mirror of
https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git
synced 2026-01-20 02:51:09 +00:00
Reformat and rewrite _get_name_params (#57)
* Reformat
* rewrite _get_name_params
* Add workflow for automatic formatting
* Revert "Add workflow for automatic formatting"
This reverts commit 9111c5dbc1.
* revert Retrieval_based_Voice_Conversion_WebUI.ipynb
---------
Co-authored-by: 源文雨 <41315874+fumiama@users.noreply.github.com>
This commit is contained in:
@@ -7,7 +7,6 @@ from uvr5_pack.lib_v5 import spec_utils
|
||||
|
||||
|
||||
class BaseASPPNet(nn.Module):
|
||||
|
||||
def __init__(self, nin, ch, dilations=(4, 8, 16)):
|
||||
super(BaseASPPNet, self).__init__()
|
||||
self.enc1 = layers.Encoder(nin, ch, 3, 2, 1)
|
||||
@@ -39,7 +38,6 @@ class BaseASPPNet(nn.Module):
|
||||
|
||||
|
||||
class CascadedASPPNet(nn.Module):
|
||||
|
||||
def __init__(self, n_fft):
|
||||
super(CascadedASPPNet, self).__init__()
|
||||
self.stg1_low_band_net = BaseASPPNet(2, 16)
|
||||
@@ -64,13 +62,16 @@ class CascadedASPPNet(nn.Module):
|
||||
mix = x.detach()
|
||||
x = x.clone()
|
||||
|
||||
x = x[:, :, :self.max_bin]
|
||||
x = x[:, :, : self.max_bin]
|
||||
|
||||
bandw = x.size()[2] // 2
|
||||
aux1 = torch.cat([
|
||||
self.stg1_low_band_net(x[:, :, :bandw]),
|
||||
self.stg1_high_band_net(x[:, :, bandw:])
|
||||
], dim=2)
|
||||
aux1 = torch.cat(
|
||||
[
|
||||
self.stg1_low_band_net(x[:, :, :bandw]),
|
||||
self.stg1_high_band_net(x[:, :, bandw:]),
|
||||
],
|
||||
dim=2,
|
||||
)
|
||||
|
||||
h = torch.cat([x, aux1], dim=1)
|
||||
aux2 = self.stg2_full_band_net(self.stg2_bridge(h))
|
||||
@@ -82,24 +83,33 @@ class CascadedASPPNet(nn.Module):
|
||||
mask = F.pad(
|
||||
input=mask,
|
||||
pad=(0, 0, 0, self.output_bin - mask.size()[2]),
|
||||
mode='replicate')
|
||||
|
||||
mode="replicate",
|
||||
)
|
||||
|
||||
if self.training:
|
||||
aux1 = torch.sigmoid(self.aux1_out(aux1))
|
||||
aux1 = F.pad(
|
||||
input=aux1,
|
||||
pad=(0, 0, 0, self.output_bin - aux1.size()[2]),
|
||||
mode='replicate')
|
||||
mode="replicate",
|
||||
)
|
||||
aux2 = torch.sigmoid(self.aux2_out(aux2))
|
||||
aux2 = F.pad(
|
||||
input=aux2,
|
||||
pad=(0, 0, 0, self.output_bin - aux2.size()[2]),
|
||||
mode='replicate')
|
||||
mode="replicate",
|
||||
)
|
||||
return mask * mix, aux1 * mix, aux2 * mix
|
||||
else:
|
||||
else:
|
||||
if aggressiveness:
|
||||
mask[:, :, :aggressiveness['split_bin']] = torch.pow(mask[:, :, :aggressiveness['split_bin']], 1 + aggressiveness['value'] / 3)
|
||||
mask[:, :, aggressiveness['split_bin']:] = torch.pow(mask[:, :, aggressiveness['split_bin']:], 1 + aggressiveness['value'])
|
||||
mask[:, :, : aggressiveness["split_bin"]] = torch.pow(
|
||||
mask[:, :, : aggressiveness["split_bin"]],
|
||||
1 + aggressiveness["value"] / 3,
|
||||
)
|
||||
mask[:, :, aggressiveness["split_bin"] :] = torch.pow(
|
||||
mask[:, :, aggressiveness["split_bin"] :],
|
||||
1 + aggressiveness["value"],
|
||||
)
|
||||
|
||||
return mask * mix
|
||||
|
||||
@@ -107,7 +117,7 @@ class CascadedASPPNet(nn.Module):
|
||||
h = self.forward(x_mag, aggressiveness)
|
||||
|
||||
if self.offset > 0:
|
||||
h = h[:, :, :, self.offset:-self.offset]
|
||||
h = h[:, :, :, self.offset : -self.offset]
|
||||
assert h.size()[3] > 0
|
||||
|
||||
return h
|
||||
|
||||
Reference in New Issue
Block a user