Reformat and rewrite _get_name_params (#57)

* Reformat

* rewrite _get_name_params

* Add workflow for automatic formatting

* Revert "Add workflow for automatic formatting"

This reverts commit 9111c5dbc1.

* revert Retrieval_based_Voice_Conversion_WebUI.ipynb

---------

Co-authored-by: 源文雨 <41315874+fumiama@users.noreply.github.com>
This commit is contained in:
Ftps
2023-04-15 20:44:24 +09:00
committed by GitHub
parent aaa893c4b1
commit c8261b2ccc
45 changed files with 4878 additions and 2456 deletions

View File

@@ -6,19 +6,20 @@ from uvr5_pack.lib_v5 import spec_utils
class Conv2DBNActiv(nn.Module):
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
super(Conv2DBNActiv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(
nin, nout,
nin,
nout,
kernel_size=ksize,
stride=stride,
padding=pad,
dilation=dilation,
bias=False),
bias=False,
),
nn.BatchNorm2d(nout),
activ()
activ(),
)
def __call__(self, x):
@@ -26,24 +27,22 @@ class Conv2DBNActiv(nn.Module):
class SeperableConv2DBNActiv(nn.Module):
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
super(SeperableConv2DBNActiv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(
nin, nin,
nin,
nin,
kernel_size=ksize,
stride=stride,
padding=pad,
dilation=dilation,
groups=nin,
bias=False),
nn.Conv2d(
nin, nout,
kernel_size=1,
bias=False),
bias=False,
),
nn.Conv2d(nin, nout, kernel_size=1, bias=False),
nn.BatchNorm2d(nout),
activ()
activ(),
)
def __call__(self, x):
@@ -51,7 +50,6 @@ class SeperableConv2DBNActiv(nn.Module):
class Encoder(nn.Module):
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
super(Encoder, self).__init__()
self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
@@ -65,14 +63,15 @@ class Encoder(nn.Module):
class Decoder(nn.Module):
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
def __init__(
self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False
):
super(Decoder, self).__init__()
self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
self.dropout = nn.Dropout2d(0.1) if dropout else None
def __call__(self, x, skip=None):
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=True)
if skip is not None:
skip = spec_utils.crop_center(skip, x)
x = torch.cat([x, skip], dim=1)
@@ -85,28 +84,31 @@ class Decoder(nn.Module):
class ASPPModule(nn.Module):
def __init__(self, nin, nout, dilations=(4, 8, 16), activ=nn.ReLU):
super(ASPPModule, self).__init__()
self.conv1 = nn.Sequential(
nn.AdaptiveAvgPool2d((1, None)),
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ),
)
self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
self.conv3 = SeperableConv2DBNActiv(
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ)
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ
)
self.conv4 = SeperableConv2DBNActiv(
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ)
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ
)
self.conv5 = SeperableConv2DBNActiv(
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
)
self.bottleneck = nn.Sequential(
Conv2DBNActiv(nin * 5, nout, 1, 1, 0, activ=activ),
nn.Dropout2d(0.1)
Conv2DBNActiv(nin * 5, nout, 1, 1, 0, activ=activ), nn.Dropout2d(0.1)
)
def forward(self, x):
_, _, h, w = x.size()
feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True)
feat1 = F.interpolate(
self.conv1(x), size=(h, w), mode="bilinear", align_corners=True
)
feat2 = self.conv2(x)
feat3 = self.conv3(x)
feat4 = self.conv4(x)