Files
docling-serve/docling_serve/docling_conversion.py
Michele Dolfi 8406fb9b59 fix: usage of hashlib for FIPS (#171)
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
2025-05-02 15:00:10 +02:00

257 lines
9.4 KiB
Python

import hashlib
import json
import logging
import sys
from collections.abc import Iterable, Iterator
from functools import lru_cache
from pathlib import Path
from typing import Any, Optional, Union
from fastapi import HTTPException
from docling.backend.docling_parse_backend import DoclingParseDocumentBackend
from docling.backend.docling_parse_v2_backend import DoclingParseV2DocumentBackend
from docling.backend.docling_parse_v4_backend import DoclingParseV4DocumentBackend
from docling.backend.pdf_backend import PdfDocumentBackend
from docling.backend.pypdfium2_backend import PyPdfiumDocumentBackend
from docling.datamodel.base_models import DocumentStream, InputFormat
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import (
OcrOptions,
PdfBackend,
PdfPipeline,
PdfPipelineOptions,
PictureDescriptionApiOptions,
PictureDescriptionVlmOptions,
TableFormerMode,
VlmPipelineOptions,
smoldocling_vlm_conversion_options,
smoldocling_vlm_mlx_conversion_options,
)
from docling.document_converter import DocumentConverter, FormatOption, PdfFormatOption
from docling.pipeline.vlm_pipeline import VlmPipeline
from docling_core.types.doc import ImageRefMode
from docling_serve.datamodel.convert import ConvertDocumentsOptions, ocr_factory
from docling_serve.helper_functions import _to_list_of_strings
from docling_serve.settings import docling_serve_settings
_log = logging.getLogger(__name__)
# Custom serializer for PdfFormatOption
# (model_dump_json does not work with some classes)
def _hash_pdf_format_option(pdf_format_option: PdfFormatOption) -> bytes:
data = pdf_format_option.model_dump(serialize_as_any=True)
# pipeline_options are not fully serialized by model_dump, dedicated pass
if pdf_format_option.pipeline_options:
data["pipeline_options"] = pdf_format_option.pipeline_options.model_dump(
serialize_as_any=True, mode="json"
)
# Replace `pipeline_cls` with a string representation
data["pipeline_cls"] = repr(data["pipeline_cls"])
# Replace `backend` with a string representation
data["backend"] = repr(data["backend"])
# Serialize the dictionary to JSON with sorted keys to have consistent hashes
serialized_data = json.dumps(data, sort_keys=True)
options_hash = hashlib.sha1(
serialized_data.encode(), usedforsecurity=False
).digest()
return options_hash
# Cache of DocumentConverter objects
_options_map: dict[bytes, PdfFormatOption] = {}
@lru_cache(maxsize=docling_serve_settings.options_cache_size)
def _get_converter_from_hash(options_hash: bytes) -> DocumentConverter:
pdf_format_option = _options_map[options_hash]
format_options: dict[InputFormat, FormatOption] = {
InputFormat.PDF: pdf_format_option,
InputFormat.IMAGE: pdf_format_option,
}
return DocumentConverter(format_options=format_options)
def get_converter(pdf_format_option: PdfFormatOption) -> DocumentConverter:
options_hash = _hash_pdf_format_option(pdf_format_option)
_options_map[options_hash] = pdf_format_option
return _get_converter_from_hash(options_hash)
def _parse_standard_pdf_opts(
request: ConvertDocumentsOptions, artifacts_path: Optional[Path]
) -> PdfPipelineOptions:
try:
ocr_options: OcrOptions = ocr_factory.create_options(
kind=request.ocr_engine.value, # type: ignore
force_full_page_ocr=request.force_ocr,
)
except ImportError as err:
raise HTTPException(
status_code=400,
detail="The requested OCR engine"
f" (ocr_engine={request.ocr_engine.value})" # type: ignore
" is not available on this system. Please choose another OCR engine "
"or contact your system administrator.\n"
f"{err}",
)
if request.ocr_lang is not None:
if isinstance(request.ocr_lang, str):
ocr_options.lang = _to_list_of_strings(request.ocr_lang)
else:
ocr_options.lang = request.ocr_lang
pipeline_options = PdfPipelineOptions(
artifacts_path=artifacts_path,
enable_remote_services=docling_serve_settings.enable_remote_services,
document_timeout=request.document_timeout,
do_ocr=request.do_ocr,
ocr_options=ocr_options,
do_table_structure=request.do_table_structure,
do_code_enrichment=request.do_code_enrichment,
do_formula_enrichment=request.do_formula_enrichment,
do_picture_classification=request.do_picture_classification,
do_picture_description=request.do_picture_description,
)
pipeline_options.table_structure_options.mode = TableFormerMode(request.table_mode)
if request.image_export_mode != ImageRefMode.PLACEHOLDER:
pipeline_options.generate_page_images = True
if request.image_export_mode == ImageRefMode.REFERENCED:
pipeline_options.generate_picture_images = True
if request.images_scale:
pipeline_options.images_scale = request.images_scale
if request.picture_description_local is not None:
pipeline_options.picture_description_options = (
PictureDescriptionVlmOptions.model_validate(
request.picture_description_local.model_dump()
)
)
if request.picture_description_api is not None:
pipeline_options.picture_description_options = (
PictureDescriptionApiOptions.model_validate(
request.picture_description_api.model_dump()
)
)
pipeline_options.picture_description_options.picture_area_threshold = (
request.picture_description_area_threshold
)
return pipeline_options
def _parse_backend(request: ConvertDocumentsOptions) -> type[PdfDocumentBackend]:
if request.pdf_backend == PdfBackend.DLPARSE_V1:
backend: type[PdfDocumentBackend] = DoclingParseDocumentBackend
elif request.pdf_backend == PdfBackend.DLPARSE_V2:
backend = DoclingParseV2DocumentBackend
elif request.pdf_backend == PdfBackend.DLPARSE_V4:
backend = DoclingParseV4DocumentBackend
elif request.pdf_backend == PdfBackend.PYPDFIUM2:
backend = PyPdfiumDocumentBackend
else:
raise RuntimeError(f"Unexpected PDF backend type {request.pdf_backend}")
return backend
def _parse_vlm_pdf_opts(
request: ConvertDocumentsOptions, artifacts_path: Optional[Path]
) -> VlmPipelineOptions:
pipeline_options = VlmPipelineOptions(
artifacts_path=artifacts_path,
document_timeout=request.document_timeout,
)
pipeline_options.vlm_options = smoldocling_vlm_conversion_options
if sys.platform == "darwin":
try:
import mlx_vlm # noqa: F401
pipeline_options.vlm_options = smoldocling_vlm_mlx_conversion_options
except ImportError:
_log.warning(
"To run SmolDocling faster, please install mlx-vlm:\n"
"pip install mlx-vlm"
)
return pipeline_options
# Computes the PDF pipeline options and returns the PdfFormatOption and its hash
def get_pdf_pipeline_opts(
request: ConvertDocumentsOptions,
) -> PdfFormatOption:
artifacts_path: Optional[Path] = None
if docling_serve_settings.artifacts_path is not None:
if str(docling_serve_settings.artifacts_path.absolute()) == "":
_log.info(
"artifacts_path is an empty path, model weights will be downloaded "
"at runtime."
)
artifacts_path = None
elif docling_serve_settings.artifacts_path.is_dir():
_log.info(
"artifacts_path is set to a valid directory. "
"No model weights will be downloaded at runtime."
)
artifacts_path = docling_serve_settings.artifacts_path
else:
_log.warning(
"artifacts_path is set to an invalid directory. "
"The system will download the model weights at runtime."
)
artifacts_path = None
else:
_log.info(
"artifacts_path is unset. "
"The system will download the model weights at runtime."
)
pipeline_options: Union[PdfPipelineOptions, VlmPipelineOptions]
if request.pipeline == PdfPipeline.STANDARD:
pipeline_options = _parse_standard_pdf_opts(request, artifacts_path)
backend = _parse_backend(request)
pdf_format_option = PdfFormatOption(
pipeline_options=pipeline_options,
backend=backend,
)
elif request.pipeline == PdfPipeline.VLM:
pipeline_options = _parse_vlm_pdf_opts(request, artifacts_path)
pdf_format_option = PdfFormatOption(
pipeline_cls=VlmPipeline, pipeline_options=pipeline_options
)
else:
raise NotImplementedError(
f"The pipeline {request.pipeline} is not implemented."
)
return pdf_format_option
def convert_documents(
sources: Iterable[Union[Path, str, DocumentStream]],
options: ConvertDocumentsOptions,
headers: Optional[dict[str, Any]] = None,
):
pdf_format_option = get_pdf_pipeline_opts(options)
converter = get_converter(pdf_format_option)
results: Iterator[ConversionResult] = converter.convert_all(
sources,
headers=headers,
page_range=options.page_range,
max_file_size=docling_serve_settings.max_file_size,
max_num_pages=docling_serve_settings.max_num_pages,
)
return results