added some more zh to en_US translation (#194)

* Add files via upload

* updated i18n() translation for en_US

expanded the dict for other languages

* added more i18n()

---------

Co-authored-by: 源文雨 <41315874+fumiama@users.noreply.github.com>
This commit is contained in:
bycloud
2023-04-28 08:44:46 -04:00
committed by GitHub
parent f391ac1763
commit bbe333552f
8 changed files with 852 additions and 768 deletions

View File

@@ -65,7 +65,7 @@ if if_gpu_ok == True and len(gpu_infos) > 0:
gpu_info = "\n".join(gpu_infos)
default_batch_size = min(mem) // 2
else:
gpu_info = "很遗憾您这没有能用的显卡来支持您训练"
gpu_info = i18n("很遗憾您这没有能用的显卡来支持您训练")
default_batch_size = 1
gpus = "-".join([i[0] for i in gpu_infos])
from infer_pack.models import SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono
@@ -366,7 +366,7 @@ def clean():
def change_f0(if_f0_3, sr2): # np7, f0method8,pretrained_G14,pretrained_D15
if if_f0_3 == "":
if if_f0_3 == i18n(""):
return (
{"visible": True, "__type__": "update"},
{"visible": True, "__type__": "update"},
@@ -452,7 +452,7 @@ def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir):
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
f = open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "w")
f.close()
if if_f0 == "":
if if_f0 == i18n(""):
cmd = config.python_cmd + " extract_f0_print.py %s/logs/%s %s %s" % (
now_dir,
exp_dir,
@@ -528,7 +528,7 @@ def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir):
def change_sr2(sr2, if_f0_3):
if if_f0_3 == "":
if if_f0_3 == i18n(""):
return "pretrained/f0G%s.pth" % sr2, "pretrained/f0D%s.pth" % sr2
else:
return "pretrained/G%s.pth" % sr2, "pretrained/D%s.pth" % sr2
@@ -554,7 +554,7 @@ def click_train(
os.makedirs(exp_dir, exist_ok=True)
gt_wavs_dir = "%s/0_gt_wavs" % (exp_dir)
co256_dir = "%s/3_feature256" % (exp_dir)
if if_f0_3 == "":
if if_f0_3 == i18n(""):
f0_dir = "%s/2a_f0" % (exp_dir)
f0nsf_dir = "%s/2b-f0nsf" % (exp_dir)
names = (
@@ -569,7 +569,7 @@ def click_train(
)
opt = []
for name in names:
if if_f0_3 == "":
if if_f0_3 == i18n(""):
opt.append(
"%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s"
% (
@@ -595,7 +595,7 @@ def click_train(
spk_id5,
)
)
if if_f0_3 == "":
if if_f0_3 == i18n(""):
for _ in range(2):
opt.append(
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature256/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s"
@@ -621,15 +621,15 @@ def click_train(
% (
exp_dir1,
sr2,
1 if if_f0_3 == "" else 0,
1 if if_f0_3 == i18n("") else 0,
batch_size12,
gpus16,
total_epoch11,
save_epoch10,
pretrained_G14,
pretrained_D15,
1 if if_save_latest13 == "" else 0,
1 if if_cache_gpu17 == "" else 0,
1 if if_save_latest13 == i18n("") else 0,
1 if if_cache_gpu17 == i18n("") else 0,
)
)
else:
@@ -639,14 +639,14 @@ def click_train(
% (
exp_dir1,
sr2,
1 if if_f0_3 == "" else 0,
1 if if_f0_3 == i18n("") else 0,
batch_size12,
total_epoch11,
save_epoch10,
pretrained_G14,
pretrained_D15,
1 if if_save_latest13 == "" else 0,
1 if if_cache_gpu17 == "" else 0,
1 if if_save_latest13 == i18n("") else 0,
1 if if_cache_gpu17 == i18n("") else 0,
)
)
print(cmd)
@@ -736,7 +736,7 @@ def train1key(
% (trainset_dir4, sr_dict[sr2], ncpu, now_dir, exp_dir1)
+ str(config.noparallel)
)
yield get_info_str("step1:正在处理数据")
yield get_info_str(i18n("step1:正在处理数据"))
yield get_info_str(cmd)
p = Popen(cmd, shell=True)
p.wait()
@@ -744,7 +744,7 @@ def train1key(
print(f.read())
#########step2a:提取音高
open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir1), "w")
if if_f0_3 == "":
if if_f0_3 == i18n(""):
yield get_info_str("step2a:正在提取音高")
cmd = config.python_cmd + " extract_f0_print.py %s/logs/%s %s %s" % (
now_dir,
@@ -758,9 +758,9 @@ def train1key(
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir1), "r") as f:
print(f.read())
else:
yield get_info_str("step2a:无需提取音高")
yield get_info_str(i18n("step2a:无需提取音高"))
#######step2b:提取特征
yield get_info_str("step2b:正在提取特征")
yield get_info_str(i18n("step2b:正在提取特征"))
gpus = gpus16.split("-")
leng = len(gpus)
ps = []
@@ -783,12 +783,12 @@ def train1key(
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir1), "r") as f:
print(f.read())
#######step3a:训练模型
yield get_info_str("step3a:正在训练模型")
yield get_info_str(i18n("step3a:正在训练模型"))
# 生成filelist
exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
gt_wavs_dir = "%s/0_gt_wavs" % (exp_dir)
co256_dir = "%s/3_feature256" % (exp_dir)
if if_f0_3 == "":
if if_f0_3 == i18n(""):
f0_dir = "%s/2a_f0" % (exp_dir)
f0nsf_dir = "%s/2b-f0nsf" % (exp_dir)
names = (
@@ -803,7 +803,7 @@ def train1key(
)
opt = []
for name in names:
if if_f0_3 == "":
if if_f0_3 == i18n(""):
opt.append(
"%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s"
% (
@@ -829,7 +829,7 @@ def train1key(
spk_id5,
)
)
if if_f0_3 == "":
if if_f0_3 == i18n(""):
for _ in range(2):
opt.append(
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature256/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s"
@@ -852,15 +852,15 @@ def train1key(
% (
exp_dir1,
sr2,
1 if if_f0_3 == "" else 0,
1 if if_f0_3 == i18n("") else 0,
batch_size12,
gpus16,
total_epoch11,
save_epoch10,
pretrained_G14,
pretrained_D15,
1 if if_save_latest13 == "" else 0,
1 if if_cache_gpu17 == "" else 0,
1 if if_save_latest13 == i18n("") else 0,
1 if if_cache_gpu17 == i18n("") else 0,
)
)
else:
@@ -870,20 +870,20 @@ def train1key(
% (
exp_dir1,
sr2,
1 if if_f0_3 == "" else 0,
1 if if_f0_3 == i18n("") else 0,
batch_size12,
total_epoch11,
save_epoch10,
pretrained_G14,
pretrained_D15,
1 if if_save_latest13 == "" else 0,
1 if if_cache_gpu17 == "" else 0,
1 if if_save_latest13 == i18n("") else 0,
1 if if_cache_gpu17 == i18n("") else 0,
)
)
yield get_info_str(cmd)
p = Popen(cmd, shell=True, cwd=now_dir)
p.wait()
yield get_info_str("训练结束, 您可查看控制台训练日志或实验文件夹下的train.log")
yield get_info_str(i18n("训练结束, 您可查看控制台训练日志或实验文件夹下的train.log"))
#######step3b:训练索引
feature_dir = "%s/3_feature256" % (exp_dir)
npys = []
@@ -915,7 +915,7 @@ def train1key(
yield get_info_str(
"成功构建索引, added_IVF%s_Flat_nprobe_%s.index" % (n_ivf, index_ivf.nprobe)
)
yield get_info_str("全流程结束!")
yield get_info_str(i18n("全流程结束!"))
# ckpt_path2.change(change_info_,[ckpt_path2],[sr__,if_f0__])
@@ -1082,7 +1082,7 @@ with gr.Blocks() as app:
index_rate1 = gr.Slider(
minimum=0,
maximum=1,
label="检索特征占比",
label=i18n("检索特征占比"),
value=0.76,
interactive=True,
)
@@ -1186,7 +1186,7 @@ with gr.Blocks() as app:
minimum=0,
maximum=20,
step=1,
label="人声提取激进程度",
label=i18n("人声提取激进程度"),
value=10,
interactive=True,
visible=False, # 先不开放调整
@@ -1225,8 +1225,8 @@ with gr.Blocks() as app:
)
if_f0_3 = gr.Radio(
label=i18n("模型是否带音高指导(唱歌一定要, 语音可以不要)"),
choices=["", ""],
value="",
choices=[i18n(""), i18n("")],
value=i18n(""),
interactive=True,
)
with gr.Group(): # 暂时单人的, 后面支持最多4人的#数据处理
@@ -1309,22 +1309,22 @@ with gr.Blocks() as app:
minimum=0,
maximum=40,
step=1,
label="每张显卡的batch_size",
label=i18n("每张显卡的batch_size"),
value=default_batch_size,
interactive=True,
)
if_save_latest13 = gr.Radio(
label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"),
choices=["", ""],
value="",
choices=[i18n(""), i18n("")],
value=i18n(""),
interactive=True,
)
if_cache_gpu17 = gr.Radio(
label=i18n(
"是否缓存所有训练集至显存. 10min以下小数据可缓存以加速训练, 大数据缓存会炸显存也加不了多少速"
),
choices=["", ""],
value="",
choices=[i18n(""), i18n("")],
value=i18n(""),
interactive=True,
)
with gr.Row():
@@ -1419,8 +1419,8 @@ with gr.Blocks() as app:
)
if_f0_ = gr.Radio(
label=i18n("模型是否带音高指导"),
choices=["", ""],
value="",
choices=[i18n(""), i18n("")],
value=i18n(""),
interactive=True,
)
info__ = gr.Textbox(