mirror of
https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git
synced 2026-01-20 11:00:23 +00:00
20240604
This commit is contained in:
@@ -10,16 +10,16 @@ from torch import nn
|
||||
from torch.nn import AvgPool1d, Conv1d, Conv2d, ConvTranspose1d
|
||||
from torch.nn import functional as F
|
||||
from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm
|
||||
|
||||
from infer.lib.infer_pack import attentions, commons, modules
|
||||
from infer.lib.infer_pack.commons import get_padding, init_weights
|
||||
|
||||
has_xpu = bool(hasattr(torch, "xpu") and torch.xpu.is_available())
|
||||
|
||||
|
||||
class TextEncoder256(nn.Module):
|
||||
class TextEncoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
@@ -29,7 +29,7 @@ class TextEncoder256(nn.Module):
|
||||
p_dropout,
|
||||
f0=True,
|
||||
):
|
||||
super(TextEncoder256, self).__init__()
|
||||
super(TextEncoder, self).__init__()
|
||||
self.out_channels = out_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
self.filter_channels = filter_channels
|
||||
@@ -37,7 +37,7 @@ class TextEncoder256(nn.Module):
|
||||
self.n_layers = n_layers
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = float(p_dropout)
|
||||
self.emb_phone = nn.Linear(256, hidden_channels)
|
||||
self.emb_phone = nn.Linear(in_channels, hidden_channels)
|
||||
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
|
||||
if f0 == True:
|
||||
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
||||
@@ -52,60 +52,12 @@ class TextEncoder256(nn.Module):
|
||||
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
||||
|
||||
def forward(
|
||||
self, phone: torch.Tensor, pitch: Optional[torch.Tensor], lengths: torch.Tensor
|
||||
):
|
||||
if pitch is None:
|
||||
x = self.emb_phone(phone)
|
||||
else:
|
||||
x = self.emb_phone(phone) + self.emb_pitch(pitch)
|
||||
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
|
||||
x = self.lrelu(x)
|
||||
x = torch.transpose(x, 1, -1) # [b, h, t]
|
||||
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
|
||||
x.dtype
|
||||
)
|
||||
x = self.encoder(x * x_mask, x_mask)
|
||||
stats = self.proj(x) * x_mask
|
||||
|
||||
m, logs = torch.split(stats, self.out_channels, dim=1)
|
||||
return m, logs, x_mask
|
||||
|
||||
|
||||
class TextEncoder768(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
out_channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout,
|
||||
f0=True,
|
||||
phone: torch.Tensor,
|
||||
pitch: torch.Tensor,
|
||||
lengths: torch.Tensor,
|
||||
skip_head: Optional[torch.Tensor] = None,
|
||||
):
|
||||
super(TextEncoder768, self).__init__()
|
||||
self.out_channels = out_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.n_heads = n_heads
|
||||
self.n_layers = n_layers
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = float(p_dropout)
|
||||
self.emb_phone = nn.Linear(768, hidden_channels)
|
||||
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
|
||||
if f0 == True:
|
||||
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
||||
self.encoder = attentions.Encoder(
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
float(p_dropout),
|
||||
)
|
||||
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
||||
|
||||
def forward(self, phone: torch.Tensor, pitch: torch.Tensor, lengths: torch.Tensor):
|
||||
if pitch is None:
|
||||
x = self.emb_phone(phone)
|
||||
else:
|
||||
@@ -117,8 +69,12 @@ class TextEncoder768(nn.Module):
|
||||
x.dtype
|
||||
)
|
||||
x = self.encoder(x * x_mask, x_mask)
|
||||
if skip_head is not None:
|
||||
assert isinstance(skip_head, torch.Tensor)
|
||||
head = int(skip_head.item())
|
||||
x = x[:, :, head:]
|
||||
x_mask = x_mask[:, :, head:]
|
||||
stats = self.proj(x) * x_mask
|
||||
|
||||
m, logs = torch.split(stats, self.out_channels, dim=1)
|
||||
return m, logs, x_mask
|
||||
|
||||
@@ -293,7 +249,17 @@ class Generator(torch.nn.Module):
|
||||
if gin_channels != 0:
|
||||
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
||||
|
||||
def forward(self, x: torch.Tensor, g: Optional[torch.Tensor] = None):
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
g: Optional[torch.Tensor] = None,
|
||||
n_res: Optional[torch.Tensor] = None,
|
||||
):
|
||||
if n_res is not None:
|
||||
assert isinstance(n_res, torch.Tensor)
|
||||
n = int(n_res.item())
|
||||
if n != x.shape[-1]:
|
||||
x = F.interpolate(x, size=n, mode="linear")
|
||||
x = self.conv_pre(x)
|
||||
if g is not None:
|
||||
x = x + self.cond(g)
|
||||
@@ -572,9 +538,22 @@ class GeneratorNSF(torch.nn.Module):
|
||||
|
||||
self.lrelu_slope = modules.LRELU_SLOPE
|
||||
|
||||
def forward(self, x, f0, g: Optional[torch.Tensor] = None):
|
||||
def forward(
|
||||
self,
|
||||
x,
|
||||
f0,
|
||||
g: Optional[torch.Tensor] = None,
|
||||
n_res: Optional[torch.Tensor] = None,
|
||||
):
|
||||
har_source, noi_source, uv = self.m_source(f0, self.upp)
|
||||
har_source = har_source.transpose(1, 2)
|
||||
if n_res is not None:
|
||||
assert isinstance(n_res, torch.Tensor)
|
||||
n = int(n_res.item())
|
||||
if n * self.upp != har_source.shape[-1]:
|
||||
har_source = F.interpolate(har_source, size=n * self.upp, mode="linear")
|
||||
if n != x.shape[-1]:
|
||||
x = F.interpolate(x, size=n, mode="linear")
|
||||
x = self.conv_pre(x)
|
||||
if g is not None:
|
||||
x = x + self.cond(g)
|
||||
@@ -601,6 +580,7 @@ class GeneratorNSF(torch.nn.Module):
|
||||
x = F.leaky_relu(x)
|
||||
x = self.conv_post(x)
|
||||
x = torch.tanh(x)
|
||||
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
@@ -682,7 +662,8 @@ class SynthesizerTrnMs256NSFsid(nn.Module):
|
||||
self.gin_channels = gin_channels
|
||||
# self.hop_length = hop_length#
|
||||
self.spk_embed_dim = spk_embed_dim
|
||||
self.enc_p = TextEncoder256(
|
||||
self.enc_p = TextEncoder(
|
||||
256,
|
||||
inter_channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
@@ -790,24 +771,31 @@ class SynthesizerTrnMs256NSFsid(nn.Module):
|
||||
sid: torch.Tensor,
|
||||
skip_head: Optional[torch.Tensor] = None,
|
||||
return_length: Optional[torch.Tensor] = None,
|
||||
return_length2: Optional[torch.Tensor] = None,
|
||||
):
|
||||
g = self.emb_g(sid).unsqueeze(-1)
|
||||
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
||||
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
||||
if skip_head is not None and return_length is not None:
|
||||
assert isinstance(skip_head, torch.Tensor)
|
||||
assert isinstance(return_length, torch.Tensor)
|
||||
head = int(skip_head.item())
|
||||
length = int(return_length.item())
|
||||
z_p = z_p[:, :, head : head + length]
|
||||
x_mask = x_mask[:, :, head : head + length]
|
||||
flow_head = torch.clamp(skip_head - 24, min=0)
|
||||
dec_head = head - int(flow_head.item())
|
||||
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths, flow_head)
|
||||
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
||||
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
||||
z = z[:, :, dec_head : dec_head + length]
|
||||
x_mask = x_mask[:, :, dec_head : dec_head + length]
|
||||
nsff0 = nsff0[:, head : head + length]
|
||||
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
||||
o = self.dec(z * x_mask, nsff0, g=g)
|
||||
else:
|
||||
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
||||
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
||||
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
||||
o = self.dec(z * x_mask, nsff0, g=g, n_res=return_length2)
|
||||
return o, x_mask, (z, z_p, m_p, logs_p)
|
||||
|
||||
|
||||
class SynthesizerTrnMs768NSFsid(nn.Module):
|
||||
class SynthesizerTrnMs768NSFsid(SynthesizerTrnMs256NSFsid):
|
||||
def __init__(
|
||||
self,
|
||||
spec_channels,
|
||||
@@ -830,28 +818,30 @@ class SynthesizerTrnMs768NSFsid(nn.Module):
|
||||
sr,
|
||||
**kwargs
|
||||
):
|
||||
super(SynthesizerTrnMs768NSFsid, self).__init__()
|
||||
if isinstance(sr, str):
|
||||
sr = sr2sr[sr]
|
||||
self.spec_channels = spec_channels
|
||||
self.inter_channels = inter_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.n_heads = n_heads
|
||||
self.n_layers = n_layers
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = float(p_dropout)
|
||||
self.resblock = resblock
|
||||
self.resblock_kernel_sizes = resblock_kernel_sizes
|
||||
self.resblock_dilation_sizes = resblock_dilation_sizes
|
||||
self.upsample_rates = upsample_rates
|
||||
self.upsample_initial_channel = upsample_initial_channel
|
||||
self.upsample_kernel_sizes = upsample_kernel_sizes
|
||||
self.segment_size = segment_size
|
||||
self.gin_channels = gin_channels
|
||||
# self.hop_length = hop_length#
|
||||
self.spk_embed_dim = spk_embed_dim
|
||||
self.enc_p = TextEncoder768(
|
||||
super(SynthesizerTrnMs768NSFsid, self).__init__(
|
||||
spec_channels,
|
||||
segment_size,
|
||||
inter_channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout,
|
||||
resblock,
|
||||
resblock_kernel_sizes,
|
||||
resblock_dilation_sizes,
|
||||
upsample_rates,
|
||||
upsample_initial_channel,
|
||||
upsample_kernel_sizes,
|
||||
spk_embed_dim,
|
||||
gin_channels,
|
||||
sr,
|
||||
**kwargs
|
||||
)
|
||||
del self.enc_p
|
||||
self.enc_p = TextEncoder(
|
||||
768,
|
||||
inter_channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
@@ -860,113 +850,6 @@ class SynthesizerTrnMs768NSFsid(nn.Module):
|
||||
kernel_size,
|
||||
float(p_dropout),
|
||||
)
|
||||
self.dec = GeneratorNSF(
|
||||
inter_channels,
|
||||
resblock,
|
||||
resblock_kernel_sizes,
|
||||
resblock_dilation_sizes,
|
||||
upsample_rates,
|
||||
upsample_initial_channel,
|
||||
upsample_kernel_sizes,
|
||||
gin_channels=gin_channels,
|
||||
sr=sr,
|
||||
is_half=kwargs["is_half"],
|
||||
)
|
||||
self.enc_q = PosteriorEncoder(
|
||||
spec_channels,
|
||||
inter_channels,
|
||||
hidden_channels,
|
||||
5,
|
||||
1,
|
||||
16,
|
||||
gin_channels=gin_channels,
|
||||
)
|
||||
self.flow = ResidualCouplingBlock(
|
||||
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
||||
)
|
||||
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
||||
logger.debug(
|
||||
"gin_channels: "
|
||||
+ str(gin_channels)
|
||||
+ ", self.spk_embed_dim: "
|
||||
+ str(self.spk_embed_dim)
|
||||
)
|
||||
|
||||
def remove_weight_norm(self):
|
||||
self.dec.remove_weight_norm()
|
||||
self.flow.remove_weight_norm()
|
||||
if hasattr(self, "enc_q"):
|
||||
self.enc_q.remove_weight_norm()
|
||||
|
||||
def __prepare_scriptable__(self):
|
||||
for hook in self.dec._forward_pre_hooks.values():
|
||||
# The hook we want to remove is an instance of WeightNorm class, so
|
||||
# normally we would do `if isinstance(...)` but this class is not accessible
|
||||
# because of shadowing, so we check the module name directly.
|
||||
# https://github.com/pytorch/pytorch/blob/be0ca00c5ce260eb5bcec3237357f7a30cc08983/torch/nn/utils/__init__.py#L3
|
||||
if (
|
||||
hook.__module__ == "torch.nn.utils.weight_norm"
|
||||
and hook.__class__.__name__ == "WeightNorm"
|
||||
):
|
||||
torch.nn.utils.remove_weight_norm(self.dec)
|
||||
for hook in self.flow._forward_pre_hooks.values():
|
||||
if (
|
||||
hook.__module__ == "torch.nn.utils.weight_norm"
|
||||
and hook.__class__.__name__ == "WeightNorm"
|
||||
):
|
||||
torch.nn.utils.remove_weight_norm(self.flow)
|
||||
if hasattr(self, "enc_q"):
|
||||
for hook in self.enc_q._forward_pre_hooks.values():
|
||||
if (
|
||||
hook.__module__ == "torch.nn.utils.weight_norm"
|
||||
and hook.__class__.__name__ == "WeightNorm"
|
||||
):
|
||||
torch.nn.utils.remove_weight_norm(self.enc_q)
|
||||
return self
|
||||
|
||||
@torch.jit.ignore
|
||||
def forward(
|
||||
self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
|
||||
): # 这里ds是id,[bs,1]
|
||||
# print(1,pitch.shape)#[bs,t]
|
||||
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
||||
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
||||
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
||||
z_p = self.flow(z, y_mask, g=g)
|
||||
z_slice, ids_slice = commons.rand_slice_segments(
|
||||
z, y_lengths, self.segment_size
|
||||
)
|
||||
# print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
|
||||
pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
|
||||
# print(-2,pitchf.shape,z_slice.shape)
|
||||
o = self.dec(z_slice, pitchf, g=g)
|
||||
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
||||
|
||||
@torch.jit.export
|
||||
def infer(
|
||||
self,
|
||||
phone: torch.Tensor,
|
||||
phone_lengths: torch.Tensor,
|
||||
pitch: torch.Tensor,
|
||||
nsff0: torch.Tensor,
|
||||
sid: torch.Tensor,
|
||||
skip_head: Optional[torch.Tensor] = None,
|
||||
return_length: Optional[torch.Tensor] = None,
|
||||
):
|
||||
g = self.emb_g(sid).unsqueeze(-1)
|
||||
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
||||
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
||||
if skip_head is not None and return_length is not None:
|
||||
assert isinstance(skip_head, torch.Tensor)
|
||||
assert isinstance(return_length, torch.Tensor)
|
||||
head = int(skip_head.item())
|
||||
length = int(return_length.item())
|
||||
z_p = z_p[:, :, head : head + length]
|
||||
x_mask = x_mask[:, :, head : head + length]
|
||||
nsff0 = nsff0[:, head : head + length]
|
||||
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
||||
o = self.dec(z * x_mask, nsff0, g=g)
|
||||
return o, x_mask, (z, z_p, m_p, logs_p)
|
||||
|
||||
|
||||
class SynthesizerTrnMs256NSFsid_nono(nn.Module):
|
||||
@@ -1011,7 +894,8 @@ class SynthesizerTrnMs256NSFsid_nono(nn.Module):
|
||||
self.gin_channels = gin_channels
|
||||
# self.hop_length = hop_length#
|
||||
self.spk_embed_dim = spk_embed_dim
|
||||
self.enc_p = TextEncoder256(
|
||||
self.enc_p = TextEncoder(
|
||||
256,
|
||||
inter_channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
@@ -1103,23 +987,30 @@ class SynthesizerTrnMs256NSFsid_nono(nn.Module):
|
||||
sid: torch.Tensor,
|
||||
skip_head: Optional[torch.Tensor] = None,
|
||||
return_length: Optional[torch.Tensor] = None,
|
||||
return_length2: Optional[torch.Tensor] = None,
|
||||
):
|
||||
g = self.emb_g(sid).unsqueeze(-1)
|
||||
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
||||
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
||||
if skip_head is not None and return_length is not None:
|
||||
assert isinstance(skip_head, torch.Tensor)
|
||||
assert isinstance(return_length, torch.Tensor)
|
||||
head = int(skip_head.item())
|
||||
length = int(return_length.item())
|
||||
z_p = z_p[:, :, head : head + length]
|
||||
x_mask = x_mask[:, :, head : head + length]
|
||||
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
||||
o = self.dec(z * x_mask, g=g)
|
||||
flow_head = torch.clamp(skip_head - 24, min=0)
|
||||
dec_head = head - int(flow_head.item())
|
||||
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths, flow_head)
|
||||
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
||||
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
||||
z = z[:, :, dec_head : dec_head + length]
|
||||
x_mask = x_mask[:, :, dec_head : dec_head + length]
|
||||
else:
|
||||
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
||||
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
||||
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
||||
o = self.dec(z * x_mask, g=g, n_res=return_length2)
|
||||
return o, x_mask, (z, z_p, m_p, logs_p)
|
||||
|
||||
|
||||
class SynthesizerTrnMs768NSFsid_nono(nn.Module):
|
||||
class SynthesizerTrnMs768NSFsid_nono(SynthesizerTrnMs256NSFsid_nono):
|
||||
def __init__(
|
||||
self,
|
||||
spec_channels,
|
||||
@@ -1142,26 +1033,30 @@ class SynthesizerTrnMs768NSFsid_nono(nn.Module):
|
||||
sr=None,
|
||||
**kwargs
|
||||
):
|
||||
super(SynthesizerTrnMs768NSFsid_nono, self).__init__()
|
||||
self.spec_channels = spec_channels
|
||||
self.inter_channels = inter_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.n_heads = n_heads
|
||||
self.n_layers = n_layers
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = float(p_dropout)
|
||||
self.resblock = resblock
|
||||
self.resblock_kernel_sizes = resblock_kernel_sizes
|
||||
self.resblock_dilation_sizes = resblock_dilation_sizes
|
||||
self.upsample_rates = upsample_rates
|
||||
self.upsample_initial_channel = upsample_initial_channel
|
||||
self.upsample_kernel_sizes = upsample_kernel_sizes
|
||||
self.segment_size = segment_size
|
||||
self.gin_channels = gin_channels
|
||||
# self.hop_length = hop_length#
|
||||
self.spk_embed_dim = spk_embed_dim
|
||||
self.enc_p = TextEncoder768(
|
||||
super(SynthesizerTrnMs768NSFsid_nono, self).__init__(
|
||||
spec_channels,
|
||||
segment_size,
|
||||
inter_channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout,
|
||||
resblock,
|
||||
resblock_kernel_sizes,
|
||||
resblock_dilation_sizes,
|
||||
upsample_rates,
|
||||
upsample_initial_channel,
|
||||
upsample_kernel_sizes,
|
||||
spk_embed_dim,
|
||||
gin_channels,
|
||||
sr,
|
||||
**kwargs
|
||||
)
|
||||
del self.enc_p
|
||||
self.enc_p = TextEncoder(
|
||||
768,
|
||||
inter_channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
@@ -1171,102 +1066,6 @@ class SynthesizerTrnMs768NSFsid_nono(nn.Module):
|
||||
float(p_dropout),
|
||||
f0=False,
|
||||
)
|
||||
self.dec = Generator(
|
||||
inter_channels,
|
||||
resblock,
|
||||
resblock_kernel_sizes,
|
||||
resblock_dilation_sizes,
|
||||
upsample_rates,
|
||||
upsample_initial_channel,
|
||||
upsample_kernel_sizes,
|
||||
gin_channels=gin_channels,
|
||||
)
|
||||
self.enc_q = PosteriorEncoder(
|
||||
spec_channels,
|
||||
inter_channels,
|
||||
hidden_channels,
|
||||
5,
|
||||
1,
|
||||
16,
|
||||
gin_channels=gin_channels,
|
||||
)
|
||||
self.flow = ResidualCouplingBlock(
|
||||
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
||||
)
|
||||
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
||||
logger.debug(
|
||||
"gin_channels: "
|
||||
+ str(gin_channels)
|
||||
+ ", self.spk_embed_dim: "
|
||||
+ str(self.spk_embed_dim)
|
||||
)
|
||||
|
||||
def remove_weight_norm(self):
|
||||
self.dec.remove_weight_norm()
|
||||
self.flow.remove_weight_norm()
|
||||
if hasattr(self, "enc_q"):
|
||||
self.enc_q.remove_weight_norm()
|
||||
|
||||
def __prepare_scriptable__(self):
|
||||
for hook in self.dec._forward_pre_hooks.values():
|
||||
# The hook we want to remove is an instance of WeightNorm class, so
|
||||
# normally we would do `if isinstance(...)` but this class is not accessible
|
||||
# because of shadowing, so we check the module name directly.
|
||||
# https://github.com/pytorch/pytorch/blob/be0ca00c5ce260eb5bcec3237357f7a30cc08983/torch/nn/utils/__init__.py#L3
|
||||
if (
|
||||
hook.__module__ == "torch.nn.utils.weight_norm"
|
||||
and hook.__class__.__name__ == "WeightNorm"
|
||||
):
|
||||
torch.nn.utils.remove_weight_norm(self.dec)
|
||||
for hook in self.flow._forward_pre_hooks.values():
|
||||
if (
|
||||
hook.__module__ == "torch.nn.utils.weight_norm"
|
||||
and hook.__class__.__name__ == "WeightNorm"
|
||||
):
|
||||
torch.nn.utils.remove_weight_norm(self.flow)
|
||||
if hasattr(self, "enc_q"):
|
||||
for hook in self.enc_q._forward_pre_hooks.values():
|
||||
if (
|
||||
hook.__module__ == "torch.nn.utils.weight_norm"
|
||||
and hook.__class__.__name__ == "WeightNorm"
|
||||
):
|
||||
torch.nn.utils.remove_weight_norm(self.enc_q)
|
||||
return self
|
||||
|
||||
@torch.jit.ignore
|
||||
def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1]
|
||||
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
||||
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
||||
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
||||
z_p = self.flow(z, y_mask, g=g)
|
||||
z_slice, ids_slice = commons.rand_slice_segments(
|
||||
z, y_lengths, self.segment_size
|
||||
)
|
||||
o = self.dec(z_slice, g=g)
|
||||
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
||||
|
||||
@torch.jit.export
|
||||
def infer(
|
||||
self,
|
||||
phone: torch.Tensor,
|
||||
phone_lengths: torch.Tensor,
|
||||
sid: torch.Tensor,
|
||||
skip_head: Optional[torch.Tensor] = None,
|
||||
return_length: Optional[torch.Tensor] = None,
|
||||
):
|
||||
g = self.emb_g(sid).unsqueeze(-1)
|
||||
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
||||
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
||||
if skip_head is not None and return_length is not None:
|
||||
assert isinstance(skip_head, torch.Tensor)
|
||||
assert isinstance(return_length, torch.Tensor)
|
||||
head = int(skip_head.item())
|
||||
length = int(return_length.item())
|
||||
z_p = z_p[:, :, head : head + length]
|
||||
x_mask = x_mask[:, :, head : head + length]
|
||||
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
||||
o = self.dec(z * x_mask, g=g)
|
||||
return o, x_mask, (z, z_p, m_p, logs_p)
|
||||
|
||||
|
||||
class MultiPeriodDiscriminator(torch.nn.Module):
|
||||
|
||||
461
infer/lib/rtrvc.py
Normal file
461
infer/lib/rtrvc.py
Normal file
@@ -0,0 +1,461 @@
|
||||
from io import BytesIO
|
||||
import os
|
||||
import sys
|
||||
import traceback
|
||||
from infer.lib import jit
|
||||
from infer.lib.jit.get_synthesizer import get_synthesizer
|
||||
from time import time as ttime
|
||||
import fairseq
|
||||
import faiss
|
||||
import numpy as np
|
||||
import parselmouth
|
||||
import pyworld
|
||||
import scipy.signal as signal
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torchcrepe
|
||||
from torchaudio.transforms import Resample
|
||||
|
||||
now_dir = os.getcwd()
|
||||
sys.path.append(now_dir)
|
||||
from multiprocessing import Manager as M
|
||||
|
||||
from configs.config import Config
|
||||
|
||||
# config = Config()
|
||||
|
||||
mm = M()
|
||||
|
||||
|
||||
def printt(strr, *args):
|
||||
if len(args) == 0:
|
||||
print(strr)
|
||||
else:
|
||||
print(strr % args)
|
||||
|
||||
|
||||
# config.device=torch.device("cpu")########强制cpu测试
|
||||
# config.is_half=False########强制cpu测试
|
||||
class RVC:
|
||||
def __init__(
|
||||
self,
|
||||
key,
|
||||
formant,
|
||||
pth_path,
|
||||
index_path,
|
||||
index_rate,
|
||||
n_cpu,
|
||||
inp_q,
|
||||
opt_q,
|
||||
config: Config,
|
||||
last_rvc=None,
|
||||
) -> None:
|
||||
"""
|
||||
初始化
|
||||
"""
|
||||
try:
|
||||
if config.dml == True:
|
||||
|
||||
def forward_dml(ctx, x, scale):
|
||||
ctx.scale = scale
|
||||
res = x.clone().detach()
|
||||
return res
|
||||
|
||||
fairseq.modules.grad_multiply.GradMultiply.forward = forward_dml
|
||||
# global config
|
||||
self.config = config
|
||||
self.inp_q = inp_q
|
||||
self.opt_q = opt_q
|
||||
# device="cpu"########强制cpu测试
|
||||
self.device = config.device
|
||||
self.f0_up_key = key
|
||||
self.formant_shift = formant
|
||||
self.f0_min = 50
|
||||
self.f0_max = 1100
|
||||
self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700)
|
||||
self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700)
|
||||
self.n_cpu = n_cpu
|
||||
self.use_jit = self.config.use_jit
|
||||
self.is_half = config.is_half
|
||||
|
||||
if index_rate != 0:
|
||||
self.index = faiss.read_index(index_path)
|
||||
self.big_npy = self.index.reconstruct_n(0, self.index.ntotal)
|
||||
printt("Index search enabled")
|
||||
self.pth_path: str = pth_path
|
||||
self.index_path = index_path
|
||||
self.index_rate = index_rate
|
||||
self.cache_pitch: torch.Tensor = torch.zeros(
|
||||
1024, device=self.device, dtype=torch.long
|
||||
)
|
||||
self.cache_pitchf = torch.zeros(
|
||||
1024, device=self.device, dtype=torch.float32
|
||||
)
|
||||
|
||||
self.resample_kernel = {}
|
||||
|
||||
if last_rvc is None:
|
||||
models, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
|
||||
["assets/hubert/hubert_base.pt"],
|
||||
suffix="",
|
||||
)
|
||||
hubert_model = models[0]
|
||||
hubert_model = hubert_model.to(self.device)
|
||||
if self.is_half:
|
||||
hubert_model = hubert_model.half()
|
||||
else:
|
||||
hubert_model = hubert_model.float()
|
||||
hubert_model.eval()
|
||||
self.model = hubert_model
|
||||
else:
|
||||
self.model = last_rvc.model
|
||||
|
||||
self.net_g: nn.Module = None
|
||||
|
||||
def set_default_model():
|
||||
self.net_g, cpt = get_synthesizer(self.pth_path, self.device)
|
||||
self.tgt_sr = cpt["config"][-1]
|
||||
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]
|
||||
self.if_f0 = cpt.get("f0", 1)
|
||||
self.version = cpt.get("version", "v1")
|
||||
if self.is_half:
|
||||
self.net_g = self.net_g.half()
|
||||
else:
|
||||
self.net_g = self.net_g.float()
|
||||
|
||||
def set_jit_model():
|
||||
jit_pth_path = self.pth_path.rstrip(".pth")
|
||||
jit_pth_path += ".half.jit" if self.is_half else ".jit"
|
||||
reload = False
|
||||
if str(self.device) == "cuda":
|
||||
self.device = torch.device("cuda:0")
|
||||
if os.path.exists(jit_pth_path):
|
||||
cpt = jit.load(jit_pth_path)
|
||||
model_device = cpt["device"]
|
||||
if model_device != str(self.device):
|
||||
reload = True
|
||||
else:
|
||||
reload = True
|
||||
|
||||
if reload:
|
||||
cpt = jit.synthesizer_jit_export(
|
||||
self.pth_path,
|
||||
"script",
|
||||
None,
|
||||
device=self.device,
|
||||
is_half=self.is_half,
|
||||
)
|
||||
|
||||
self.tgt_sr = cpt["config"][-1]
|
||||
self.if_f0 = cpt.get("f0", 1)
|
||||
self.version = cpt.get("version", "v1")
|
||||
self.net_g = torch.jit.load(
|
||||
BytesIO(cpt["model"]), map_location=self.device
|
||||
)
|
||||
self.net_g.infer = self.net_g.forward
|
||||
self.net_g.eval().to(self.device)
|
||||
|
||||
def set_synthesizer():
|
||||
if self.use_jit and not config.dml:
|
||||
if self.is_half and "cpu" in str(self.device):
|
||||
printt(
|
||||
"Use default Synthesizer model. \
|
||||
Jit is not supported on the CPU for half floating point"
|
||||
)
|
||||
set_default_model()
|
||||
else:
|
||||
set_jit_model()
|
||||
else:
|
||||
set_default_model()
|
||||
|
||||
if last_rvc is None or last_rvc.pth_path != self.pth_path:
|
||||
set_synthesizer()
|
||||
else:
|
||||
self.tgt_sr = last_rvc.tgt_sr
|
||||
self.if_f0 = last_rvc.if_f0
|
||||
self.version = last_rvc.version
|
||||
self.is_half = last_rvc.is_half
|
||||
if last_rvc.use_jit != self.use_jit:
|
||||
set_synthesizer()
|
||||
else:
|
||||
self.net_g = last_rvc.net_g
|
||||
|
||||
if last_rvc is not None and hasattr(last_rvc, "model_rmvpe"):
|
||||
self.model_rmvpe = last_rvc.model_rmvpe
|
||||
if last_rvc is not None and hasattr(last_rvc, "model_fcpe"):
|
||||
self.device_fcpe = last_rvc.device_fcpe
|
||||
self.model_fcpe = last_rvc.model_fcpe
|
||||
except:
|
||||
printt(traceback.format_exc())
|
||||
|
||||
def change_key(self, new_key):
|
||||
self.f0_up_key = new_key
|
||||
|
||||
def change_formant(self, new_formant):
|
||||
self.formant_shift = new_formant
|
||||
|
||||
def change_index_rate(self, new_index_rate):
|
||||
if new_index_rate != 0 and self.index_rate == 0:
|
||||
self.index = faiss.read_index(self.index_path)
|
||||
self.big_npy = self.index.reconstruct_n(0, self.index.ntotal)
|
||||
printt("Index search enabled")
|
||||
self.index_rate = new_index_rate
|
||||
|
||||
def get_f0_post(self, f0):
|
||||
if not torch.is_tensor(f0):
|
||||
f0 = torch.from_numpy(f0)
|
||||
f0 = f0.float().to(self.device).squeeze()
|
||||
f0_mel = 1127 * torch.log(1 + f0 / 700)
|
||||
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * 254 / (
|
||||
self.f0_mel_max - self.f0_mel_min
|
||||
) + 1
|
||||
f0_mel[f0_mel <= 1] = 1
|
||||
f0_mel[f0_mel > 255] = 255
|
||||
f0_coarse = torch.round(f0_mel).long()
|
||||
return f0_coarse, f0
|
||||
|
||||
def get_f0(self, x, f0_up_key, n_cpu, method="harvest"):
|
||||
n_cpu = int(n_cpu)
|
||||
if method == "crepe":
|
||||
return self.get_f0_crepe(x, f0_up_key)
|
||||
if method == "rmvpe":
|
||||
return self.get_f0_rmvpe(x, f0_up_key)
|
||||
if method == "fcpe":
|
||||
return self.get_f0_fcpe(x, f0_up_key)
|
||||
x = x.cpu().numpy()
|
||||
if method == "pm":
|
||||
p_len = x.shape[0] // 160 + 1
|
||||
f0_min = 65
|
||||
l_pad = int(np.ceil(1.5 / f0_min * 16000))
|
||||
r_pad = l_pad + 1
|
||||
s = parselmouth.Sound(np.pad(x, (l_pad, r_pad)), 16000).to_pitch_ac(
|
||||
time_step=0.01,
|
||||
voicing_threshold=0.6,
|
||||
pitch_floor=f0_min,
|
||||
pitch_ceiling=1100,
|
||||
)
|
||||
assert np.abs(s.t1 - 1.5 / f0_min) < 0.001
|
||||
f0 = s.selected_array["frequency"]
|
||||
if len(f0) < p_len:
|
||||
f0 = np.pad(f0, (0, p_len - len(f0)))
|
||||
f0 = f0[:p_len]
|
||||
f0 *= pow(2, f0_up_key / 12)
|
||||
return self.get_f0_post(f0)
|
||||
if n_cpu == 1:
|
||||
f0, t = pyworld.harvest(
|
||||
x.astype(np.double),
|
||||
fs=16000,
|
||||
f0_ceil=1100,
|
||||
f0_floor=50,
|
||||
frame_period=10,
|
||||
)
|
||||
f0 = signal.medfilt(f0, 3)
|
||||
f0 *= pow(2, f0_up_key / 12)
|
||||
return self.get_f0_post(f0)
|
||||
f0bak = np.zeros(x.shape[0] // 160 + 1, dtype=np.float64)
|
||||
length = len(x)
|
||||
part_length = 160 * ((length // 160 - 1) // n_cpu + 1)
|
||||
n_cpu = (length // 160 - 1) // (part_length // 160) + 1
|
||||
ts = ttime()
|
||||
res_f0 = mm.dict()
|
||||
for idx in range(n_cpu):
|
||||
tail = part_length * (idx + 1) + 320
|
||||
if idx == 0:
|
||||
self.inp_q.put((idx, x[:tail], res_f0, n_cpu, ts))
|
||||
else:
|
||||
self.inp_q.put(
|
||||
(idx, x[part_length * idx - 320 : tail], res_f0, n_cpu, ts)
|
||||
)
|
||||
while 1:
|
||||
res_ts = self.opt_q.get()
|
||||
if res_ts == ts:
|
||||
break
|
||||
f0s = [i[1] for i in sorted(res_f0.items(), key=lambda x: x[0])]
|
||||
for idx, f0 in enumerate(f0s):
|
||||
if idx == 0:
|
||||
f0 = f0[:-3]
|
||||
elif idx != n_cpu - 1:
|
||||
f0 = f0[2:-3]
|
||||
else:
|
||||
f0 = f0[2:]
|
||||
f0bak[part_length * idx // 160 : part_length * idx // 160 + f0.shape[0]] = (
|
||||
f0
|
||||
)
|
||||
f0bak = signal.medfilt(f0bak, 3)
|
||||
f0bak *= pow(2, f0_up_key / 12)
|
||||
return self.get_f0_post(f0bak)
|
||||
|
||||
def get_f0_crepe(self, x, f0_up_key):
|
||||
if "privateuseone" in str(
|
||||
self.device
|
||||
): ###不支持dml,cpu又太慢用不成,拿fcpe顶替
|
||||
return self.get_f0(x, f0_up_key, 1, "fcpe")
|
||||
# printt("using crepe,device:%s"%self.device)
|
||||
f0, pd = torchcrepe.predict(
|
||||
x.unsqueeze(0).float(),
|
||||
16000,
|
||||
160,
|
||||
self.f0_min,
|
||||
self.f0_max,
|
||||
"full",
|
||||
batch_size=512,
|
||||
# device=self.device if self.device.type!="privateuseone" else "cpu",###crepe不用半精度全部是全精度所以不愁###cpu延迟高到没法用
|
||||
device=self.device,
|
||||
return_periodicity=True,
|
||||
)
|
||||
pd = torchcrepe.filter.median(pd, 3)
|
||||
f0 = torchcrepe.filter.mean(f0, 3)
|
||||
f0[pd < 0.1] = 0
|
||||
f0 *= pow(2, f0_up_key / 12)
|
||||
return self.get_f0_post(f0)
|
||||
|
||||
def get_f0_rmvpe(self, x, f0_up_key):
|
||||
if hasattr(self, "model_rmvpe") == False:
|
||||
from infer.lib.rmvpe import RMVPE
|
||||
|
||||
printt("Loading rmvpe model")
|
||||
self.model_rmvpe = RMVPE(
|
||||
"assets/rmvpe/rmvpe.pt",
|
||||
is_half=self.is_half,
|
||||
device=self.device,
|
||||
use_jit=self.config.use_jit,
|
||||
)
|
||||
f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
|
||||
f0 *= pow(2, f0_up_key / 12)
|
||||
return self.get_f0_post(f0)
|
||||
|
||||
def get_f0_fcpe(self, x, f0_up_key):
|
||||
if hasattr(self, "model_fcpe") == False:
|
||||
from torchfcpe import spawn_bundled_infer_model
|
||||
|
||||
printt("Loading fcpe model")
|
||||
if "privateuseone" in str(self.device):
|
||||
self.device_fcpe = "cpu"
|
||||
else:
|
||||
self.device_fcpe = self.device
|
||||
self.model_fcpe = spawn_bundled_infer_model(self.device_fcpe)
|
||||
f0 = self.model_fcpe.infer(
|
||||
x.to(self.device_fcpe).unsqueeze(0).float(),
|
||||
sr=16000,
|
||||
decoder_mode="local_argmax",
|
||||
threshold=0.006,
|
||||
)
|
||||
f0 *= pow(2, f0_up_key / 12)
|
||||
return self.get_f0_post(f0)
|
||||
|
||||
def infer(
|
||||
self,
|
||||
input_wav: torch.Tensor,
|
||||
block_frame_16k,
|
||||
skip_head,
|
||||
return_length,
|
||||
f0method,
|
||||
) -> np.ndarray:
|
||||
t1 = ttime()
|
||||
with torch.no_grad():
|
||||
if self.config.is_half:
|
||||
feats = input_wav.half().view(1, -1)
|
||||
else:
|
||||
feats = input_wav.float().view(1, -1)
|
||||
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
|
||||
inputs = {
|
||||
"source": feats,
|
||||
"padding_mask": padding_mask,
|
||||
"output_layer": 9 if self.version == "v1" else 12,
|
||||
}
|
||||
logits = self.model.extract_features(**inputs)
|
||||
feats = (
|
||||
self.model.final_proj(logits[0]) if self.version == "v1" else logits[0]
|
||||
)
|
||||
feats = torch.cat((feats, feats[:, -1:, :]), 1)
|
||||
t2 = ttime()
|
||||
try:
|
||||
if hasattr(self, "index") and self.index_rate != 0:
|
||||
npy = feats[0][skip_head // 2 :].cpu().numpy().astype("float32")
|
||||
score, ix = self.index.search(npy, k=8)
|
||||
if (ix >= 0).all():
|
||||
weight = np.square(1 / score)
|
||||
weight /= weight.sum(axis=1, keepdims=True)
|
||||
npy = np.sum(
|
||||
self.big_npy[ix] * np.expand_dims(weight, axis=2), axis=1
|
||||
)
|
||||
if self.config.is_half:
|
||||
npy = npy.astype("float16")
|
||||
feats[0][skip_head // 2 :] = (
|
||||
torch.from_numpy(npy).unsqueeze(0).to(self.device)
|
||||
* self.index_rate
|
||||
+ (1 - self.index_rate) * feats[0][skip_head // 2 :]
|
||||
)
|
||||
else:
|
||||
printt(
|
||||
"Invalid index. You MUST use added_xxxx.index but not trained_xxxx.index!"
|
||||
)
|
||||
else:
|
||||
printt("Index search FAILED or disabled")
|
||||
except:
|
||||
traceback.print_exc()
|
||||
printt("Index search FAILED")
|
||||
t3 = ttime()
|
||||
p_len = input_wav.shape[0] // 160
|
||||
factor = pow(2, self.formant_shift / 12)
|
||||
return_length2 = int(np.ceil(return_length * factor))
|
||||
if self.if_f0 == 1:
|
||||
f0_extractor_frame = block_frame_16k + 800
|
||||
if f0method == "rmvpe":
|
||||
f0_extractor_frame = 5120 * ((f0_extractor_frame - 1) // 5120 + 1) - 160
|
||||
pitch, pitchf = self.get_f0(
|
||||
input_wav[-f0_extractor_frame:], self.f0_up_key - self.formant_shift, self.n_cpu, f0method
|
||||
)
|
||||
shift = block_frame_16k // 160
|
||||
self.cache_pitch[:-shift] = self.cache_pitch[shift:].clone()
|
||||
self.cache_pitchf[:-shift] = self.cache_pitchf[shift:].clone()
|
||||
self.cache_pitch[4 - pitch.shape[0] :] = pitch[3:-1]
|
||||
self.cache_pitchf[4 - pitch.shape[0] :] = pitchf[3:-1]
|
||||
cache_pitch = self.cache_pitch[None, -p_len:]
|
||||
cache_pitchf = self.cache_pitchf[None, -p_len:] * return_length2 / return_length
|
||||
t4 = ttime()
|
||||
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
|
||||
feats = feats[:, :p_len, :]
|
||||
p_len = torch.LongTensor([p_len]).to(self.device)
|
||||
sid = torch.LongTensor([0]).to(self.device)
|
||||
skip_head = torch.LongTensor([skip_head])
|
||||
return_length2 = torch.LongTensor([return_length2])
|
||||
return_length = torch.LongTensor([return_length])
|
||||
with torch.no_grad():
|
||||
if self.if_f0 == 1:
|
||||
infered_audio, _, _ = self.net_g.infer(
|
||||
feats,
|
||||
p_len,
|
||||
cache_pitch,
|
||||
cache_pitchf,
|
||||
sid,
|
||||
skip_head,
|
||||
return_length,
|
||||
return_length2,
|
||||
)
|
||||
else:
|
||||
infered_audio, _, _ = self.net_g.infer(
|
||||
feats, p_len, sid, skip_head, return_length, return_length2
|
||||
)
|
||||
infered_audio = infered_audio.squeeze(1).float()
|
||||
upp_res = int(np.floor(factor * self.tgt_sr // 100))
|
||||
if upp_res != self.tgt_sr // 100:
|
||||
if upp_res not in self.resample_kernel:
|
||||
self.resample_kernel[upp_res] = Resample(
|
||||
orig_freq=upp_res,
|
||||
new_freq=self.tgt_sr // 100,
|
||||
dtype=torch.float32,
|
||||
).to(self.device)
|
||||
infered_audio = self.resample_kernel[upp_res](
|
||||
infered_audio[:, : return_length * upp_res]
|
||||
)
|
||||
t5 = ttime()
|
||||
printt(
|
||||
"Spent time: fea = %.3fs, index = %.3fs, f0 = %.3fs, model = %.3fs",
|
||||
t2 - t1,
|
||||
t3 - t2,
|
||||
t4 - t3,
|
||||
t5 - t4,
|
||||
)
|
||||
return infered_audio.squeeze()
|
||||
Reference in New Issue
Block a user