mirror of
https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git
synced 2026-01-20 02:51:09 +00:00
format
This commit is contained in:
@@ -1,5 +1,5 @@
|
||||
import librosa
|
||||
import ffmpeg
|
||||
import librosa
|
||||
import numpy as np
|
||||
|
||||
|
||||
|
||||
@@ -1,12 +1,12 @@
|
||||
import copy
|
||||
import math
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
from infer.lib.infer_pack import commons
|
||||
from infer.lib.infer_pack import modules
|
||||
from infer.lib.infer_pack import commons, modules
|
||||
from infer.lib.infer_pack.modules import LayerNorm
|
||||
|
||||
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
import math
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
@@ -1,17 +1,17 @@
|
||||
import math, pdb, os
|
||||
import math
|
||||
import os
|
||||
import pdb
|
||||
from time import time as ttime
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import AvgPool1d, Conv1d, Conv2d, ConvTranspose1d
|
||||
from torch.nn import functional as F
|
||||
from infer.lib.infer_pack import modules
|
||||
from infer.lib.infer_pack import attentions
|
||||
from infer.lib.infer_pack import commons
|
||||
from infer.lib.infer_pack.commons import init_weights, get_padding
|
||||
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
||||
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
||||
from infer.lib.infer_pack.commons import init_weights
|
||||
import numpy as np
|
||||
from infer.lib.infer_pack import commons
|
||||
from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm
|
||||
|
||||
from infer.lib.infer_pack import attentions, commons, modules
|
||||
from infer.lib.infer_pack.commons import get_padding, init_weights
|
||||
|
||||
|
||||
class TextEncoder256(nn.Module):
|
||||
|
||||
@@ -1,17 +1,17 @@
|
||||
import math, pdb, os
|
||||
import math
|
||||
import os
|
||||
import pdb
|
||||
from time import time as ttime
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import AvgPool1d, Conv1d, Conv2d, ConvTranspose1d
|
||||
from torch.nn import functional as F
|
||||
from infer.lib.infer_pack import modules
|
||||
from infer.lib.infer_pack import attentions
|
||||
from infer.lib.infer_pack import commons
|
||||
from infer.lib.infer_pack.commons import init_weights, get_padding
|
||||
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
||||
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
||||
from infer.lib.infer_pack.commons import init_weights
|
||||
import numpy as np
|
||||
from infer.lib.infer_pack import commons
|
||||
from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm
|
||||
|
||||
from infer.lib.infer_pack import attentions, commons, modules
|
||||
from infer.lib.infer_pack.commons import get_padding, init_weights
|
||||
|
||||
|
||||
class TextEncoder256(nn.Module):
|
||||
|
||||
@@ -1,19 +1,18 @@
|
||||
import copy
|
||||
import math
|
||||
|
||||
import numpy as np
|
||||
import scipy
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import AvgPool1d, Conv1d, Conv2d, ConvTranspose1d
|
||||
from torch.nn import functional as F
|
||||
|
||||
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
||||
from torch.nn.utils import weight_norm, remove_weight_norm
|
||||
from torch.nn.utils import remove_weight_norm, weight_norm
|
||||
|
||||
from infer.lib.infer_pack import commons
|
||||
from infer.lib.infer_pack.commons import init_weights, get_padding
|
||||
from infer.lib.infer_pack.commons import get_padding, init_weights
|
||||
from infer.lib.infer_pack.transforms import piecewise_rational_quadratic_transform
|
||||
|
||||
|
||||
LRELU_SLOPE = 0.1
|
||||
|
||||
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
from infer.lib.infer_pack.modules.F0Predictor.F0Predictor import F0Predictor
|
||||
import pyworld
|
||||
import numpy as np
|
||||
import pyworld
|
||||
|
||||
from infer.lib.infer_pack.modules.F0Predictor.F0Predictor import F0Predictor
|
||||
|
||||
|
||||
class DioF0Predictor(F0Predictor):
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
from infer.lib.infer_pack.modules.F0Predictor.F0Predictor import F0Predictor
|
||||
import pyworld
|
||||
import numpy as np
|
||||
import pyworld
|
||||
|
||||
from infer.lib.infer_pack.modules.F0Predictor.F0Predictor import F0Predictor
|
||||
|
||||
|
||||
class HarvestF0Predictor(F0Predictor):
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
from infer.lib.infer_pack.modules.F0Predictor.F0Predictor import F0Predictor
|
||||
import parselmouth
|
||||
import numpy as np
|
||||
import parselmouth
|
||||
|
||||
from infer.lib.infer_pack.modules.F0Predictor.F0Predictor import F0Predictor
|
||||
|
||||
|
||||
class PMF0Predictor(F0Predictor):
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import onnxruntime
|
||||
import librosa
|
||||
import numpy as np
|
||||
import onnxruntime
|
||||
import soundfile
|
||||
|
||||
|
||||
|
||||
@@ -1,9 +1,7 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch.nn import functional as F
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
DEFAULT_MIN_BIN_WIDTH = 1e-3
|
||||
DEFAULT_MIN_BIN_HEIGHT = 1e-3
|
||||
DEFAULT_MIN_DERIVATIVE = 1e-3
|
||||
|
||||
@@ -1,11 +1,11 @@
|
||||
import torch, numpy as np, pdb
|
||||
import pdb
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torch, pdb
|
||||
import numpy as np
|
||||
import torch.nn.functional as F
|
||||
from librosa.util import normalize, pad_center, tiny
|
||||
from scipy.signal import get_window
|
||||
from librosa.util import pad_center, tiny, normalize
|
||||
|
||||
|
||||
###stft codes from https://github.com/pseeth/torch-stft/blob/master/torch_stft/util.py
|
||||
@@ -670,7 +670,8 @@ class RMVPE:
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import soundfile as sf, librosa
|
||||
import librosa
|
||||
import soundfile as sf
|
||||
|
||||
audio, sampling_rate = sf.read(r"C:\Users\liujing04\Desktop\Z\冬之花clip1.wav")
|
||||
if len(audio.shape) > 1:
|
||||
|
||||
@@ -1,10 +1,12 @@
|
||||
import os, traceback
|
||||
import os
|
||||
import traceback
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.utils.data
|
||||
|
||||
from infer.lib.train.mel_processing import spectrogram_torch
|
||||
from infer.lib.train.utils import load_wav_to_torch, load_filepaths_and_text
|
||||
from infer.lib.train.utils import load_filepaths_and_text, load_wav_to_torch
|
||||
|
||||
|
||||
class TextAudioLoaderMultiNSFsid(torch.utils.data.Dataset):
|
||||
|
||||
@@ -2,7 +2,6 @@ import torch
|
||||
import torch.utils.data
|
||||
from librosa.filters import mel as librosa_mel_fn
|
||||
|
||||
|
||||
MAX_WAV_VALUE = 32768.0
|
||||
|
||||
|
||||
|
||||
@@ -1,7 +1,10 @@
|
||||
import torch, traceback, os, sys
|
||||
|
||||
|
||||
import os
|
||||
import sys
|
||||
import traceback
|
||||
from collections import OrderedDict
|
||||
|
||||
import torch
|
||||
|
||||
from i18n.i18n import I18nAuto
|
||||
|
||||
i18n = I18nAuto()
|
||||
|
||||
@@ -1,13 +1,15 @@
|
||||
import os, traceback
|
||||
import glob
|
||||
import sys
|
||||
import argparse
|
||||
import logging
|
||||
import glob
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import subprocess
|
||||
import sys
|
||||
import traceback
|
||||
|
||||
import numpy as np
|
||||
from scipy.io.wavfile import read
|
||||
import torch
|
||||
from scipy.io.wavfile import read
|
||||
|
||||
MATPLOTLIB_FLAG = False
|
||||
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
from torch import nn
|
||||
|
||||
from . import spec_utils
|
||||
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
from torch import nn
|
||||
|
||||
from . import spec_utils
|
||||
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
from torch import nn
|
||||
|
||||
from . import spec_utils
|
||||
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
from torch import nn
|
||||
|
||||
from . import spec_utils
|
||||
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
from torch import nn
|
||||
|
||||
from . import spec_utils
|
||||
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
from torch import nn
|
||||
|
||||
from . import spec_utils
|
||||
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
from torch import nn
|
||||
|
||||
from . import spec_utils
|
||||
|
||||
|
||||
@@ -1,8 +1,8 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
import layers
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import nn
|
||||
|
||||
from . import spec_utils
|
||||
|
||||
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
from torch import nn
|
||||
|
||||
from . import layers_123821KB as layers
|
||||
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
from torch import nn
|
||||
|
||||
from . import layers_123821KB as layers
|
||||
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
from torch import nn
|
||||
|
||||
from . import layers_33966KB as layers
|
||||
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import torch
|
||||
import numpy as np
|
||||
from torch import nn
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import nn
|
||||
|
||||
from . import layers_537238KB as layers
|
||||
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import torch
|
||||
import numpy as np
|
||||
from torch import nn
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import nn
|
||||
|
||||
from . import layers_537238KB as layers
|
||||
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
from torch import nn
|
||||
|
||||
from . import layers_123821KB as layers
|
||||
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
from torch import nn
|
||||
|
||||
from . import layers_new
|
||||
|
||||
|
||||
|
||||
@@ -1,8 +1,12 @@
|
||||
import os, librosa
|
||||
import hashlib
|
||||
import json
|
||||
import math
|
||||
import os
|
||||
|
||||
import librosa
|
||||
import numpy as np
|
||||
import soundfile as sf
|
||||
from tqdm import tqdm
|
||||
import json, math, hashlib
|
||||
|
||||
|
||||
def crop_center(h1, h2):
|
||||
@@ -519,10 +523,11 @@ def istft(spec, hl):
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import cv2
|
||||
import argparse
|
||||
import sys
|
||||
import time
|
||||
import argparse
|
||||
|
||||
import cv2
|
||||
from model_param_init import ModelParameters
|
||||
|
||||
p = argparse.ArgumentParser()
|
||||
|
||||
@@ -1,8 +1,9 @@
|
||||
import torch
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
import json
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
def load_data(file_name: str = "./infer/lib/uvr5_pack/name_params.json") -> dict:
|
||||
with open(file_name, "r") as f:
|
||||
|
||||
@@ -1,10 +1,16 @@
|
||||
import os, traceback, sys, parselmouth
|
||||
import os
|
||||
import sys
|
||||
import traceback
|
||||
|
||||
import parselmouth
|
||||
|
||||
now_dir = os.getcwd()
|
||||
sys.path.append(now_dir)
|
||||
from lib.audio import load_audio
|
||||
import logging
|
||||
|
||||
import numpy as np
|
||||
import pyworld
|
||||
import numpy as np, logging
|
||||
from lib.audio import load_audio
|
||||
|
||||
logging.getLogger("numba").setLevel(logging.WARNING)
|
||||
from multiprocessing import Process
|
||||
|
||||
@@ -1,10 +1,16 @@
|
||||
import os, traceback, sys, parselmouth
|
||||
import os
|
||||
import sys
|
||||
import traceback
|
||||
|
||||
import parselmouth
|
||||
|
||||
now_dir = os.getcwd()
|
||||
sys.path.append(now_dir)
|
||||
from lib.audio import load_audio
|
||||
import logging
|
||||
|
||||
import numpy as np
|
||||
import pyworld
|
||||
import numpy as np, logging
|
||||
from lib.audio import load_audio
|
||||
|
||||
logging.getLogger("numba").setLevel(logging.WARNING)
|
||||
|
||||
|
||||
@@ -1,10 +1,16 @@
|
||||
import os, traceback, sys, parselmouth
|
||||
import os
|
||||
import sys
|
||||
import traceback
|
||||
|
||||
import parselmouth
|
||||
|
||||
now_dir = os.getcwd()
|
||||
sys.path.append(now_dir)
|
||||
from lib.audio import load_audio
|
||||
import logging
|
||||
|
||||
import numpy as np
|
||||
import pyworld
|
||||
import numpy as np, logging
|
||||
from lib.audio import load_audio
|
||||
|
||||
logging.getLogger("numba").setLevel(logging.WARNING)
|
||||
|
||||
|
||||
@@ -1,4 +1,6 @@
|
||||
import os, sys, traceback
|
||||
import os
|
||||
import sys
|
||||
import traceback
|
||||
|
||||
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
|
||||
os.environ["PYTORCH_MPS_HIGH_WATERMARK_RATIO"] = "0.0"
|
||||
@@ -14,11 +16,11 @@ else:
|
||||
exp_dir = sys.argv[5]
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = str(i_gpu)
|
||||
version = sys.argv[6]
|
||||
import fairseq
|
||||
import numpy as np
|
||||
import soundfile as sf
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import soundfile as sf
|
||||
import numpy as np
|
||||
import fairseq
|
||||
|
||||
if "privateuseone" not in device:
|
||||
device = "cpu"
|
||||
|
||||
@@ -1,4 +1,7 @@
|
||||
import sys, os, multiprocessing
|
||||
import multiprocessing
|
||||
import os
|
||||
import sys
|
||||
|
||||
from scipy import signal
|
||||
|
||||
now_dir = os.getcwd()
|
||||
@@ -9,12 +12,15 @@ sr = int(sys.argv[2])
|
||||
n_p = int(sys.argv[3])
|
||||
exp_dir = sys.argv[4]
|
||||
noparallel = sys.argv[5] == "True"
|
||||
import numpy as np, os, traceback
|
||||
from lib.slicer2 import Slicer
|
||||
import librosa, traceback
|
||||
from scipy.io import wavfile
|
||||
import multiprocessing
|
||||
import os
|
||||
import traceback
|
||||
|
||||
import librosa
|
||||
import numpy as np
|
||||
from lib.audio import load_audio
|
||||
from lib.slicer2 import Slicer
|
||||
from scipy.io import wavfile
|
||||
|
||||
mutex = multiprocessing.Lock()
|
||||
f = open("%s/preprocess.log" % exp_dir, "a+")
|
||||
|
||||
@@ -1,43 +1,47 @@
|
||||
import os, sys
|
||||
import os
|
||||
import sys
|
||||
|
||||
now_dir = os.getcwd()
|
||||
sys.path.append(os.path.join(now_dir))
|
||||
|
||||
from infer.lib.train import utils
|
||||
import datetime
|
||||
|
||||
from infer.lib.train import utils
|
||||
|
||||
hps = utils.get_hparams()
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = hps.gpus.replace("-", ",")
|
||||
n_gpus = len(hps.gpus.split("-"))
|
||||
from random import shuffle, randint
|
||||
from random import randint, shuffle
|
||||
|
||||
import torch
|
||||
|
||||
torch.backends.cudnn.deterministic = False
|
||||
torch.backends.cudnn.benchmark = False
|
||||
from torch.nn import functional as F
|
||||
from torch.utils.data import DataLoader
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
import torch.multiprocessing as mp
|
||||
import torch.distributed as dist
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.cuda.amp import autocast, GradScaler
|
||||
from infer.lib.infer_pack import commons
|
||||
from time import sleep
|
||||
from time import time as ttime
|
||||
|
||||
import torch.distributed as dist
|
||||
import torch.multiprocessing as mp
|
||||
from torch.cuda.amp import GradScaler, autocast
|
||||
from torch.nn import functional as F
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.utils.data import DataLoader
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
|
||||
from infer.lib.infer_pack import commons
|
||||
from infer.lib.train.data_utils import (
|
||||
TextAudioLoaderMultiNSFsid,
|
||||
TextAudioLoader,
|
||||
TextAudioCollateMultiNSFsid,
|
||||
TextAudioCollate,
|
||||
DistributedBucketSampler,
|
||||
TextAudioCollate,
|
||||
TextAudioCollateMultiNSFsid,
|
||||
TextAudioLoader,
|
||||
TextAudioLoaderMultiNSFsid,
|
||||
)
|
||||
|
||||
if hps.version == "v1":
|
||||
from infer.lib.infer_pack.models import MultiPeriodDiscriminator
|
||||
from infer.lib.infer_pack.models import SynthesizerTrnMs256NSFsid as RVC_Model_f0
|
||||
from infer.lib.infer_pack.models import (
|
||||
SynthesizerTrnMs256NSFsid as RVC_Model_f0,
|
||||
SynthesizerTrnMs256NSFsid_nono as RVC_Model_nof0,
|
||||
MultiPeriodDiscriminator,
|
||||
)
|
||||
else:
|
||||
from infer.lib.infer_pack.models import (
|
||||
@@ -45,10 +49,11 @@ else:
|
||||
SynthesizerTrnMs768NSFsid_nono as RVC_Model_nof0,
|
||||
MultiPeriodDiscriminatorV2 as MultiPeriodDiscriminator,
|
||||
)
|
||||
|
||||
from infer.lib.train.losses import (
|
||||
generator_loss,
|
||||
discriminator_loss,
|
||||
feature_loss,
|
||||
generator_loss,
|
||||
kl_loss,
|
||||
)
|
||||
from infer.lib.train.mel_processing import mel_spectrogram_torch, spec_to_mel_torch
|
||||
|
||||
@@ -1,12 +1,12 @@
|
||||
import os
|
||||
import warnings
|
||||
|
||||
import soundfile as sf
|
||||
import librosa
|
||||
import numpy as np
|
||||
import onnxruntime as ort
|
||||
from tqdm import tqdm
|
||||
import soundfile as sf
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
|
||||
cpu = torch.device("cpu")
|
||||
|
||||
|
||||
@@ -1,12 +1,12 @@
|
||||
import os
|
||||
import traceback
|
||||
|
||||
import torch
|
||||
import ffmpeg
|
||||
import torch
|
||||
|
||||
from configs.config import Config
|
||||
from infer.modules.uvr5.preprocess import AudioPre, AudioPreDeEcho
|
||||
from infer.modules.uvr5.mdxnet import MDXNetDereverb
|
||||
from infer.modules.uvr5.preprocess import AudioPre, AudioPreDeEcho
|
||||
|
||||
config = Config()
|
||||
|
||||
|
||||
@@ -1,16 +1,15 @@
|
||||
import os
|
||||
import torch
|
||||
|
||||
import librosa
|
||||
import numpy as np
|
||||
import soundfile as sf
|
||||
import torch
|
||||
|
||||
from infer.lib.uvr5_pack.lib_v5 import spec_utils
|
||||
from infer.lib.uvr5_pack.utils import inference
|
||||
from infer.lib.uvr5_pack.lib_v5.model_param_init import ModelParameters
|
||||
|
||||
from infer.lib.uvr5_pack.lib_v5.nets_new import CascadedNet
|
||||
from infer.lib.uvr5_pack.lib_v5 import nets_61968KB as Nets
|
||||
from infer.lib.uvr5_pack.lib_v5 import spec_utils
|
||||
from infer.lib.uvr5_pack.lib_v5.model_param_init import ModelParameters
|
||||
from infer.lib.uvr5_pack.lib_v5.nets_new import CascadedNet
|
||||
from infer.lib.uvr5_pack.utils import inference
|
||||
|
||||
|
||||
class AudioPre:
|
||||
|
||||
@@ -1,9 +1,10 @@
|
||||
import traceback
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import soundfile as sf
|
||||
import torch
|
||||
|
||||
from infer.lib.audio import load_audio
|
||||
from infer.lib.infer_pack.models import (
|
||||
SynthesizerTrnMs256NSFsid,
|
||||
SynthesizerTrnMs256NSFsid_nono,
|
||||
@@ -12,7 +13,6 @@ from infer.lib.infer_pack.models import (
|
||||
)
|
||||
from infer.modules.vc.pipeline import Pipeline
|
||||
from infer.modules.vc.utils import *
|
||||
from infer.lib.audio import load_audio
|
||||
|
||||
|
||||
class VC:
|
||||
|
||||
@@ -1,13 +1,18 @@
|
||||
import os
|
||||
import sys
|
||||
import traceback
|
||||
from functools import lru_cache
|
||||
from time import time as ttime
|
||||
|
||||
import faiss
|
||||
import librosa
|
||||
import numpy as np
|
||||
import parselmouth
|
||||
import pyworld
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import pyworld, os, traceback, faiss, librosa, torchcrepe
|
||||
import torchcrepe
|
||||
from scipy import signal
|
||||
from functools import lru_cache
|
||||
|
||||
now_dir = os.getcwd()
|
||||
sys.path.append(now_dir)
|
||||
|
||||
Reference in New Issue
Block a user