chore(format): run black on dev (#1638)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
This commit is contained in:
github-actions[bot]
2023-12-26 22:03:02 +09:00
committed by GitHub
parent 997a956f4f
commit 5449f84f06
4 changed files with 102 additions and 71 deletions

View File

@@ -46,22 +46,23 @@ def printt(strr, *args):
# config.is_half=False########强制cpu测试
class RVC:
def __init__(
self,
key,
pth_path,
index_path,
index_rate,
n_cpu,
inp_q,
opt_q,
config: Config,
last_rvc=None,
self,
key,
pth_path,
index_path,
index_rate,
n_cpu,
inp_q,
opt_q,
config: Config,
last_rvc=None,
) -> None:
"""
初始化
"""
try:
if config.dml == True:
def forward_dml(ctx, x, scale):
ctx.scale = scale
res = x.clone().detach()
@@ -92,7 +93,7 @@ class RVC:
self.index_rate = index_rate
self.cache_pitch: np.ndarray = np.zeros(1024, dtype="int32")
self.cache_pitchf = np.zeros(1024, dtype="float32")
if last_rvc is None:
models, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
["assets/hubert/hubert_base.pt"],
@@ -201,7 +202,7 @@ class RVC:
f0bak = f0.copy()
f0_mel = 1127 * np.log(1 + f0 / 700)
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * 254 / (
self.f0_mel_max - self.f0_mel_min
self.f0_mel_max - self.f0_mel_min
) + 1
f0_mel[f0_mel <= 1] = 1
f0_mel[f0_mel > 255] = 255
@@ -258,7 +259,7 @@ class RVC:
self.inp_q.put((idx, x[:tail], res_f0, n_cpu, ts))
else:
self.inp_q.put(
(idx, x[part_length * idx - 320: tail], res_f0, n_cpu, ts)
(idx, x[part_length * idx - 320 : tail], res_f0, n_cpu, ts)
)
while 1:
res_ts = self.opt_q.get()
@@ -273,7 +274,7 @@ class RVC:
else:
f0 = f0[2:]
f0bak[
part_length * idx // 160: part_length * idx // 160 + f0.shape[0]
part_length * idx // 160 : part_length * idx // 160 + f0.shape[0]
] = f0
f0bak = signal.medfilt(f0bak, 3)
f0bak *= pow(2, f0_up_key / 12)
@@ -320,6 +321,7 @@ class RVC:
def get_f0_fcpe(self, x, f0_up_key):
if hasattr(self, "model_fcpe") == False:
from torchfcpe import spawn_bundled_infer_model
printt("Loading fcpe model")
if "privateuseone" in str(self.device):
self.device_fcpe = "cpu"
@@ -329,7 +331,7 @@ class RVC:
f0 = self.model_fcpe.infer(
x.to(self.device_fcpe).unsqueeze(0).float(),
sr=16000,
decoder_mode='local_argmax',
decoder_mode="local_argmax",
threshold=0.006,
)
f0 *= pow(2, f0_up_key / 12)
@@ -337,12 +339,12 @@ class RVC:
return self.get_f0_post(f0)
def infer(
self,
input_wav: torch.Tensor,
block_frame_16k,
skip_head,
return_length,
f0method,
self,
input_wav: torch.Tensor,
block_frame_16k,
skip_head,
return_length,
f0method,
) -> np.ndarray:
t1 = ttime()
with torch.no_grad():
@@ -364,16 +366,16 @@ class RVC:
t2 = ttime()
try:
if hasattr(self, "index") and self.index_rate != 0:
npy = feats[0][skip_head // 2:].cpu().numpy().astype("float32")
npy = feats[0][skip_head // 2 :].cpu().numpy().astype("float32")
score, ix = self.index.search(npy, k=8)
weight = np.square(1 / score)
weight /= weight.sum(axis=1, keepdims=True)
npy = np.sum(self.big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
if self.config.is_half:
npy = npy.astype("float16")
feats[0][skip_head // 2:] = (
torch.from_numpy(npy).unsqueeze(0).to(self.device) * self.index_rate
+ (1 - self.index_rate) * feats[0][skip_head // 2:]
feats[0][skip_head // 2 :] = (
torch.from_numpy(npy).unsqueeze(0).to(self.device) * self.index_rate
+ (1 - self.index_rate) * feats[0][skip_head // 2 :]
)
else:
printt("Index search FAILED or disabled")
@@ -384,21 +386,29 @@ class RVC:
if self.if_f0 == 1:
f0_extractor_frame = block_frame_16k + 800
if f0method == "rmvpe":
f0_extractor_frame = (
5120 * ((f0_extractor_frame - 1) // 5120 + 1) - 160
)
pitch, pitchf = self.get_f0(input_wav[-f0_extractor_frame: ], self.f0_up_key, self.n_cpu, f0method)
f0_extractor_frame = 5120 * ((f0_extractor_frame - 1) // 5120 + 1) - 160
pitch, pitchf = self.get_f0(
input_wav[-f0_extractor_frame:], self.f0_up_key, self.n_cpu, f0method
)
start_frame = block_frame_16k // 160
end_frame = len(self.cache_pitch) - (pitch.shape[0] - 4) + start_frame
self.cache_pitch[:] = np.append(self.cache_pitch[start_frame: end_frame], pitch[3:-1])
self.cache_pitch[:] = np.append(
self.cache_pitch[start_frame:end_frame], pitch[3:-1]
)
self.cache_pitchf[:] = np.append(
self.cache_pitchf[start_frame: end_frame], pitchf[3:-1]
self.cache_pitchf[start_frame:end_frame], pitchf[3:-1]
)
t4 = ttime()
p_len = input_wav.shape[0] // 160
if self.if_f0 == 1:
cache_pitch = torch.LongTensor(self.cache_pitch[-p_len: ]).to(self.device).unsqueeze(0)
cache_pitchf = torch.FloatTensor(self.cache_pitchf[-p_len: ]).to(self.device).unsqueeze(0)
cache_pitch = (
torch.LongTensor(self.cache_pitch[-p_len:]).to(self.device).unsqueeze(0)
)
cache_pitchf = (
torch.FloatTensor(self.cache_pitchf[-p_len:])
.to(self.device)
.unsqueeze(0)
)
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
feats = feats[:, :p_len, :]
p_len = torch.LongTensor([p_len]).to(self.device)