&labelColor=orange
)](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI)
[![madewithlove](https://img.shields.io/badge/made_with-%E2%9D%A4-red?style=for-the-badge&labelColor=orange)](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI)
<img src="https://counter.seku.su/cmoe?name=rvc&theme=r34" /><br>
[![Open In Colab](https://img.shields.io/badge/Colab-F9AB00?style=for-the-badge&logo=googlecolab&color=525252)](https://colab.research.google.com/github/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/blob/main/Retrieval_based_Voice_Conversion_WebUI.ipynb)
[![Licence](https://img.shields.io/github/license/RVC-Project/Retrieval-based-Voice-Conversion-WebUI?style=for-the-badge)](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/blob/main/LICENSE)
[![Licence](https://img.shields.io/badge/LICENSE-MIT-green.svg?style=for-the-badge)](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/blob/main/LICENSE)
[![Huggingface](https://img.shields.io/badge/🤗%20-Spaces-yellow.svg?style=for-the-badge)](https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main/)
[![Discord](https://img.shields.io/badge/RVC%20Developers-Discord-7289DA?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/HcsmBBGyVk)
</div>
------
[**更新日誌**](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/blob/main/docs/Changelog_CN.md)
[**更新日誌**](./Changelog_JA.md) | [**よくある質問**](./faq_ja.md) | [**AutoDL·5 円で AI 歌手をトレーニング**](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/wiki/Autodl%E8%AE%AD%E7%BB%83RVC%C2%B7AI%E6%AD%8C%E6%89%8B%E6%95%99%E7%A8%8B) | [**対照実験記録**](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/wiki/%E5%AF%B9%E7%85%A7%E5%AE%9E%E9%AA%8C%C2%B7%E5%AE%9E%E9%AA%8C%E8%AE%B0%E5%BD%95) | [**オンラインデモ**](https://modelscope.cn/studios/FlowerCry/RVCv2demo)
[**English**](../en/README.en.md) | [**中文简体**](../../README.md) | [**日本語**](../jp/README.ja.md) | [**한국어**](../kr/README.ko.md) ([**韓國語**](../kr/README.ko.han.md)) | [**Français**](../fr/README.fr.md) | [**Türkçe**](../tr/README.tr.md) | [**Português**](../pt/README.pt.md)
</div>
> デモ動画は[こちら](https://www.bilibili.com/video/BV1pm4y1z7Gm/)でご覧ください。
> RVCによるリアルタイム音声変換: [w-okada/voice-changer](https://github.com/w-okada/voice-changer)
> RVC によるリアルタイム音声変換: [w-okada/voice-changer](https://github.com/w-okada/voice-changer)
> 著作権侵害を心配することなく使用できるように、基底モデルは約50時間の高品質なオープンソースデータセットで訓練されています。
> 著作権侵害を心配することなく使用できるように、基底モデルは約 50 時間の高品質なオープンソースデータセットで訓練されています。
> 今後も、次々と使用許可のある高品質な歌声の資料集を追加し、基底モデルを訓練する予定です。
> RVCv3 の基底モデルルをご期待ください。より大きなパラメータ、より大きなデータ、より良い効果を提供し、基本的に同様の推論速度を維持しながら、トレーニングに必要なデータ量はより少なくなります。
<table>
<tr>
<td align="center">トレーニングと推論インターフェース</td>
<td align="center">リアルタイム音声変換インターフェース</td>
</tr>
<tr>
<td align="center"><img src="https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/assets/129054828/092e5c12-0d49-4168-a590-0b0ef6a4f630"></td>
<td align="center"><img src="https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/assets/129054828/730b4114-8805-44a1-ab1a-04668f3c30a6"></td>
</tr>
<tr>
<td align="center">go-web.bat</td>
<td align="center">go-realtime-gui.bat</td>
</tr>
<tr>
<td align="center">実行したい操作を自由に選択できます。</td>
<td align="center">既に端から端までの170msの遅延を実現しました。ASIO入出力デバイスを使用すれば、端から端までの90msの遅延を達成できますが、ハードウェアドライバーのサポートに非常に依存しています。</td>
</tr>
</table>
## はじめに
本リポジトリには下記の特徴があります。
+ Top1検索を用いることで、生の特徴量を訓練用データセット特徴量に変換し、トーンリーケージを削減します。
+ 比較的貧弱なGPUでも、高速かつ簡単に訓練できます。
+ 少量のデータセットからでも、比較的良い結果を得ることができます。10分以上のイズの少ない音声を推奨します。
+ モデルを融合することで、音声を混ぜることができます。ckpt processingタブの、ckpt mergeを使用します。
+ 使いやすいWebUI。
+ UVR5 Modelも含んでいるため、人の声とBGMを素早く分離できます。
- Top1 検索を用いることで、生の特徴量を訓練用データセット特徴量に変換し、トーンリーケージを削減します。
- 比較的貧弱な GPU でも、高速かつ簡単に訓練できます。
- 少量のデータセットからでも、比較的良い結果を得ることができます。10 分以上のノイズの少ない音声を推奨します。)
- モデルを融合することで、音声を混ぜることができます。ckpt processing タブの、ckpt merge を使用します。)
- 使いやすい WebUI。
- UVR5 Model も含んでいるため、人の声と BGM を素早く分離できます。
- 最先端の[人間の声のピッチ抽出アルゴリズム InterSpeech2023-RMVPE](#参照プロジェクト)を使用して無声音問題を解決します。効果は最高著しくで、crepe_full よりも速く、リソース使用が少ないです。
- A カードと I カードの加速サポート
私たちの[デモビデオ](https://www.bilibili.com/video/BV1pm4y1z7Gm/)をチェックしてください!
## 環境構築
Poetryで依存関係をインストールすることをお勧めします。
下記のコマンドは、Python3.8以上の環境で実行する必要があります:
下記のコマンドは、Python3.8 以上の環境で実行する必要があります:
### Windows/Linux/MacOS などのプラットフォーム共通方法
以下の方法のいずれかを選択してください。
#### 1. pip を通じた依存関係のインストール
1. Pytorch 及びその主要な依存関係のインストール、すでにインストールされている場合はスキップ。参照https://pytorch.org/get-started/locally/
```bash
# PyTorch関連の依存関係をインストール。インストール済の場合は省略。
# 参照先: https://pytorch.org/get-started/locally/
pip install torch torchvision torchaudio
#Windows Nvidia Ampere Architecture(RTX30xx)の場合、 #21 に従い、pytorchに対応するcuda versionを指定する必要があります。
#pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117
# PyTorch関連の依存関係をインストール。インストール済の場合は省略。
# 参照先: https://python-poetry.org/docs/#installation
curl -sSL https://install.python-poetry.org | python3 -
# Poetry経由で依存関係をインストール
poetry install
```
pipでも依存関係のインストールが可能です:
2. win システム + Nvidia Ampere アーキテクチャRTX30xxの場合、#21 の経験に基づいて pytorch に対応する cuda バージョンを指定
```bash
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117
```
3. 自分のグラフィックカードに合わせた依存関係のインストール
- N カード
```bash
pip install -r requirements.txt
```
## 基底modelsを準備
RVCは推論/訓練のために、様々な事前訓練を行った基底モデルを必要とします。
- A カード/I カード
modelsは[Hugging Face space](https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main/)からダウンロードできます。
以下は、RVCに必要な基底モデルやその他のファイルの一覧です。
```bash
./assets/hubert/hubert_base.pt
./assets/pretrained
./assets/uvr5_weights
V2のモデルを使用するには、追加でファイルをダウンロードする必要があります
./assets/pretrained_v2
# ffmpegがすでにinstallされている場合は省略
./ffmpeg
pip install -r requirements-dml.txt
```
その後、下記のコマンドでWebUIを起動します。
- A カード ROCM(Linux)
```bash
pip install -r requirements-amd.txt
```
- I カード IPEX(Linux)
```bash
pip install -r requirements-ipex.txt
```
#### 2. poetry を通じた依存関係のインストール
Poetry 依存関係管理ツールのインストール、すでにインストールされている場合はスキップ。参照https://python-poetry.org/docs/#installation
```bash
curl -sSL https://install.python-poetry.org | python3 -
```
poetry を使って依存関係をインストール
```bash
poetry install
```
### MacOS
`run.sh`を使って依存関係をインストールできます
```bash
sh ./run.sh
```
## その他の事前訓練されたモデルの準備
RVC は推論とトレーニングのために他のいくつかの事前訓練されたモデルが必要です。
これらのモデルは私たちの[Hugging Face space](https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main/)でダウンロードできます。
### 1. assets のダウンロード
以下は、RVC に必要なすべての事前学習モデルとその他のファイルのリストです。`tools`フォルダーにこれらをダウンロードするスクリプトがあります。
- ./assets/hubert/hubert_base.pt
- ./assets/pretrained
- ./assets/uvr5_weights
v2 バージョンのモデルを使用する場合、追加で以下をダウンロードする必要があります。
- ./assets/pretrained_v2
### 2. ffmpeg のインストール
ffmpeg と ffprobe が既にインストールされている場合はスキップします。
#### Ubuntu/Debian ユーザー
```bash
sudo apt install ffmpeg
```
#### MacOS ユーザー
```bash
brew install ffmpeg
```
#### Windows ユーザー
ダウンロード後、ルートディレクトリに配置してください。
- [ffmpeg.exe をダウンロード](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/ffmpeg.exe)
- [ffprobe.exe をダウンロード](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/ffprobe.exe)
### 3. RMVPE 人間の声のピッチ抽出アルゴリズムに必要なファイルのダウンロード
最新の RMVPE 人間の声のピッチ抽出アルゴリズムを使用する場合、ピッチ抽出モデルのパラメータをダウンロードして RVC のルートディレクトリに配置する必要があります。
- [rmvpe.pt をダウンロード](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/rmvpe.pt)
#### dml 環境の RMVPE をダウンロード(オプション、A カード/I カードユーザー)
- [rmvpe.onnx をダウンロード](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/rmvpe.onnx)
### 4. AMD グラフィックカード Rocm(オプション、Linux のみ)
Linux システムで AMD の Rocm 技術をベースに RVC を実行したい場合、[こちら](https://rocm.docs.amd.com/en/latest/deploy/linux/os-native/install.html)で必要なドライバーを先にインストールしてください。
Arch Linux を使用している場合、pacman を使用して必要なドライバーをインストールできます。
```
pacman -S rocm-hip-sdk rocm-opencl-sdk
```
一部のモデルのグラフィックカードRX6700XTの場合、以下のような環境変数を追加で設定する必要があるかもしれません。
```
export ROCM_PATH=/opt/rocm
export HSA_OVERRIDE_GFX_VERSION=10.3.0
```
同時に、現在のユーザーが`render`および`video`ユーザーグループに属していることを確認してください。
```
sudo usermod -aG render $USERNAME
sudo usermod -aG video $USERNAME
```
## 使用開始
### 直接起動
以下のコマンドで WebUI を起動します
'''bash
python infer-web.py
```
Windowsをお使いの方は、直接`RVC-beta.7z`をダウンロード後に展開し、`go-web.bat`をクリックすることで、WebUIを起動することができます。(7zipが必要です。)
'''
また、リポジトリに[小白简易教程.doc](./小白简易教程.doc)がありますので、参考にしてください(中国語版のみ)。
### 統合パッケージの使用
`RVC-beta.7z`をダウンロードして解凍
#### Windows ユーザー
`go-web.bat`をダブルクリック
#### MacOS ユーザー
'''bash
sh ./run.sh
'''
### IPEX 技術が必要な I カードユーザー向け(Linux のみ)
'''bash
source /opt/intel/oneapi/setvars.sh
'''
## 参考プロジェクト
+ [ContentVec](https://github.com/auspicious3000/contentvec/)
+ [VITS](https://github.com/jaywalnut310/vits)
+ [HIFIGAN](https://github.com/jik876/hifi-gan)
+ [Gradio](https://github.com/gradio-app/gradio)
+ [FFmpeg](https://github.com/FFmpeg/FFmpeg)
+ [Ultimate Vocal Remover](https://github.com/Anjok07/ultimatevocalremovergui)
+ [audio-slicer](https://github.com/openvpi/audio-slicer)
## 貢献者(contributor)の皆様の尽力に感謝します
- [ContentVec](https://github.com/auspicious3000/contentvec/)
- [VITS](https://github.com/jaywalnut310/vits)
- [HIFIGAN](https://github.com/jik876/hifi-gan)
- [Gradio](https://github.com/gradio-app/gradio)
- [FFmpeg](https://github.com/FFmpeg/FFmpeg)
- [Ultimate Vocal Remover](https://github.com/Anjok07/ultimatevocalremovergui)
- [audio-slicer](https://github.com/openvpi/audio-slicer)
- [Vocal pitch extraction:RMVPE](https://github.com/Dream-High/RMVPE)
- 事前訓練されたモデルは[yxlllc](https://github.com/yxlllc/RMVPE)と[RVC-Boss](https://github.com/RVC-Boss)によって訓練され、テストされました。
## すべての貢献者の努力に感謝します
<a href="https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/graphs/contributors" target="_blank">
<img src="https://contrib.rocks/image?repo=RVC-Project/Retrieval-based-Voice-Conversion-WebUI" />
</a>