mirror of
https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git
synced 2026-01-20 02:51:09 +00:00
optimize: move slicer2, rmvpe, my_utils to lib
This commit is contained in:
21
lib/audio.py
Normal file
21
lib/audio.py
Normal file
@@ -0,0 +1,21 @@
|
||||
import ffmpeg
|
||||
import numpy as np
|
||||
|
||||
|
||||
def load_audio(file, sr):
|
||||
try:
|
||||
# https://github.com/openai/whisper/blob/main/whisper/audio.py#L26
|
||||
# This launches a subprocess to decode audio while down-mixing and resampling as necessary.
|
||||
# Requires the ffmpeg CLI and `ffmpeg-python` package to be installed.
|
||||
file = (
|
||||
file.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
||||
) # 防止小白拷路径头尾带了空格和"和回车
|
||||
out, _ = (
|
||||
ffmpeg.input(file, threads=0)
|
||||
.output("-", format="f32le", acodec="pcm_f32le", ac=1, ar=sr)
|
||||
.run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True)
|
||||
)
|
||||
except Exception as e:
|
||||
raise RuntimeError(f"Failed to load audio: {e}")
|
||||
|
||||
return np.frombuffer(out, np.float32).flatten()
|
||||
431
lib/rmvpe.py
Normal file
431
lib/rmvpe.py
Normal file
@@ -0,0 +1,431 @@
|
||||
import torch, numpy as np
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
class BiGRU(nn.Module):
|
||||
def __init__(self, input_features, hidden_features, num_layers):
|
||||
super(BiGRU, self).__init__()
|
||||
self.gru = nn.GRU(
|
||||
input_features,
|
||||
hidden_features,
|
||||
num_layers=num_layers,
|
||||
batch_first=True,
|
||||
bidirectional=True,
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.gru(x)[0]
|
||||
|
||||
|
||||
class ConvBlockRes(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, momentum=0.01):
|
||||
super(ConvBlockRes, self).__init__()
|
||||
self.conv = nn.Sequential(
|
||||
nn.Conv2d(
|
||||
in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
kernel_size=(3, 3),
|
||||
stride=(1, 1),
|
||||
padding=(1, 1),
|
||||
bias=False,
|
||||
),
|
||||
nn.BatchNorm2d(out_channels, momentum=momentum),
|
||||
nn.ReLU(),
|
||||
nn.Conv2d(
|
||||
in_channels=out_channels,
|
||||
out_channels=out_channels,
|
||||
kernel_size=(3, 3),
|
||||
stride=(1, 1),
|
||||
padding=(1, 1),
|
||||
bias=False,
|
||||
),
|
||||
nn.BatchNorm2d(out_channels, momentum=momentum),
|
||||
nn.ReLU(),
|
||||
)
|
||||
if in_channels != out_channels:
|
||||
self.shortcut = nn.Conv2d(in_channels, out_channels, (1, 1))
|
||||
self.is_shortcut = True
|
||||
else:
|
||||
self.is_shortcut = False
|
||||
|
||||
def forward(self, x):
|
||||
if self.is_shortcut:
|
||||
return self.conv(x) + self.shortcut(x)
|
||||
else:
|
||||
return self.conv(x) + x
|
||||
|
||||
|
||||
class Encoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
in_size,
|
||||
n_encoders,
|
||||
kernel_size,
|
||||
n_blocks,
|
||||
out_channels=16,
|
||||
momentum=0.01,
|
||||
):
|
||||
super(Encoder, self).__init__()
|
||||
self.n_encoders = n_encoders
|
||||
self.bn = nn.BatchNorm2d(in_channels, momentum=momentum)
|
||||
self.layers = nn.ModuleList()
|
||||
self.latent_channels = []
|
||||
for i in range(self.n_encoders):
|
||||
self.layers.append(
|
||||
ResEncoderBlock(
|
||||
in_channels, out_channels, kernel_size, n_blocks, momentum=momentum
|
||||
)
|
||||
)
|
||||
self.latent_channels.append([out_channels, in_size])
|
||||
in_channels = out_channels
|
||||
out_channels *= 2
|
||||
in_size //= 2
|
||||
self.out_size = in_size
|
||||
self.out_channel = out_channels
|
||||
|
||||
def forward(self, x):
|
||||
concat_tensors = []
|
||||
x = self.bn(x)
|
||||
for i in range(self.n_encoders):
|
||||
_, x = self.layers[i](x)
|
||||
concat_tensors.append(_)
|
||||
return x, concat_tensors
|
||||
|
||||
|
||||
class ResEncoderBlock(nn.Module):
|
||||
def __init__(
|
||||
self, in_channels, out_channels, kernel_size, n_blocks=1, momentum=0.01
|
||||
):
|
||||
super(ResEncoderBlock, self).__init__()
|
||||
self.n_blocks = n_blocks
|
||||
self.conv = nn.ModuleList()
|
||||
self.conv.append(ConvBlockRes(in_channels, out_channels, momentum))
|
||||
for i in range(n_blocks - 1):
|
||||
self.conv.append(ConvBlockRes(out_channels, out_channels, momentum))
|
||||
self.kernel_size = kernel_size
|
||||
if self.kernel_size is not None:
|
||||
self.pool = nn.AvgPool2d(kernel_size=kernel_size)
|
||||
|
||||
def forward(self, x):
|
||||
for i in range(self.n_blocks):
|
||||
x = self.conv[i](x)
|
||||
if self.kernel_size is not None:
|
||||
return x, self.pool(x)
|
||||
else:
|
||||
return x
|
||||
|
||||
|
||||
class Intermediate(nn.Module): #
|
||||
def __init__(self, in_channels, out_channels, n_inters, n_blocks, momentum=0.01):
|
||||
super(Intermediate, self).__init__()
|
||||
self.n_inters = n_inters
|
||||
self.layers = nn.ModuleList()
|
||||
self.layers.append(
|
||||
ResEncoderBlock(in_channels, out_channels, None, n_blocks, momentum)
|
||||
)
|
||||
for i in range(self.n_inters - 1):
|
||||
self.layers.append(
|
||||
ResEncoderBlock(out_channels, out_channels, None, n_blocks, momentum)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
for i in range(self.n_inters):
|
||||
x = self.layers[i](x)
|
||||
return x
|
||||
|
||||
|
||||
class ResDecoderBlock(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, stride, n_blocks=1, momentum=0.01):
|
||||
super(ResDecoderBlock, self).__init__()
|
||||
out_padding = (0, 1) if stride == (1, 2) else (1, 1)
|
||||
self.n_blocks = n_blocks
|
||||
self.conv1 = nn.Sequential(
|
||||
nn.ConvTranspose2d(
|
||||
in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
kernel_size=(3, 3),
|
||||
stride=stride,
|
||||
padding=(1, 1),
|
||||
output_padding=out_padding,
|
||||
bias=False,
|
||||
),
|
||||
nn.BatchNorm2d(out_channels, momentum=momentum),
|
||||
nn.ReLU(),
|
||||
)
|
||||
self.conv2 = nn.ModuleList()
|
||||
self.conv2.append(ConvBlockRes(out_channels * 2, out_channels, momentum))
|
||||
for i in range(n_blocks - 1):
|
||||
self.conv2.append(ConvBlockRes(out_channels, out_channels, momentum))
|
||||
|
||||
def forward(self, x, concat_tensor):
|
||||
x = self.conv1(x)
|
||||
x = torch.cat((x, concat_tensor), dim=1)
|
||||
for i in range(self.n_blocks):
|
||||
x = self.conv2[i](x)
|
||||
return x
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
def __init__(self, in_channels, n_decoders, stride, n_blocks, momentum=0.01):
|
||||
super(Decoder, self).__init__()
|
||||
self.layers = nn.ModuleList()
|
||||
self.n_decoders = n_decoders
|
||||
for i in range(self.n_decoders):
|
||||
out_channels = in_channels // 2
|
||||
self.layers.append(
|
||||
ResDecoderBlock(in_channels, out_channels, stride, n_blocks, momentum)
|
||||
)
|
||||
in_channels = out_channels
|
||||
|
||||
def forward(self, x, concat_tensors):
|
||||
for i in range(self.n_decoders):
|
||||
x = self.layers[i](x, concat_tensors[-1 - i])
|
||||
return x
|
||||
|
||||
|
||||
class DeepUnet(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
kernel_size,
|
||||
n_blocks,
|
||||
en_de_layers=5,
|
||||
inter_layers=4,
|
||||
in_channels=1,
|
||||
en_out_channels=16,
|
||||
):
|
||||
super(DeepUnet, self).__init__()
|
||||
self.encoder = Encoder(
|
||||
in_channels, 128, en_de_layers, kernel_size, n_blocks, en_out_channels
|
||||
)
|
||||
self.intermediate = Intermediate(
|
||||
self.encoder.out_channel // 2,
|
||||
self.encoder.out_channel,
|
||||
inter_layers,
|
||||
n_blocks,
|
||||
)
|
||||
self.decoder = Decoder(
|
||||
self.encoder.out_channel, en_de_layers, kernel_size, n_blocks
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
x, concat_tensors = self.encoder(x)
|
||||
x = self.intermediate(x)
|
||||
x = self.decoder(x, concat_tensors)
|
||||
return x
|
||||
|
||||
|
||||
class E2E(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
n_blocks,
|
||||
n_gru,
|
||||
kernel_size,
|
||||
en_de_layers=5,
|
||||
inter_layers=4,
|
||||
in_channels=1,
|
||||
en_out_channels=16,
|
||||
):
|
||||
super(E2E, self).__init__()
|
||||
self.unet = DeepUnet(
|
||||
kernel_size,
|
||||
n_blocks,
|
||||
en_de_layers,
|
||||
inter_layers,
|
||||
in_channels,
|
||||
en_out_channels,
|
||||
)
|
||||
self.cnn = nn.Conv2d(en_out_channels, 3, (3, 3), padding=(1, 1))
|
||||
if n_gru:
|
||||
self.fc = nn.Sequential(
|
||||
BiGRU(3 * 128, 256, n_gru),
|
||||
nn.Linear(512, 360),
|
||||
nn.Dropout(0.25),
|
||||
nn.Sigmoid(),
|
||||
)
|
||||
else:
|
||||
self.fc = nn.Sequential(
|
||||
nn.Linear(3 * nn.N_MELS, nn.N_CLASS), nn.Dropout(0.25), nn.Sigmoid()
|
||||
)
|
||||
|
||||
def forward(self, mel):
|
||||
mel = mel.transpose(-1, -2).unsqueeze(1)
|
||||
x = self.cnn(self.unet(mel)).transpose(1, 2).flatten(-2)
|
||||
x = self.fc(x)
|
||||
return x
|
||||
|
||||
|
||||
from librosa.filters import mel
|
||||
|
||||
|
||||
class MelSpectrogram(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
is_half,
|
||||
n_mel_channels,
|
||||
sampling_rate,
|
||||
win_length,
|
||||
hop_length,
|
||||
n_fft=None,
|
||||
mel_fmin=0,
|
||||
mel_fmax=None,
|
||||
clamp=1e-5,
|
||||
):
|
||||
super().__init__()
|
||||
n_fft = win_length if n_fft is None else n_fft
|
||||
self.hann_window = {}
|
||||
mel_basis = mel(
|
||||
sr=sampling_rate,
|
||||
n_fft=n_fft,
|
||||
n_mels=n_mel_channels,
|
||||
fmin=mel_fmin,
|
||||
fmax=mel_fmax,
|
||||
htk=True,
|
||||
)
|
||||
mel_basis = torch.from_numpy(mel_basis).float()
|
||||
self.register_buffer("mel_basis", mel_basis)
|
||||
self.n_fft = win_length if n_fft is None else n_fft
|
||||
self.hop_length = hop_length
|
||||
self.win_length = win_length
|
||||
self.sampling_rate = sampling_rate
|
||||
self.n_mel_channels = n_mel_channels
|
||||
self.clamp = clamp
|
||||
self.is_half = is_half
|
||||
|
||||
def forward(self, audio, keyshift=0, speed=1, center=True):
|
||||
factor = 2 ** (keyshift / 12)
|
||||
n_fft_new = int(np.round(self.n_fft * factor))
|
||||
win_length_new = int(np.round(self.win_length * factor))
|
||||
hop_length_new = int(np.round(self.hop_length * speed))
|
||||
keyshift_key = str(keyshift) + "_" + str(audio.device)
|
||||
if keyshift_key not in self.hann_window:
|
||||
self.hann_window[keyshift_key] = torch.hann_window(win_length_new).to(
|
||||
audio.device
|
||||
)
|
||||
fft = torch.stft(
|
||||
audio,
|
||||
n_fft=n_fft_new,
|
||||
hop_length=hop_length_new,
|
||||
win_length=win_length_new,
|
||||
window=self.hann_window[keyshift_key],
|
||||
center=center,
|
||||
return_complex=True,
|
||||
)
|
||||
magnitude = torch.sqrt(fft.real.pow(2) + fft.imag.pow(2))
|
||||
if keyshift != 0:
|
||||
size = self.n_fft // 2 + 1
|
||||
resize = magnitude.size(1)
|
||||
if resize < size:
|
||||
magnitude = F.pad(magnitude, (0, 0, 0, size - resize))
|
||||
magnitude = magnitude[:, :size, :] * self.win_length / win_length_new
|
||||
mel_output = torch.matmul(self.mel_basis, magnitude)
|
||||
if self.is_half == True:
|
||||
mel_output = mel_output.half()
|
||||
log_mel_spec = torch.log(torch.clamp(mel_output, min=self.clamp))
|
||||
return log_mel_spec
|
||||
|
||||
|
||||
class RMVPE:
|
||||
def __init__(self, model_path, is_half, device=None):
|
||||
self.resample_kernel = {}
|
||||
model = E2E(4, 1, (2, 2))
|
||||
ckpt = torch.load(model_path, map_location="cpu")
|
||||
model.load_state_dict(ckpt)
|
||||
model.eval()
|
||||
if is_half == True:
|
||||
model = model.half()
|
||||
self.model = model
|
||||
self.resample_kernel = {}
|
||||
self.is_half = is_half
|
||||
if device is None:
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
self.device = device
|
||||
self.mel_extractor = MelSpectrogram(
|
||||
is_half, 128, 16000, 1024, 160, None, 30, 8000
|
||||
).to(device)
|
||||
self.model = self.model.to(device)
|
||||
cents_mapping = 20 * np.arange(360) + 1997.3794084376191
|
||||
self.cents_mapping = np.pad(cents_mapping, (4, 4)) # 368
|
||||
|
||||
def mel2hidden(self, mel):
|
||||
with torch.no_grad():
|
||||
n_frames = mel.shape[-1]
|
||||
mel = F.pad(
|
||||
mel, (0, 32 * ((n_frames - 1) // 32 + 1) - n_frames), mode="reflect"
|
||||
)
|
||||
hidden = self.model(mel)
|
||||
return hidden[:, :n_frames]
|
||||
|
||||
def decode(self, hidden, thred=0.03):
|
||||
cents_pred = self.to_local_average_cents(hidden, thred=thred)
|
||||
f0 = 10 * (2 ** (cents_pred / 1200))
|
||||
f0[f0 == 10] = 0
|
||||
# f0 = np.array([10 * (2 ** (cent_pred / 1200)) if cent_pred else 0 for cent_pred in cents_pred])
|
||||
return f0
|
||||
|
||||
def infer_from_audio(self, audio, thred=0.03):
|
||||
audio = torch.from_numpy(audio).float().to(self.device).unsqueeze(0)
|
||||
# torch.cuda.synchronize()
|
||||
# t0=ttime()
|
||||
mel = self.mel_extractor(audio, center=True)
|
||||
# torch.cuda.synchronize()
|
||||
# t1=ttime()
|
||||
hidden = self.mel2hidden(mel)
|
||||
# torch.cuda.synchronize()
|
||||
# t2=ttime()
|
||||
hidden = hidden.squeeze(0).cpu().numpy()
|
||||
if self.is_half == True:
|
||||
hidden = hidden.astype("float32")
|
||||
f0 = self.decode(hidden, thred=thred)
|
||||
# torch.cuda.synchronize()
|
||||
# t3=ttime()
|
||||
# print("hmvpe:%s\t%s\t%s\t%s"%(t1-t0,t2-t1,t3-t2,t3-t0))
|
||||
return f0
|
||||
|
||||
def to_local_average_cents(self, salience, thred=0.05):
|
||||
# t0 = ttime()
|
||||
center = np.argmax(salience, axis=1) # 帧长#index
|
||||
salience = np.pad(salience, ((0, 0), (4, 4))) # 帧长,368
|
||||
# t1 = ttime()
|
||||
center += 4
|
||||
todo_salience = []
|
||||
todo_cents_mapping = []
|
||||
starts = center - 4
|
||||
ends = center + 5
|
||||
for idx in range(salience.shape[0]):
|
||||
todo_salience.append(salience[:, starts[idx] : ends[idx]][idx])
|
||||
todo_cents_mapping.append(self.cents_mapping[starts[idx] : ends[idx]])
|
||||
# t2 = ttime()
|
||||
todo_salience = np.array(todo_salience) # 帧长,9
|
||||
todo_cents_mapping = np.array(todo_cents_mapping) # 帧长,9
|
||||
product_sum = np.sum(todo_salience * todo_cents_mapping, 1)
|
||||
weight_sum = np.sum(todo_salience, 1) # 帧长
|
||||
devided = product_sum / weight_sum # 帧长
|
||||
# t3 = ttime()
|
||||
maxx = np.max(salience, axis=1) # 帧长
|
||||
devided[maxx <= thred] = 0
|
||||
# t4 = ttime()
|
||||
# print("decode:%s\t%s\t%s\t%s" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
|
||||
return devided
|
||||
|
||||
|
||||
# if __name__ == '__main__':
|
||||
# audio, sampling_rate = sf.read("卢本伟语录~1.wav")
|
||||
# if len(audio.shape) > 1:
|
||||
# audio = librosa.to_mono(audio.transpose(1, 0))
|
||||
# audio_bak = audio.copy()
|
||||
# if sampling_rate != 16000:
|
||||
# audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
|
||||
# model_path = "/bili-coeus/jupyter/jupyterhub-liujing04/vits_ch/test-RMVPE/weights/rmvpe_llc_half.pt"
|
||||
# thred = 0.03 # 0.01
|
||||
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
||||
# rmvpe = RMVPE(model_path,is_half=False, device=device)
|
||||
# t0=ttime()
|
||||
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
||||
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
||||
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
||||
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
||||
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
||||
# t1=ttime()
|
||||
# print(f0.shape,t1-t0)
|
||||
260
lib/slicer2.py
Normal file
260
lib/slicer2.py
Normal file
@@ -0,0 +1,260 @@
|
||||
import numpy as np
|
||||
|
||||
|
||||
# This function is obtained from librosa.
|
||||
def get_rms(
|
||||
y,
|
||||
frame_length=2048,
|
||||
hop_length=512,
|
||||
pad_mode="constant",
|
||||
):
|
||||
padding = (int(frame_length // 2), int(frame_length // 2))
|
||||
y = np.pad(y, padding, mode=pad_mode)
|
||||
|
||||
axis = -1
|
||||
# put our new within-frame axis at the end for now
|
||||
out_strides = y.strides + tuple([y.strides[axis]])
|
||||
# Reduce the shape on the framing axis
|
||||
x_shape_trimmed = list(y.shape)
|
||||
x_shape_trimmed[axis] -= frame_length - 1
|
||||
out_shape = tuple(x_shape_trimmed) + tuple([frame_length])
|
||||
xw = np.lib.stride_tricks.as_strided(y, shape=out_shape, strides=out_strides)
|
||||
if axis < 0:
|
||||
target_axis = axis - 1
|
||||
else:
|
||||
target_axis = axis + 1
|
||||
xw = np.moveaxis(xw, -1, target_axis)
|
||||
# Downsample along the target axis
|
||||
slices = [slice(None)] * xw.ndim
|
||||
slices[axis] = slice(0, None, hop_length)
|
||||
x = xw[tuple(slices)]
|
||||
|
||||
# Calculate power
|
||||
power = np.mean(np.abs(x) ** 2, axis=-2, keepdims=True)
|
||||
|
||||
return np.sqrt(power)
|
||||
|
||||
|
||||
class Slicer:
|
||||
def __init__(
|
||||
self,
|
||||
sr: int,
|
||||
threshold: float = -40.0,
|
||||
min_length: int = 5000,
|
||||
min_interval: int = 300,
|
||||
hop_size: int = 20,
|
||||
max_sil_kept: int = 5000,
|
||||
):
|
||||
if not min_length >= min_interval >= hop_size:
|
||||
raise ValueError(
|
||||
"The following condition must be satisfied: min_length >= min_interval >= hop_size"
|
||||
)
|
||||
if not max_sil_kept >= hop_size:
|
||||
raise ValueError(
|
||||
"The following condition must be satisfied: max_sil_kept >= hop_size"
|
||||
)
|
||||
min_interval = sr * min_interval / 1000
|
||||
self.threshold = 10 ** (threshold / 20.0)
|
||||
self.hop_size = round(sr * hop_size / 1000)
|
||||
self.win_size = min(round(min_interval), 4 * self.hop_size)
|
||||
self.min_length = round(sr * min_length / 1000 / self.hop_size)
|
||||
self.min_interval = round(min_interval / self.hop_size)
|
||||
self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size)
|
||||
|
||||
def _apply_slice(self, waveform, begin, end):
|
||||
if len(waveform.shape) > 1:
|
||||
return waveform[
|
||||
:, begin * self.hop_size : min(waveform.shape[1], end * self.hop_size)
|
||||
]
|
||||
else:
|
||||
return waveform[
|
||||
begin * self.hop_size : min(waveform.shape[0], end * self.hop_size)
|
||||
]
|
||||
|
||||
# @timeit
|
||||
def slice(self, waveform):
|
||||
if len(waveform.shape) > 1:
|
||||
samples = waveform.mean(axis=0)
|
||||
else:
|
||||
samples = waveform
|
||||
if samples.shape[0] <= self.min_length:
|
||||
return [waveform]
|
||||
rms_list = get_rms(
|
||||
y=samples, frame_length=self.win_size, hop_length=self.hop_size
|
||||
).squeeze(0)
|
||||
sil_tags = []
|
||||
silence_start = None
|
||||
clip_start = 0
|
||||
for i, rms in enumerate(rms_list):
|
||||
# Keep looping while frame is silent.
|
||||
if rms < self.threshold:
|
||||
# Record start of silent frames.
|
||||
if silence_start is None:
|
||||
silence_start = i
|
||||
continue
|
||||
# Keep looping while frame is not silent and silence start has not been recorded.
|
||||
if silence_start is None:
|
||||
continue
|
||||
# Clear recorded silence start if interval is not enough or clip is too short
|
||||
is_leading_silence = silence_start == 0 and i > self.max_sil_kept
|
||||
need_slice_middle = (
|
||||
i - silence_start >= self.min_interval
|
||||
and i - clip_start >= self.min_length
|
||||
)
|
||||
if not is_leading_silence and not need_slice_middle:
|
||||
silence_start = None
|
||||
continue
|
||||
# Need slicing. Record the range of silent frames to be removed.
|
||||
if i - silence_start <= self.max_sil_kept:
|
||||
pos = rms_list[silence_start : i + 1].argmin() + silence_start
|
||||
if silence_start == 0:
|
||||
sil_tags.append((0, pos))
|
||||
else:
|
||||
sil_tags.append((pos, pos))
|
||||
clip_start = pos
|
||||
elif i - silence_start <= self.max_sil_kept * 2:
|
||||
pos = rms_list[
|
||||
i - self.max_sil_kept : silence_start + self.max_sil_kept + 1
|
||||
].argmin()
|
||||
pos += i - self.max_sil_kept
|
||||
pos_l = (
|
||||
rms_list[
|
||||
silence_start : silence_start + self.max_sil_kept + 1
|
||||
].argmin()
|
||||
+ silence_start
|
||||
)
|
||||
pos_r = (
|
||||
rms_list[i - self.max_sil_kept : i + 1].argmin()
|
||||
+ i
|
||||
- self.max_sil_kept
|
||||
)
|
||||
if silence_start == 0:
|
||||
sil_tags.append((0, pos_r))
|
||||
clip_start = pos_r
|
||||
else:
|
||||
sil_tags.append((min(pos_l, pos), max(pos_r, pos)))
|
||||
clip_start = max(pos_r, pos)
|
||||
else:
|
||||
pos_l = (
|
||||
rms_list[
|
||||
silence_start : silence_start + self.max_sil_kept + 1
|
||||
].argmin()
|
||||
+ silence_start
|
||||
)
|
||||
pos_r = (
|
||||
rms_list[i - self.max_sil_kept : i + 1].argmin()
|
||||
+ i
|
||||
- self.max_sil_kept
|
||||
)
|
||||
if silence_start == 0:
|
||||
sil_tags.append((0, pos_r))
|
||||
else:
|
||||
sil_tags.append((pos_l, pos_r))
|
||||
clip_start = pos_r
|
||||
silence_start = None
|
||||
# Deal with trailing silence.
|
||||
total_frames = rms_list.shape[0]
|
||||
if (
|
||||
silence_start is not None
|
||||
and total_frames - silence_start >= self.min_interval
|
||||
):
|
||||
silence_end = min(total_frames, silence_start + self.max_sil_kept)
|
||||
pos = rms_list[silence_start : silence_end + 1].argmin() + silence_start
|
||||
sil_tags.append((pos, total_frames + 1))
|
||||
# Apply and return slices.
|
||||
if len(sil_tags) == 0:
|
||||
return [waveform]
|
||||
else:
|
||||
chunks = []
|
||||
if sil_tags[0][0] > 0:
|
||||
chunks.append(self._apply_slice(waveform, 0, sil_tags[0][0]))
|
||||
for i in range(len(sil_tags) - 1):
|
||||
chunks.append(
|
||||
self._apply_slice(waveform, sil_tags[i][1], sil_tags[i + 1][0])
|
||||
)
|
||||
if sil_tags[-1][1] < total_frames:
|
||||
chunks.append(
|
||||
self._apply_slice(waveform, sil_tags[-1][1], total_frames)
|
||||
)
|
||||
return chunks
|
||||
|
||||
|
||||
def main():
|
||||
import os.path
|
||||
from argparse import ArgumentParser
|
||||
|
||||
import librosa
|
||||
import soundfile
|
||||
|
||||
parser = ArgumentParser()
|
||||
parser.add_argument("audio", type=str, help="The audio to be sliced")
|
||||
parser.add_argument(
|
||||
"--out", type=str, help="Output directory of the sliced audio clips"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--db_thresh",
|
||||
type=float,
|
||||
required=False,
|
||||
default=-40,
|
||||
help="The dB threshold for silence detection",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--min_length",
|
||||
type=int,
|
||||
required=False,
|
||||
default=5000,
|
||||
help="The minimum milliseconds required for each sliced audio clip",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--min_interval",
|
||||
type=int,
|
||||
required=False,
|
||||
default=300,
|
||||
help="The minimum milliseconds for a silence part to be sliced",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--hop_size",
|
||||
type=int,
|
||||
required=False,
|
||||
default=10,
|
||||
help="Frame length in milliseconds",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max_sil_kept",
|
||||
type=int,
|
||||
required=False,
|
||||
default=500,
|
||||
help="The maximum silence length kept around the sliced clip, presented in milliseconds",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
out = args.out
|
||||
if out is None:
|
||||
out = os.path.dirname(os.path.abspath(args.audio))
|
||||
audio, sr = librosa.load(args.audio, sr=None, mono=False)
|
||||
slicer = Slicer(
|
||||
sr=sr,
|
||||
threshold=args.db_thresh,
|
||||
min_length=args.min_length,
|
||||
min_interval=args.min_interval,
|
||||
hop_size=args.hop_size,
|
||||
max_sil_kept=args.max_sil_kept,
|
||||
)
|
||||
chunks = slicer.slice(audio)
|
||||
if not os.path.exists(out):
|
||||
os.makedirs(out)
|
||||
for i, chunk in enumerate(chunks):
|
||||
if len(chunk.shape) > 1:
|
||||
chunk = chunk.T
|
||||
soundfile.write(
|
||||
os.path.join(
|
||||
out,
|
||||
f"%s_%d.wav"
|
||||
% (os.path.basename(args.audio).rsplit(".", maxsplit=1)[0], i),
|
||||
),
|
||||
chunk,
|
||||
sr,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Reference in New Issue
Block a user