# Deployment Examples
This document provides deployment examples for running the application in different environments.
Choose the deployment option that best fits your setup.
- **[Local GPU NVIDIA](#local-gpu-nvidia)**: For deploying the application locally on a machine with a supported NVIDIA GPU (using Docker Compose).
- **[Local GPU AMD](#local-gpu-amd)**: For deploying the application locally on a machine with a supported AMD GPU (using Docker Compose).
- **[OpenShift](#openshift)**: For deploying the application on an OpenShift cluster, designed for cloud-native environments.
---
## Local GPU NVIDIA
### Docker compose
Manifest example: [compose-nvidia.yaml](./deploy-examples/compose-nvidia.yaml)
This deployment has the following features:
- NVIDIA cuda enabled
Install the app with:
```sh
docker compose -f docs/deploy-examples/compose-nvidia.yaml up -d
```
For using the API:
```sh
# Make a test query
curl -X 'POST' \
"localhost:5001/v1/convert/source/async" \
-H "accept: application/json" \
-H "Content-Type: application/json" \
-d '{
"http_sources": [{"url": "https://arxiv.org/pdf/2501.17887"}]
}'
```
Requirements
- debian/ubuntu/rhel/fedora/opensuse
- docker
- nvidia drivers >=550.54.14
- nvidia-container-toolkit
Docs:
- [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/supported-platforms.html)
- [CUDA Toolkit Release Notes](https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#id6)
Steps
1. Check driver version and which GPU you want to use 0/1/2/n (and update [compose-nvidia.yaml](./deploy-examples/compose-nvidia.yaml) file or use `count: all`)
```sh
nvidia-smi
```
2. Check if the NVIDIA Container Toolkit is installed/updated
```sh
# debian
dpkg -l | grep nvidia-container-toolkit
```
```sh
# rhel
rpm -q nvidia-container-toolkit
```
NVIDIA Container Toolkit install steps can be found here:
3. Check which runtime is being used by Docker
```sh
# docker
docker info | grep -i runtime
```
4. If the default Docker runtime changes back from 'nvidia' to 'default' after restarting the Docker service (optional):
Backup the daemon.json file:
```sh
sudo cp /etc/docker/daemon.json /etc/docker/daemon.json.bak
```
Update the daemon.json file:
```sh
echo '{
"runtimes": {
"nvidia": {
"path": "nvidia-container-runtime"
}
},
"default-runtime": "nvidia"
}' | sudo tee /etc/docker/daemon.json > /dev/null
```
Restart the Docker service:
```sh
sudo systemctl restart docker
```
Confirm 'nvidia' is the default runtime used by Docker by repeating step 3.
5. Run the container:
```sh
docker compose -f docs/deploy-examples/compose-nvidia.yaml up -d
```
## Local GPU AMD
### Docker compose
Manifest example: [compose-amd.yaml](./deploy-examples/compose-amd.yaml)
This deployment has the following features:
- AMD rocm enabled
Install the app with:
```sh
docker compose -f docs/deploy-examples/compose-amd.yaml up -d
```
For using the API:
```sh
# Make a test query
curl -X 'POST' \
"localhost:5001/v1/convert/source/async" \
-H "accept: application/json" \
-H "Content-Type: application/json" \
-d '{
"http_sources": [{"url": "https://arxiv.org/pdf/2501.17887"}]
}'
```
Requirements
- debian/ubuntu/rhel/fedora/opensuse
- docker
- AMDGPU driver >=6.3
- AMD ROCm >=6.3
Docs:
- [AMD ROCm installation](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/quick-start.html)
Steps
1. Check driver version and which GPU you want to use 0/1/2/n (and update [compose-amd.yaml](./deploy-examples/compose-amd.yaml) file)
```sh
rocm-smi --showdriverversion
rocminfo | grep -i "ROCm version"
```
2. Find both video group GID and render group GID from host (and update [compose-amd.yaml](./deploy-examples/compose-amd.yaml) file)
```sh
getent group video
getent group render
```
3. Build the image locally (and update [compose-amd.yaml](./deploy-examples/compose-amd.yaml) file)
```sh
make docling-serve-rocm-image
```
## OpenShift
### Simple deployment
Manifest example: [docling-serve-simple.yaml](./deploy-examples/docling-serve-simple.yaml)
This deployment example has the following features:
- Deployment configuration
- Service configuration
- NVIDIA cuda enabled
Install the app with:
```sh
oc apply -f docs/deploy-examples/docling-serve-simple.yaml
```
For using the API:
```sh
# Port-forward the service
oc port-forward svc/docling-serve 5001:5001
# Make a test query
curl -X 'POST' \
"localhost:5001/v1/convert/source/async" \
-H "accept: application/json" \
-H "Content-Type: application/json" \
-d '{
"http_sources": [{"url": "https://arxiv.org/pdf/2501.17887"}]
}'
```
### Secure deployment with `oauth-proxy`
Manifest example: [docling-serve-oauth.yaml](./deploy-examples/docling-serve-oauth.yaml)
This deployment has the following features:
- TLS encryption between all components (using the cluster-internal CA authority).
- Authentication via a secure `oauth-proxy` sidecar.
- Expose the service using a secure OpenShift `Route`
Install the app with:
```sh
oc apply -f docs/deploy-examples/docling-serve-oauth.yaml
```
For using the API:
```sh
# Retrieve the endpoint
DOCLING_NAME=docling-serve
DOCLING_ROUTE="https://$(oc get routes ${DOCLING_NAME} --template={{.spec.host}})"
# Retrieve the authentication token
OCP_AUTH_TOKEN=$(oc whoami --show-token)
# Make a test query
curl -X 'POST' \
"${DOCLING_ROUTE}/v1/convert/source/async" \
-H "Authorization: Bearer ${OCP_AUTH_TOKEN}" \
-H "accept: application/json" \
-H "Content-Type: application/json" \
-d '{
"http_sources": [{"url": "https://arxiv.org/pdf/2501.17887"}]
}'
```
### ReplicaSets with `sticky sessions`
Manifest example: [docling-serve-replicas-w-sticky-sessions.yaml](./deploy-examples/docling-serve-replicas-w-sticky-sessions.yaml)
This deployment has the following features:
- Deployment configuration with 3 replicas
- Service configuration
- Expose the service using a OpenShift `Route` and enables sticky sessions
Install the app with:
```sh
oc apply -f docs/deploy-examples/docling-serve-replicas-w-sticky-sessions.yaml
```
For using the API:
```sh
# Retrieve the endpoint
DOCLING_NAME=docling-serve
DOCLING_ROUTE="https://$(oc get routes $DOCLING_NAME --template={{.spec.host}})"
# Make a test query, store the cookie and taskid
task_id=$(curl -s -X 'POST' \
"${DOCLING_ROUTE}/v1/convert/source/async" \
-H "accept: application/json" \
-H "Content-Type: application/json" \
-d '{
"http_sources": [{"url": "https://arxiv.org/pdf/2501.17887"}]
}' \
-c cookies.txt | grep -oP '"task_id":"\K[^"]+')
```
```sh
# Grab the taskid and cookie to check the task status
curl -v -X 'GET' \
"${DOCLING_ROUTE}/v1/status/poll/$task_id?wait=0" \
-H "accept: application/json" \
-b "cookies.txt"
```