mirror of
https://github.com/docling-project/docling-serve.git
synced 2025-11-29 16:43:24 +00:00
204 lines
7.8 KiB
Python
204 lines
7.8 KiB
Python
import hashlib
|
|
import json
|
|
import logging
|
|
from collections.abc import Iterable, Iterator
|
|
from pathlib import Path
|
|
from typing import Any, Optional, Union
|
|
|
|
from fastapi import HTTPException
|
|
|
|
from docling.backend.docling_parse_backend import DoclingParseDocumentBackend
|
|
from docling.backend.docling_parse_v2_backend import DoclingParseV2DocumentBackend
|
|
from docling.backend.pdf_backend import PdfDocumentBackend
|
|
from docling.backend.pypdfium2_backend import PyPdfiumDocumentBackend
|
|
from docling.datamodel.base_models import DocumentStream, InputFormat
|
|
from docling.datamodel.document import ConversionResult
|
|
from docling.datamodel.pipeline_options import (
|
|
EasyOcrOptions,
|
|
OcrEngine,
|
|
OcrOptions,
|
|
PdfBackend,
|
|
PdfPipelineOptions,
|
|
RapidOcrOptions,
|
|
TableFormerMode,
|
|
TesseractOcrOptions,
|
|
)
|
|
from docling.document_converter import DocumentConverter, FormatOption, PdfFormatOption
|
|
from docling_core.types.doc import ImageRefMode
|
|
|
|
from docling_serve.datamodel.convert import ConvertDocumentsOptions
|
|
from docling_serve.helper_functions import _to_list_of_strings
|
|
from docling_serve.settings import docling_serve_settings
|
|
|
|
_log = logging.getLogger(__name__)
|
|
|
|
|
|
# Document converters will be preloaded and stored in a dictionary
|
|
converters: dict[bytes, DocumentConverter] = {}
|
|
|
|
|
|
# Custom serializer for PdfFormatOption
|
|
# (model_dump_json does not work with some classes)
|
|
def _serialize_pdf_format_option(pdf_format_option: PdfFormatOption) -> str:
|
|
data = pdf_format_option.model_dump()
|
|
|
|
# pipeline_options are not fully serialized by model_dump, dedicated pass
|
|
if pdf_format_option.pipeline_options:
|
|
data["pipeline_options"] = pdf_format_option.pipeline_options.model_dump()
|
|
|
|
# Replace `artifacts_path` with a string representation
|
|
data["pipeline_options"]["artifacts_path"] = repr(
|
|
data["pipeline_options"]["artifacts_path"]
|
|
)
|
|
|
|
# Replace `pipeline_cls` with a string representation
|
|
data["pipeline_cls"] = repr(data["pipeline_cls"])
|
|
|
|
# Replace `backend` with a string representation
|
|
data["backend"] = repr(data["backend"])
|
|
|
|
# Handle `device` in `accelerator_options`
|
|
if "accelerator_options" in data and "device" in data["accelerator_options"]:
|
|
data["accelerator_options"]["device"] = repr(
|
|
data["accelerator_options"]["device"]
|
|
)
|
|
|
|
# Serialize the dictionary to JSON with sorted keys to have consistent hashes
|
|
return json.dumps(data, sort_keys=True)
|
|
|
|
|
|
# Computes the PDF pipeline options and returns the PdfFormatOption and its hash
|
|
def get_pdf_pipeline_opts( # noqa: C901
|
|
request: ConvertDocumentsOptions,
|
|
) -> tuple[PdfFormatOption, bytes]:
|
|
if request.ocr_engine == OcrEngine.EASYOCR:
|
|
try:
|
|
import easyocr # noqa: F401
|
|
except ImportError:
|
|
raise HTTPException(
|
|
status_code=400,
|
|
detail="The requested OCR engine"
|
|
f" (ocr_engine={request.ocr_engine.value})"
|
|
" is not available on this system. Please choose another OCR engine "
|
|
"or contact your system administrator.",
|
|
)
|
|
ocr_options: OcrOptions = EasyOcrOptions(force_full_page_ocr=request.force_ocr)
|
|
elif request.ocr_engine == OcrEngine.TESSERACT:
|
|
try:
|
|
import tesserocr # noqa: F401
|
|
except ImportError:
|
|
raise HTTPException(
|
|
status_code=400,
|
|
detail="The requested OCR engine"
|
|
f" (ocr_engine={request.ocr_engine.value})"
|
|
" is not available on this system. Please choose another OCR engine "
|
|
"or contact your system administrator.",
|
|
)
|
|
ocr_options = TesseractOcrOptions(force_full_page_ocr=request.force_ocr)
|
|
elif request.ocr_engine == OcrEngine.RAPIDOCR:
|
|
try:
|
|
from rapidocr_onnxruntime import RapidOCR # noqa: F401
|
|
except ImportError:
|
|
raise HTTPException(
|
|
status_code=400,
|
|
detail="The requested OCR engine"
|
|
f" (ocr_engine={request.ocr_engine.value})"
|
|
" is not available on this system. Please choose another OCR engine "
|
|
"or contact your system administrator.",
|
|
)
|
|
ocr_options = RapidOcrOptions(force_full_page_ocr=request.force_ocr)
|
|
else:
|
|
raise RuntimeError(f"Unexpected OCR engine type {request.ocr_engine}")
|
|
|
|
if request.ocr_lang is not None:
|
|
if isinstance(request.ocr_lang, str):
|
|
ocr_options.lang = _to_list_of_strings(request.ocr_lang)
|
|
else:
|
|
ocr_options.lang = request.ocr_lang
|
|
|
|
pipeline_options = PdfPipelineOptions(
|
|
do_ocr=request.do_ocr,
|
|
ocr_options=ocr_options,
|
|
do_table_structure=request.do_table_structure,
|
|
do_code_enrichment=request.do_code_enrichment,
|
|
do_formula_enrichment=request.do_formula_enrichment,
|
|
do_picture_classification=request.do_picture_classification,
|
|
do_picture_description=request.do_picture_description,
|
|
)
|
|
pipeline_options.table_structure_options.do_cell_matching = True # do_cell_matching
|
|
pipeline_options.table_structure_options.mode = TableFormerMode(request.table_mode)
|
|
|
|
if request.image_export_mode != ImageRefMode.PLACEHOLDER:
|
|
pipeline_options.generate_page_images = True
|
|
if request.images_scale:
|
|
pipeline_options.images_scale = request.images_scale
|
|
|
|
if request.pdf_backend == PdfBackend.DLPARSE_V1:
|
|
backend: type[PdfDocumentBackend] = DoclingParseDocumentBackend
|
|
elif request.pdf_backend == PdfBackend.DLPARSE_V2:
|
|
backend = DoclingParseV2DocumentBackend
|
|
elif request.pdf_backend == PdfBackend.PYPDFIUM2:
|
|
backend = PyPdfiumDocumentBackend
|
|
else:
|
|
raise RuntimeError(f"Unexpected PDF backend type {request.pdf_backend}")
|
|
|
|
if docling_serve_settings.artifacts_path is not None:
|
|
if str(docling_serve_settings.artifacts_path.absolute()) == "":
|
|
_log.info(
|
|
"artifacts_path is an empty path, model weights will be dowloaded "
|
|
"at runtime."
|
|
)
|
|
pipeline_options.artifacts_path = None
|
|
elif docling_serve_settings.artifacts_path.is_dir():
|
|
_log.info(
|
|
"artifacts_path is set to a valid directory. "
|
|
"No model weights will be downloaded at runtime."
|
|
)
|
|
pipeline_options.artifacts_path = docling_serve_settings.artifacts_path
|
|
else:
|
|
_log.warning(
|
|
"artifacts_path is set to an invalid directory. "
|
|
"The system will download the model weights at runtime."
|
|
)
|
|
pipeline_options.artifacts_path = None
|
|
else:
|
|
_log.info(
|
|
"artifacts_path is unset. "
|
|
"The system will download the model weights at runtime."
|
|
)
|
|
|
|
pdf_format_option = PdfFormatOption(
|
|
pipeline_options=pipeline_options,
|
|
backend=backend,
|
|
)
|
|
|
|
serialized_data = _serialize_pdf_format_option(pdf_format_option)
|
|
|
|
options_hash = hashlib.sha1(serialized_data.encode()).digest()
|
|
|
|
return pdf_format_option, options_hash
|
|
|
|
|
|
def convert_documents(
|
|
sources: Iterable[Union[Path, str, DocumentStream]],
|
|
options: ConvertDocumentsOptions,
|
|
headers: Optional[dict[str, Any]] = None,
|
|
):
|
|
pdf_format_option, options_hash = get_pdf_pipeline_opts(options)
|
|
|
|
if options_hash not in converters:
|
|
format_options: dict[InputFormat, FormatOption] = {
|
|
InputFormat.PDF: pdf_format_option,
|
|
InputFormat.IMAGE: pdf_format_option,
|
|
}
|
|
|
|
converters[options_hash] = DocumentConverter(format_options=format_options)
|
|
_log.info(f"We now have {len(converters)} converters in memory.")
|
|
|
|
results: Iterator[ConversionResult] = converters[options_hash].convert_all(
|
|
sources,
|
|
headers=headers,
|
|
)
|
|
|
|
return results
|