Format code (#1193)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
This commit is contained in:
github-actions[bot]
2023-09-14 09:34:30 +09:00
committed by GitHub
parent 72a18e66b6
commit a6456f6d46
15 changed files with 562 additions and 237 deletions

150
gui_v1.py
View File

@@ -478,15 +478,28 @@ if __name__ == "__main__":
inp_q,
opt_q,
device,
self.rvc if hasattr(self, "rvc") else None
self.rvc if hasattr(self, "rvc") else None,
)
self.config.samplerate = self.rvc.tgt_sr
self.zc = self.rvc.tgt_sr // 100
self.block_frame = int(np.round(self.config.block_time * self.config.samplerate / self.zc)) * self.zc
self.block_frame = (
int(np.round(self.config.block_time * self.config.samplerate / self.zc))
* self.zc
)
self.block_frame_16k = 160 * self.block_frame // self.zc
self.crossfade_frame = int(np.round(self.config.crossfade_time * self.config.samplerate / self.zc)) * self.zc
self.crossfade_frame = (
int(
np.round(
self.config.crossfade_time * self.config.samplerate / self.zc
)
)
* self.zc
)
self.sola_search_frame = self.zc
self.extra_frame = int(np.round(self.config.extra_time * self.config.samplerate / self.zc)) * self.zc
self.extra_frame = (
int(np.round(self.config.extra_time * self.config.samplerate / self.zc))
* self.zc
)
self.input_wav: torch.Tensor = torch.zeros(
self.extra_frame
+ self.crossfade_frame
@@ -495,7 +508,11 @@ if __name__ == "__main__":
device=device,
dtype=torch.float32,
)
self.input_wav_res: torch.Tensor= torch.zeros(160 * self.input_wav.shape[0] // self.zc, device=device,dtype=torch.float32)
self.input_wav_res: torch.Tensor = torch.zeros(
160 * self.input_wav.shape[0] // self.zc,
device=device,
dtype=torch.float32,
)
self.pitch: np.ndarray = np.zeros(
self.input_wav.shape[0] // self.zc,
dtype="int32",
@@ -509,7 +526,9 @@ if __name__ == "__main__":
)
self.nr_buffer: torch.Tensor = self.sola_buffer.clone()
self.output_buffer: torch.Tensor = self.input_wav.clone()
self.res_buffer: torch.Tensor = torch.zeros(2 * self.zc, device=device,dtype=torch.float32)
self.res_buffer: torch.Tensor = torch.zeros(
2 * self.zc, device=device, dtype=torch.float32
)
self.valid_rate = 1 - (self.extra_frame - 1) / self.input_wav.shape[0]
self.fade_in_window: torch.Tensor = (
torch.sin(
@@ -529,7 +548,9 @@ if __name__ == "__main__":
self.resampler = tat.Resample(
orig_freq=self.config.samplerate, new_freq=16000, dtype=torch.float32
).to(device)
self.tg = TorchGate(sr=self.config.samplerate, n_fft=4*self.zc, prop_decrease=0.9).to(device)
self.tg = TorchGate(
sr=self.config.samplerate, n_fft=4 * self.zc, prop_decrease=0.9
).to(device)
thread_vc = threading.Thread(target=self.soundinput)
thread_vc.start()
@@ -560,7 +581,7 @@ if __name__ == "__main__":
indata = librosa.to_mono(indata.T)
if self.config.threhold > -60:
rms = librosa.feature.rms(
y=indata, frame_length=4*self.zc, hop_length=self.zc
y=indata, frame_length=4 * self.zc, hop_length=self.zc
)
db_threhold = (
librosa.amplitude_to_db(rms, ref=1.0)[0] < self.config.threhold
@@ -568,28 +589,44 @@ if __name__ == "__main__":
for i in range(db_threhold.shape[0]):
if db_threhold[i]:
indata[i * self.zc : (i + 1) * self.zc] = 0
self.input_wav[: -self.block_frame] = self.input_wav[self.block_frame :].clone()
self.input_wav[-self.block_frame: ] = torch.from_numpy(indata).to(device)
self.input_wav_res[ : -self.block_frame_16k] = self.input_wav_res[self.block_frame_16k :].clone()
self.input_wav[: -self.block_frame] = self.input_wav[
self.block_frame :
].clone()
self.input_wav[-self.block_frame :] = torch.from_numpy(indata).to(device)
self.input_wav_res[: -self.block_frame_16k] = self.input_wav_res[
self.block_frame_16k :
].clone()
# input noise reduction and resampling
if self.config.I_noise_reduce:
input_wav = self.input_wav[-self.crossfade_frame -self.block_frame-2*self.zc: ]
input_wav = self.tg(input_wav.unsqueeze(0), self.input_wav.unsqueeze(0))[0, 2*self.zc:]
input_wav = self.input_wav[
-self.crossfade_frame - self.block_frame - 2 * self.zc :
]
input_wav = self.tg(
input_wav.unsqueeze(0), self.input_wav.unsqueeze(0)
)[0, 2 * self.zc :]
input_wav[: self.crossfade_frame] *= self.fade_in_window
input_wav[: self.crossfade_frame] += self.nr_buffer * self.fade_out_window
self.nr_buffer[:] = input_wav[-self.crossfade_frame: ]
input_wav = torch.cat((self.res_buffer[:], input_wav[: self.block_frame]))
self.res_buffer[:] = input_wav[-2*self.zc: ]
self.input_wav_res[-self.block_frame_16k-160: ] = self.resampler(input_wav)[160: ]
input_wav[: self.crossfade_frame] += (
self.nr_buffer * self.fade_out_window
)
self.nr_buffer[:] = input_wav[-self.crossfade_frame :]
input_wav = torch.cat(
(self.res_buffer[:], input_wav[: self.block_frame])
)
self.res_buffer[:] = input_wav[-2 * self.zc :]
self.input_wav_res[-self.block_frame_16k - 160 :] = self.resampler(
input_wav
)[160:]
else:
self.input_wav_res[-self.block_frame_16k-160: ] = self.resampler(self.input_wav[-self.block_frame-2*self.zc: ])[160: ]
self.input_wav_res[-self.block_frame_16k - 160 :] = self.resampler(
self.input_wav[-self.block_frame - 2 * self.zc :]
)[160:]
# infer
f0_extractor_frame = self.block_frame_16k + 800
if self.config.f0method == 'rmvpe':
if self.config.f0method == "rmvpe":
f0_extractor_frame = 5120 * ((f0_extractor_frame - 1) // 5120 + 1)
infer_wav = self.rvc.infer(
self.input_wav_res,
self.input_wav_res[-f0_extractor_frame :].cpu().numpy(),
self.input_wav_res[-f0_extractor_frame:].cpu().numpy(),
self.block_frame_16k,
self.valid_rate,
self.pitch,
@@ -601,48 +638,77 @@ if __name__ == "__main__":
]
# output noise reduction
if self.config.O_noise_reduce:
self.output_buffer[: -self.block_frame] = self.output_buffer[self.block_frame :].clone()
self.output_buffer[-self.block_frame: ] = infer_wav[-self.block_frame:]
infer_wav = self.tg(infer_wav.unsqueeze(0), self.output_buffer.unsqueeze(0)).squeeze(0)
self.output_buffer[: -self.block_frame] = self.output_buffer[
self.block_frame :
].clone()
self.output_buffer[-self.block_frame :] = infer_wav[-self.block_frame :]
infer_wav = self.tg(
infer_wav.unsqueeze(0), self.output_buffer.unsqueeze(0)
).squeeze(0)
# volume envelop mixing
if self.config.rms_mix_rate < 1:
rms1 = librosa.feature.rms(
y=self.input_wav_res[-160*infer_wav.shape[0]//self.zc :].cpu().numpy(),
frame_length=640,
hop_length=160,
y=self.input_wav_res[-160 * infer_wav.shape[0] // self.zc :]
.cpu()
.numpy(),
frame_length=640,
hop_length=160,
)
rms1 = torch.from_numpy(rms1).to(device)
rms1 = F.interpolate(
rms1.unsqueeze(0), size=infer_wav.shape[0] + 1, mode="linear",align_corners=True,
)[0,0,:-1]
rms1.unsqueeze(0),
size=infer_wav.shape[0] + 1,
mode="linear",
align_corners=True,
)[0, 0, :-1]
rms2 = librosa.feature.rms(
y=infer_wav[:].cpu().numpy(), frame_length=4*self.zc, hop_length=self.zc
y=infer_wav[:].cpu().numpy(),
frame_length=4 * self.zc,
hop_length=self.zc,
)
rms2 = torch.from_numpy(rms2).to(device)
rms2 = F.interpolate(
rms2.unsqueeze(0), size=infer_wav.shape[0] + 1, mode="linear",align_corners=True,
)[0,0,:-1]
rms2.unsqueeze(0),
size=infer_wav.shape[0] + 1,
mode="linear",
align_corners=True,
)[0, 0, :-1]
rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-3)
infer_wav *= torch.pow(rms1 / rms2, torch.tensor(1 - self.config.rms_mix_rate))
infer_wav *= torch.pow(
rms1 / rms2, torch.tensor(1 - self.config.rms_mix_rate)
)
# SOLA algorithm from https://github.com/yxlllc/DDSP-SVC
conv_input = infer_wav[None, None, : self.crossfade_frame + self.sola_search_frame]
conv_input = infer_wav[
None, None, : self.crossfade_frame + self.sola_search_frame
]
cor_nom = F.conv1d(conv_input, self.sola_buffer[None, None, :])
cor_den = torch.sqrt(
F.conv1d(conv_input ** 2, torch.ones(1, 1, self.crossfade_frame, device=device)) + 1e-8)
F.conv1d(
conv_input**2,
torch.ones(1, 1, self.crossfade_frame, device=device),
)
+ 1e-8
)
if sys.platform == "darwin":
_, sola_offset = torch.max(cor_nom[0, 0] / cor_den[0, 0])
sola_offset = sola_offset.item()
else:
sola_offset = torch.argmax(cor_nom[0, 0] / cor_den[0, 0])
logger.debug("sola_offset = %d", int(sola_offset))
infer_wav = infer_wav[sola_offset: sola_offset + self.block_frame + self.crossfade_frame]
infer_wav = infer_wav[
sola_offset : sola_offset + self.block_frame + self.crossfade_frame
]
infer_wav[: self.crossfade_frame] *= self.fade_in_window
infer_wav[: self.crossfade_frame] += self.sola_buffer *self.fade_out_window
self.sola_buffer[:] = infer_wav[-self.crossfade_frame:]
infer_wav[: self.crossfade_frame] += self.sola_buffer * self.fade_out_window
self.sola_buffer[:] = infer_wav[-self.crossfade_frame :]
if sys.platform == "darwin":
outdata[:] = infer_wav[:-self.crossfade_frame].cpu().numpy()[:, np.newaxis]
outdata[:] = (
infer_wav[: -self.crossfade_frame].cpu().numpy()[:, np.newaxis]
)
else:
outdata[:] = infer_wav[:-self.crossfade_frame].repeat(2, 1).t().cpu().numpy()
outdata[:] = (
infer_wav[: -self.crossfade_frame].repeat(2, 1).t().cpu().numpy()
)
total_time = time.perf_counter() - start_time
self.window["infer_time"].update(int(total_time * 1000))
logger.info("Infer time: %.2f", total_time)
@@ -698,9 +764,7 @@ if __name__ == "__main__":
sd.default.device[1] = output_device_indices[
output_devices.index(output_device)
]
logger.info(
"Input device: %s:%s", str(sd.default.device[0]), input_device
)
logger.info("Input device: %s:%s", str(sd.default.device[0]), input_device)
logger.info(
"Output device: %s:%s", str(sd.default.device[1]), output_device
)