Files
docling-serve/docling_serve/docling_conversion.py
Guillaume Moutier c6539c42de api v1alpha1 (#17)
* api v1alpha1

Signed-off-by: Guillaume Moutier <gmoutier@redhat.com>
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* use actual types in request models and refactor

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* make gradio optional and update README

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* Run workflow jobs sequentially to avoid disk space outage (#19)

Github Action runners are running out of the space while
building both the images in parallel.

This change will build the image sequentially and also
clean up the cpu images before start building gpu image.

Signed-off-by: Anil Vishnoi <vishnoianil@gmail.com>
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* Add github job to build image (and not publish) on PR creation (#20)

Signed-off-by: Anil Vishnoi <vishnoianil@gmail.com>
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* add start_server script for local dev

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* fix 3.12-only syntax

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* fix more py3.10-11 compatibility

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* rework output format and background tasks

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* speficy return schemas for openapi

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* add processing time and update REDAME

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* lint markdown

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* add MD033 to config

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* use port 5000

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* use port 5001 as default

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* update deps

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* refactor input request

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* return docling document

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* update new payload in README

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* add base64 example

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* wrap example in <details>

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* rename /url in /source

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* move main execution to __main__

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

---------

Signed-off-by: Guillaume Moutier <gmoutier@redhat.com>
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
Signed-off-by: Anil Vishnoi <vishnoianil@gmail.com>
Co-authored-by: Michele Dolfi <dol@zurich.ibm.com>
Co-authored-by: Anil Vishnoi <vishnoianil@gmail.com>
2025-02-03 11:00:54 +01:00

401 lines
13 KiB
Python

import base64
import hashlib
import json
import logging
from io import BytesIO
from pathlib import Path
from typing import (
Annotated,
Any,
Dict,
Iterable,
Iterator,
List,
Optional,
Tuple,
Type,
Union,
)
from docling.backend.docling_parse_backend import DoclingParseDocumentBackend
from docling.backend.docling_parse_v2_backend import DoclingParseV2DocumentBackend
from docling.backend.pdf_backend import PdfDocumentBackend
from docling.backend.pypdfium2_backend import PyPdfiumDocumentBackend
from docling.datamodel.base_models import DocumentStream, InputFormat, OutputFormat
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import (
EasyOcrOptions,
OcrEngine,
OcrOptions,
PdfBackend,
PdfPipelineOptions,
RapidOcrOptions,
TableFormerMode,
TesseractOcrOptions,
)
from docling.document_converter import DocumentConverter, FormatOption, PdfFormatOption
from docling_core.types.doc import ImageRefMode
from fastapi import HTTPException
from pydantic import BaseModel, Field
from docling_serve.helper_functions import _to_list_of_strings
_log = logging.getLogger(__name__)
# Define the input options for the API
class ConvertDocumentsOptions(BaseModel):
from_formats: Annotated[
List[InputFormat],
Field(
description=(
"Input format(s) to convert from. String or list of strings. "
f"Allowed values: {', '.join([v.value for v in InputFormat])}. "
"Optional, defaults to all formats."
),
examples=[[v.value for v in InputFormat]],
),
] = [v for v in InputFormat]
to_formats: Annotated[
List[OutputFormat],
Field(
description=(
"Output format(s) to convert to. String or list of strings. "
f"Allowed values: {', '.join([v.value for v in OutputFormat])}. "
"Optional, defaults to Markdown."
),
examples=[[OutputFormat.MARKDOWN]],
),
] = [OutputFormat.MARKDOWN]
image_export_mode: Annotated[
ImageRefMode,
Field(
description=(
"Image export mode for the document (in case of JSON,"
" Markdown or HTML). "
f"Allowed values: {', '.join([v.value for v in ImageRefMode])}. "
"Optional, defaults to Embedded."
),
examples=[ImageRefMode.EMBEDDED.value],
# pattern="embedded|placeholder|referenced",
),
] = ImageRefMode.EMBEDDED
do_ocr: Annotated[
bool,
Field(
description=(
"If enabled, the bitmap content will be processed using OCR. "
"Boolean. Optional, defaults to true"
),
# examples=[True],
),
] = True
force_ocr: Annotated[
bool,
Field(
description=(
"If enabled, replace existing text with OCR-generated "
"text over content. Boolean. Optional, defaults to false."
),
# examples=[False],
),
] = False
# TODO: use a restricted list based on what is installed on the system
ocr_engine: Annotated[
OcrEngine,
Field(
description=(
"The OCR engine to use. String. "
"Allowed values: easyocr, tesseract, rapidocr. "
"Optional, defaults to easyocr."
),
examples=[OcrEngine.EASYOCR],
),
] = OcrEngine.EASYOCR
ocr_lang: Annotated[
Optional[List[str]],
Field(
description=(
"List of languages used by the OCR engine. "
"Note that each OCR engine has "
"different values for the language names. String or list of strings. "
"Optional, defaults to empty."
),
examples=[["fr", "de", "es", "en"]],
),
] = None
pdf_backend: Annotated[
PdfBackend,
Field(
description=(
"The PDF backend to use. String. "
f"Allowed values: {', '.join([v.value for v in PdfBackend])}. "
f"Optional, defaults to {PdfBackend.DLPARSE_V2.value}."
),
examples=[PdfBackend.DLPARSE_V2],
),
] = PdfBackend.DLPARSE_V2
table_mode: Annotated[
TableFormerMode,
Field(
TableFormerMode.FAST,
description=(
"Mode to use for table structure, String. "
f"Allowed values: {', '.join([v.value for v in TableFormerMode])}. "
"Optional, defaults to fast."
),
examples=[TableFormerMode.FAST],
# pattern="fast|accurate",
),
] = TableFormerMode.FAST
abort_on_error: Annotated[
bool,
Field(
description=(
"Abort on error if enabled. " "Boolean. Optional, defaults to false."
),
# examples=[False],
),
] = False
return_as_file: Annotated[
bool,
Field(
description=(
"Return the output as a zip file "
"(will happen anyway if multiple files are generated). "
"Boolean. Optional, defaults to false."
),
examples=[False],
),
] = False
do_table_structure: Annotated[
bool,
Field(
description=(
"If enabled, the table structure will be extracted. "
"Boolean. Optional, defaults to true."
),
examples=[True],
),
] = True
include_images: Annotated[
bool,
Field(
description=(
"If enabled, images will be extracted from the document. "
"Boolean. Optional, defaults to true."
),
examples=[True],
),
] = True
images_scale: Annotated[
float,
Field(
description="Scale factor for images. Float. Optional, defaults to 2.0.",
examples=[2.0],
),
] = 2.0
class DocumentsConvertBase(BaseModel):
options: ConvertDocumentsOptions = ConvertDocumentsOptions()
class HttpSource(BaseModel):
url: Annotated[
str,
Field(
description="HTTP url to process",
examples=["https://arxiv.org/pdf/2206.01062"],
),
]
headers: Annotated[
Dict[str, Any],
Field(
description="Additional headers used to fetch the urls, "
"e.g. authorization, agent, etc"
),
] = {}
class FileSource(BaseModel):
base64_string: Annotated[
str,
Field(
description="Content of the file serialized in base64. "
"For example it can be obtained via "
"`base64 -w 0 /path/to/file/pdf-to-convert.pdf`."
),
]
filename: Annotated[
str,
Field(description="Filename of the uploaded document", examples=["file.pdf"]),
]
def to_document_stream(self) -> DocumentStream:
buf = BytesIO(base64.b64decode(self.base64_string))
return DocumentStream(stream=buf, name=self.filename)
class ConvertDocumentHttpSourcesRequest(DocumentsConvertBase):
http_sources: List[HttpSource]
class ConvertDocumentFileSourcesRequest(DocumentsConvertBase):
file_sources: List[FileSource]
ConvertDocumentsRequest = Union[
ConvertDocumentFileSourcesRequest, ConvertDocumentHttpSourcesRequest
]
# Document converters will be preloaded and stored in a dictionary
converters: Dict[str, DocumentConverter] = {}
# Custom serializer for PdfFormatOption
# (model_dump_json does not work with some classes)
def _serialize_pdf_format_option(pdf_format_option: PdfFormatOption) -> str:
data = pdf_format_option.model_dump()
# pipeline_options are not fully serialized by model_dump, dedicated pass
if pdf_format_option.pipeline_options:
data["pipeline_options"] = pdf_format_option.pipeline_options.model_dump()
# Replace `pipeline_cls` with a string representation
data["pipeline_cls"] = repr(data["pipeline_cls"])
# Replace `backend` with a string representation
data["backend"] = repr(data["backend"])
# Handle `device` in `accelerator_options`
if "accelerator_options" in data and "device" in data["accelerator_options"]:
data["accelerator_options"]["device"] = repr(
data["accelerator_options"]["device"]
)
# Serialize the dictionary to JSON with sorted keys to have consistent hashes
return json.dumps(data, sort_keys=True)
# Computes the PDF pipeline options and returns the PdfFormatOption and its hash
def get_pdf_pipeline_opts(
request: ConvertDocumentsOptions,
) -> Tuple[PdfFormatOption, str]:
if request.ocr_engine == OcrEngine.EASYOCR:
try:
import easyocr # noqa: F401
except ImportError:
raise HTTPException(
status_code=400,
detail="The requested OCR engine"
f" (ocr_engine={request.ocr_engine.value})"
" is not available on this system. Please choose another OCR engine "
"or contact your system administrator.",
)
ocr_options: OcrOptions = EasyOcrOptions(force_full_page_ocr=request.force_ocr)
elif request.ocr_engine == OcrEngine.TESSERACT:
try:
import tesserocr # noqa: F401
except ImportError:
raise HTTPException(
status_code=400,
detail="The requested OCR engine"
f" (ocr_engine={request.ocr_engine.value})"
" is not available on this system. Please choose another OCR engine "
"or contact your system administrator.",
)
ocr_options = TesseractOcrOptions(force_full_page_ocr=request.force_ocr)
elif request.ocr_engine == OcrEngine.RAPIDOCR:
try:
from rapidocr_onnxruntime import RapidOCR # noqa: F401
except ImportError:
raise HTTPException(
status_code=400,
detail="The requested OCR engine"
f" (ocr_engine={request.ocr_engine.value})"
" is not available on this system. Please choose another OCR engine "
"or contact your system administrator.",
)
ocr_options = RapidOcrOptions(force_full_page_ocr=request.force_ocr)
else:
raise RuntimeError(f"Unexpected OCR engine type {request.ocr_engine}")
if request.ocr_lang is not None:
if isinstance(request.ocr_lang, str):
ocr_options.lang = _to_list_of_strings(request.ocr_lang)
else:
ocr_options.lang = request.ocr_lang
pipeline_options = PdfPipelineOptions(
do_ocr=request.do_ocr,
ocr_options=ocr_options,
do_table_structure=request.do_table_structure,
)
pipeline_options.table_structure_options.do_cell_matching = True # do_cell_matching
pipeline_options.table_structure_options.mode = TableFormerMode(request.table_mode)
if request.image_export_mode != ImageRefMode.PLACEHOLDER:
pipeline_options.generate_page_images = True
if request.images_scale:
pipeline_options.images_scale = request.images_scale
if request.pdf_backend == PdfBackend.DLPARSE_V1:
backend: Type[PdfDocumentBackend] = DoclingParseDocumentBackend
elif request.pdf_backend == PdfBackend.DLPARSE_V2:
backend = DoclingParseV2DocumentBackend
elif request.pdf_backend == PdfBackend.PYPDFIUM2:
backend = PyPdfiumDocumentBackend
else:
raise RuntimeError(f"Unexpected PDF backend type {request.pdf_backend}")
pdf_format_option = PdfFormatOption(
pipeline_options=pipeline_options,
backend=backend,
)
serialized_data = _serialize_pdf_format_option(pdf_format_option)
options_hash = hashlib.sha1(serialized_data.encode()).hexdigest()
return pdf_format_option, options_hash
def convert_documents(
sources: Iterable[Union[Path, str, DocumentStream]],
options: ConvertDocumentsOptions,
headers: Optional[Dict[str, Any]] = None,
):
pdf_format_option, options_hash = get_pdf_pipeline_opts(options)
if options_hash not in converters:
format_options: Dict[InputFormat, FormatOption] = {
InputFormat.PDF: pdf_format_option,
InputFormat.IMAGE: pdf_format_option,
}
converters[options_hash] = DocumentConverter(format_options=format_options)
_log.info(f"We now have {len(converters)} converters in memory.")
results: Iterator[ConversionResult] = converters[options_hash].convert_all(
sources,
headers=headers,
)
return results