mirror of
https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git
synced 2026-01-20 11:00:23 +00:00
fix: 卸载音色省显存
顺便将所有print换成了统一的logger
This commit is contained in:
@@ -1,7 +1,6 @@
|
||||
import math
|
||||
import os
|
||||
import pdb
|
||||
from time import time as ttime
|
||||
import logging
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
@@ -616,7 +615,7 @@ class SynthesizerTrnMs256NSFsid(nn.Module):
|
||||
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
||||
)
|
||||
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
||||
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
||||
logger.debug("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
||||
|
||||
def remove_weight_norm(self):
|
||||
self.dec.remove_weight_norm()
|
||||
@@ -732,7 +731,7 @@ class SynthesizerTrnMs768NSFsid(nn.Module):
|
||||
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
||||
)
|
||||
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
||||
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
||||
logger.debug("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
||||
|
||||
def remove_weight_norm(self):
|
||||
self.dec.remove_weight_norm()
|
||||
@@ -845,7 +844,7 @@ class SynthesizerTrnMs256NSFsid_nono(nn.Module):
|
||||
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
||||
)
|
||||
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
||||
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
||||
logger.debug("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
||||
|
||||
def remove_weight_norm(self):
|
||||
self.dec.remove_weight_norm()
|
||||
@@ -951,7 +950,7 @@ class SynthesizerTrnMs768NSFsid_nono(nn.Module):
|
||||
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
||||
)
|
||||
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
||||
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
||||
logger.debug("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
||||
|
||||
def remove_weight_norm(self):
|
||||
self.dec.remove_weight_norm()
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
import math
|
||||
import os
|
||||
import pdb
|
||||
from time import time as ttime
|
||||
import logging
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
@@ -620,7 +619,7 @@ class SynthesizerTrnMsNSFsidM(nn.Module):
|
||||
)
|
||||
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
||||
self.speaker_map = None
|
||||
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
||||
logger.debug("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
||||
|
||||
def remove_weight_norm(self):
|
||||
self.dec.remove_weight_norm()
|
||||
|
||||
@@ -3,10 +3,13 @@ import numpy as np
|
||||
import onnxruntime
|
||||
import soundfile
|
||||
|
||||
import logging
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class ContentVec:
|
||||
def __init__(self, vec_path="pretrained/vec-768-layer-12.onnx", device=None):
|
||||
print("Load model(s) from {}".format(vec_path))
|
||||
logger.info("Load model(s) from {}".format(vec_path))
|
||||
if device == "cpu" or device is None:
|
||||
providers = ["CPUExecutionProvider"]
|
||||
elif device == "cuda":
|
||||
|
||||
@@ -7,6 +7,10 @@ import torch.nn.functional as F
|
||||
from librosa.util import normalize, pad_center, tiny
|
||||
from scipy.signal import get_window
|
||||
|
||||
import logging
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
###stft codes from https://github.com/pseeth/torch-stft/blob/master/torch_stft/util.py
|
||||
def window_sumsquare(
|
||||
@@ -691,4 +695,4 @@ if __name__ == "__main__":
|
||||
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
||||
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
||||
t1 = ttime()
|
||||
print(f0.shape, t1 - t0)
|
||||
logger.info(f0.shape, t1 - t0)
|
||||
|
||||
@@ -1,5 +1,7 @@
|
||||
import os
|
||||
import traceback
|
||||
import logging
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
@@ -110,7 +112,7 @@ class TextAudioLoaderMultiNSFsid(torch.utils.data.Dataset):
|
||||
try:
|
||||
spec = torch.load(spec_filename)
|
||||
except:
|
||||
print(spec_filename, traceback.format_exc())
|
||||
logger.warn(spec_filename, traceback.format_exc())
|
||||
spec = spectrogram_torch(
|
||||
audio_norm,
|
||||
self.filter_length,
|
||||
@@ -302,7 +304,7 @@ class TextAudioLoader(torch.utils.data.Dataset):
|
||||
try:
|
||||
spec = torch.load(spec_filename)
|
||||
except:
|
||||
print(spec_filename, traceback.format_exc())
|
||||
logger.warn(spec_filename, traceback.format_exc())
|
||||
spec = spectrogram_torch(
|
||||
audio_norm,
|
||||
self.filter_length,
|
||||
|
||||
@@ -1,6 +1,8 @@
|
||||
import torch
|
||||
import torch.utils.data
|
||||
from librosa.filters import mel as librosa_mel_fn
|
||||
import logging
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
MAX_WAV_VALUE = 32768.0
|
||||
|
||||
@@ -51,9 +53,9 @@ def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False)
|
||||
"""
|
||||
# Validation
|
||||
if torch.min(y) < -1.07:
|
||||
print("spectrogram_torch min value is ", torch.min(y))
|
||||
logger.debug("min value is ", torch.min(y))
|
||||
if torch.max(y) > 1.07:
|
||||
print("spectrogram_torch max value is ", torch.max(y))
|
||||
logger.debug("max value is ", torch.max(y))
|
||||
|
||||
# Window - Cache if needed
|
||||
global hann_window
|
||||
|
||||
@@ -33,7 +33,7 @@ def load_checkpoint_d(checkpoint_path, combd, sbd, optimizer=None, load_opt=1):
|
||||
try:
|
||||
new_state_dict[k] = saved_state_dict[k]
|
||||
if saved_state_dict[k].shape != state_dict[k].shape:
|
||||
print(
|
||||
logger.warn(
|
||||
"shape-%s-mismatch. need: %s, get: %s"
|
||||
% (k, state_dict[k].shape, saved_state_dict[k].shape)
|
||||
) #
|
||||
@@ -109,7 +109,7 @@ def load_checkpoint(checkpoint_path, model, optimizer=None, load_opt=1):
|
||||
try:
|
||||
new_state_dict[k] = saved_state_dict[k]
|
||||
if saved_state_dict[k].shape != state_dict[k].shape:
|
||||
print(
|
||||
logger.warn(
|
||||
"shape-%s-mismatch|need-%s|get-%s"
|
||||
% (k, state_dict[k].shape, saved_state_dict[k].shape)
|
||||
) #
|
||||
@@ -207,7 +207,7 @@ def latest_checkpoint_path(dir_path, regex="G_*.pth"):
|
||||
f_list = glob.glob(os.path.join(dir_path, regex))
|
||||
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
|
||||
x = f_list[-1]
|
||||
print(x)
|
||||
logger.debug(x)
|
||||
return x
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user