optimize: 精简未用到的配置项并在特征提取初步引入mps (#32)

This commit is contained in:
源文雨
2023-04-11 18:14:55 +08:00
committed by GitHub
parent 0656591373
commit ecc744d748
10 changed files with 82 additions and 57 deletions

View File

@@ -1,3 +1,20 @@
########################硬件参数########################
#填写cuda:x, cpu 或 mps, x指代第几张卡只支持 N卡 / Apple Silicon 加速
device = "cuda:0"
#9-10-20-30-40系显卡无脑True不影响质量>=20显卡开启有加速
is_half = True
#默认0用上所有线程写数字限制CPU资源使用
n_cpu = 0
########################硬件参数########################
##################下为参数处理逻辑,勿动##################
########################命令行参数########################
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--port", type=int, default=7865, help="Listen port")
@@ -5,34 +22,48 @@ parser.add_argument("--pycmd", type=str, default="python", help="Python command"
parser.add_argument("--colab", action='store_true', help="Launch in colab")
parser.add_argument("--noparallel", action='store_true', help="Disable parallel processing")
cmd_opts = parser.parse_args()
############离线VC参数
inp_root=r"白鹭霜华长条"#对输入目录下所有音频进行转换,别放非音频文件
opt_root=r"opt"#输出目录
f0_up_key=0#升降调整数男转女12女转男-12
person=r"weights\洛天依v3.pt"#目前只有洛天依v3
############硬件参数
device = "cuda:0"#填写cuda:x或cpux指代第几张卡只支持N卡加速
is_half=True#9-10-20-30-40系显卡无脑True不影响质量>=20显卡开启有加速
n_cpu=0#默认0用上所有线程写数字限制CPU资源使用
############python命令路径
python_cmd=cmd_opts.pycmd
listen_port=cmd_opts.port
iscolab=cmd_opts.colab
noparallel=cmd_opts.noparallel
############下头别动
########################命令行参数########################
import sys
import torch
if(torch.cuda.is_available()==False):
print("没有发现支持的N卡, 使用CPU进行推理")
device="cpu"
is_half=False
if(device!="cpu"):
gpu_name=torch.cuda.get_device_name(int(device.split(":")[-1]))
if("16"in gpu_name or "MX"in gpu_name):
# has_mps is only available in nightly pytorch (for now) and MasOS 12.3+.
# check `getattr` and try it for compatibility
def has_mps() -> bool:
if sys.platform != "darwin":
return False
else:
if not getattr(torch, 'has_mps', False): return False
try:
torch.zeros(1).to(torch.device("mps"))
return True
except Exception:
return False
if(not torch.cuda.is_available()):
if has_mps():
print("没有发现支持的N卡, 使用MPS进行推理")
device = "mps"
else:
print("没有发现支持的N卡, 使用CPU进行推理")
device = "cpu"
is_half = False
if(device not in ["cpu", "mps"]):
gpu_name = torch.cuda.get_device_name(int(device.split(":")[-1]))
if("16" in gpu_name or "MX" in gpu_name):
print("16系显卡/MX系显卡强制单精度")
is_half=False
is_half = False
from multiprocessing import cpu_count
if(n_cpu==0):n_cpu=cpu_count()
if(is_half==True):
if(n_cpu==0): n_cpu=cpu_count()
if(is_half):
#6G显存配置
x_pad = 3
x_query = 10
@@ -41,10 +72,6 @@ if(is_half==True):
else:
#5G显存配置
x_pad = 1
# x_query = 6
# x_center = 30
# x_max = 32
#6G显存配置
x_query = 6
x_center = 38
x_max = 41