mirror of
https://github.com/docling-project/docling-serve.git
synced 2025-11-29 08:33:50 +00:00
231 lines
6.9 KiB
Python
231 lines
6.9 KiB
Python
import logging
|
|
import tempfile
|
|
from contextlib import asynccontextmanager
|
|
from io import BytesIO
|
|
from pathlib import Path
|
|
from typing import Annotated, Any, Dict, List, Optional, Union
|
|
|
|
from docling.datamodel.base_models import DocumentStream, InputFormat
|
|
from docling.document_converter import DocumentConverter
|
|
from fastapi import BackgroundTasks, FastAPI, UploadFile
|
|
from fastapi.middleware.cors import CORSMiddleware
|
|
from fastapi.responses import RedirectResponse
|
|
from pydantic import BaseModel
|
|
|
|
from docling_serve.docling_conversion import (
|
|
ConvertDocumentFileSourcesRequest,
|
|
ConvertDocumentsOptions,
|
|
ConvertDocumentsRequest,
|
|
convert_documents,
|
|
converters,
|
|
get_pdf_pipeline_opts,
|
|
)
|
|
from docling_serve.helper_functions import FormDepends
|
|
from docling_serve.response_preparation import ConvertDocumentResponse, process_results
|
|
from docling_serve.settings import docling_serve_settings
|
|
|
|
|
|
# Set up custom logging as we'll be intermixes with FastAPI/Uvicorn's logging
|
|
class ColoredLogFormatter(logging.Formatter):
|
|
COLOR_CODES = {
|
|
logging.DEBUG: "\033[94m", # Blue
|
|
logging.INFO: "\033[92m", # Green
|
|
logging.WARNING: "\033[93m", # Yellow
|
|
logging.ERROR: "\033[91m", # Red
|
|
logging.CRITICAL: "\033[95m", # Magenta
|
|
}
|
|
RESET_CODE = "\033[0m"
|
|
|
|
def format(self, record):
|
|
color = self.COLOR_CODES.get(record.levelno, "")
|
|
record.levelname = f"{color}{record.levelname}{self.RESET_CODE}"
|
|
return super().format(record)
|
|
|
|
|
|
logging.basicConfig(
|
|
level=logging.INFO, # Set the logging level
|
|
format="%(levelname)s:\t%(asctime)s - %(name)s - %(message)s",
|
|
datefmt="%H:%M:%S",
|
|
)
|
|
|
|
# Override the formatter with the custom ColoredLogFormatter
|
|
root_logger = logging.getLogger() # Get the root logger
|
|
for handler in root_logger.handlers: # Iterate through existing handlers
|
|
if handler.formatter:
|
|
handler.setFormatter(ColoredLogFormatter(handler.formatter._fmt))
|
|
|
|
_log = logging.getLogger(__name__)
|
|
|
|
|
|
# Context manager to initialize and clean up the lifespan of the FastAPI app
|
|
@asynccontextmanager
|
|
async def lifespan(app: FastAPI):
|
|
|
|
# Converter with default options
|
|
pdf_format_option, options_hash = get_pdf_pipeline_opts(ConvertDocumentsOptions())
|
|
converters[options_hash] = DocumentConverter(
|
|
format_options={
|
|
InputFormat.PDF: pdf_format_option,
|
|
InputFormat.IMAGE: pdf_format_option,
|
|
}
|
|
)
|
|
|
|
converters[options_hash].initialize_pipeline(InputFormat.PDF)
|
|
|
|
yield
|
|
|
|
converters.clear()
|
|
# if WITH_UI:
|
|
# gradio_ui.close()
|
|
|
|
|
|
##################################
|
|
# App creation and configuration #
|
|
##################################
|
|
|
|
|
|
def create_app():
|
|
app = FastAPI(
|
|
title="Docling Serve",
|
|
lifespan=lifespan,
|
|
)
|
|
|
|
origins = ["*"]
|
|
methods = ["*"]
|
|
headers = ["*"]
|
|
|
|
app.add_middleware(
|
|
CORSMiddleware,
|
|
allow_origins=origins,
|
|
allow_credentials=True,
|
|
allow_methods=methods,
|
|
allow_headers=headers,
|
|
)
|
|
|
|
# Mount the Gradio app
|
|
if docling_serve_settings.enable_ui:
|
|
|
|
try:
|
|
import gradio as gr
|
|
|
|
from docling_serve.gradio_ui import ui as gradio_ui
|
|
|
|
tmp_output_dir = Path(tempfile.mkdtemp())
|
|
gradio_ui.gradio_output_dir = tmp_output_dir
|
|
app = gr.mount_gradio_app(
|
|
app,
|
|
gradio_ui,
|
|
path="/ui",
|
|
allowed_paths=["./logo.png", tmp_output_dir],
|
|
root_path="/ui",
|
|
)
|
|
except ImportError:
|
|
_log.warning(
|
|
"Docling Serve enable_ui is activated, but gradio is not installed. "
|
|
"Install it with `pip install docling-serve[ui]` "
|
|
"or `pip install gradio`"
|
|
)
|
|
|
|
#############################
|
|
# API Endpoints definitions #
|
|
#############################
|
|
|
|
# Favicon
|
|
@app.get("/favicon.ico", include_in_schema=False)
|
|
async def favicon():
|
|
response = RedirectResponse(
|
|
url="https://ds4sd.github.io/docling/assets/logo.png"
|
|
)
|
|
return response
|
|
|
|
# Status
|
|
class HealthCheckResponse(BaseModel):
|
|
status: str = "ok"
|
|
|
|
@app.get("/health")
|
|
def health() -> HealthCheckResponse:
|
|
return HealthCheckResponse()
|
|
|
|
# API readiness compatibility for OpenShift AI Workbench
|
|
@app.get("/api", include_in_schema=False)
|
|
def api_check() -> HealthCheckResponse:
|
|
return HealthCheckResponse()
|
|
|
|
# Convert a document from URL(s)
|
|
@app.post(
|
|
"/v1alpha/convert/source",
|
|
response_model=ConvertDocumentResponse,
|
|
responses={
|
|
200: {
|
|
"content": {"application/zip": {}},
|
|
# "description": "Return the JSON item or an image.",
|
|
}
|
|
},
|
|
)
|
|
def process_url(
|
|
background_tasks: BackgroundTasks, conversion_request: ConvertDocumentsRequest
|
|
):
|
|
sources: List[Union[str, DocumentStream]] = []
|
|
headers: Optional[Dict[str, Any]] = None
|
|
if isinstance(conversion_request, ConvertDocumentFileSourcesRequest):
|
|
for file_source in conversion_request.file_sources:
|
|
sources.append(file_source.to_document_stream())
|
|
else:
|
|
for http_source in conversion_request.http_sources:
|
|
sources.append(http_source.url)
|
|
if headers is None and http_source.headers:
|
|
headers = http_source.headers
|
|
|
|
# Note: results are only an iterator->lazy evaluation
|
|
results = convert_documents(
|
|
sources=sources, options=conversion_request.options, headers=headers
|
|
)
|
|
|
|
# The real processing will happen here
|
|
response = process_results(
|
|
background_tasks=background_tasks,
|
|
conversion_options=conversion_request.options,
|
|
conv_results=results,
|
|
)
|
|
|
|
return response
|
|
|
|
# Convert a document from file(s)
|
|
@app.post(
|
|
"/v1alpha/convert/file",
|
|
response_model=ConvertDocumentResponse,
|
|
responses={
|
|
200: {
|
|
"content": {"application/zip": {}},
|
|
}
|
|
},
|
|
)
|
|
async def process_file(
|
|
background_tasks: BackgroundTasks,
|
|
files: List[UploadFile],
|
|
options: Annotated[
|
|
ConvertDocumentsOptions, FormDepends(ConvertDocumentsOptions)
|
|
],
|
|
):
|
|
|
|
_log.info(f"Received {len(files)} files for processing.")
|
|
|
|
# Load the uploaded files to Docling DocumentStream
|
|
file_sources = []
|
|
for file in files:
|
|
buf = BytesIO(file.file.read())
|
|
name = file.filename if file.filename else "file.pdf"
|
|
file_sources.append(DocumentStream(name=name, stream=buf))
|
|
|
|
results = convert_documents(sources=file_sources, options=options)
|
|
|
|
response = process_results(
|
|
background_tasks=background_tasks,
|
|
conversion_options=options,
|
|
conv_results=results,
|
|
)
|
|
|
|
return response
|
|
|
|
return app
|