mirror of
https://github.com/docling-project/docling-serve.git
synced 2025-11-29 08:33:50 +00:00
Compare commits
62 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
ff310f2b13 | ||
|
|
bf132a3c3e | ||
|
|
35319b0da7 | ||
|
|
f3957aeb57 | ||
|
|
1ec44220f5 | ||
|
|
e9b41406c4 | ||
|
|
a2e68d39ae | ||
|
|
7bf2e7b366 | ||
|
|
462ceff9d1 | ||
|
|
97613a1974 | ||
|
|
0961f2c574 | ||
|
|
9672f310b1 | ||
|
|
56e8535a7a | ||
|
|
0f274ab135 | ||
|
|
0427f71ef4 | ||
|
|
b6eece7ef0 | ||
|
|
f5af71e8f6 | ||
|
|
d95ea94087 | ||
|
|
5344505718 | ||
|
|
5edc624fbf | ||
|
|
45f0f3c8f9 | ||
|
|
0595d31d5b | ||
|
|
f6b5f0e063 | ||
|
|
8b22a39141 | ||
|
|
d4eac053f9 | ||
|
|
fa1c5f04f3 | ||
|
|
ba61af2359 | ||
|
|
6b6dd8a0d0 | ||
|
|
513ae0c119 | ||
|
|
bde040661f | ||
|
|
496f7ec26b | ||
|
|
9d6def0ec8 | ||
|
|
a4fed2d965 | ||
|
|
b0360d723b | ||
|
|
4adc0dfa79 | ||
|
|
40c7f1bcd3 | ||
|
|
d64a2a974a | ||
|
|
0d4545a65a | ||
|
|
fe98338239 | ||
|
|
b844ce737e | ||
|
|
27fdd7b85a | ||
|
|
1df62adf01 | ||
|
|
e5449472b2 | ||
|
|
81f0a8ddf8 | ||
|
|
a69cc867f5 | ||
|
|
624f65d41b | ||
|
|
f02dbc0144 | ||
|
|
37fe02277b | ||
|
|
783ada0580 | ||
|
|
71edf41849 | ||
|
|
9a64410552 | ||
|
|
6e9aa8c759 | ||
|
|
885f319d3a | ||
|
|
d584895e11 | ||
|
|
d26e6637d8 | ||
|
|
7692eb2600 | ||
|
|
3bd7828570 | ||
|
|
8b470cba8e | ||
|
|
8048f4589a | ||
|
|
b3058e91e0 | ||
|
|
63da9eedeb | ||
|
|
b15dc2529f |
56
.github/scripts/release.sh
vendored
56
.github/scripts/release.sh
vendored
@@ -3,32 +3,68 @@
|
||||
set -e # trigger failure on error - do not remove!
|
||||
set -x # display command on output
|
||||
|
||||
## debug
|
||||
# TARGET_VERSION="1.2.x"
|
||||
|
||||
if [ -z "${TARGET_VERSION}" ]; then
|
||||
>&2 echo "No TARGET_VERSION specified"
|
||||
exit 1
|
||||
fi
|
||||
CHGLOG_FILE="${CHGLOG_FILE:-CHANGELOG.md}"
|
||||
|
||||
# update package version
|
||||
# Update package version
|
||||
uvx --from=toml-cli toml set --toml-path=pyproject.toml project.version "${TARGET_VERSION}"
|
||||
uv lock --upgrade-package docling-serve
|
||||
|
||||
# collect release notes
|
||||
# Extract all docling packages and versions from uv.lock
|
||||
DOCVERSIONS=$(uvx --with toml python3 - <<'PY'
|
||||
import toml
|
||||
data = toml.load("uv.lock")
|
||||
for pkg in data.get("package", []):
|
||||
if pkg["name"].startswith("docling"):
|
||||
print(f"{pkg['name']} {pkg['version']}")
|
||||
PY
|
||||
)
|
||||
|
||||
# Format docling versions list without trailing newline
|
||||
DOCLING_VERSIONS="### Docling libraries included in this release:"
|
||||
while IFS= read -r line; do
|
||||
DOCLING_VERSIONS+="
|
||||
- $line"
|
||||
done <<< "$DOCVERSIONS"
|
||||
|
||||
# Collect release notes
|
||||
REL_NOTES=$(mktemp)
|
||||
uv run --no-sync semantic-release changelog --unreleased >> "${REL_NOTES}"
|
||||
|
||||
# update changelog
|
||||
# Strip trailing blank lines from release notes and append docling versions
|
||||
{
|
||||
sed -e :a -e '/^\n*$/{$d;N;};/\n$/ba' "${REL_NOTES}"
|
||||
printf "\n"
|
||||
printf "%s" "${DOCLING_VERSIONS}"
|
||||
printf "\n"
|
||||
} > "${REL_NOTES}.tmp" && mv "${REL_NOTES}.tmp" "${REL_NOTES}"
|
||||
|
||||
# Update changelog
|
||||
TMP_CHGLOG=$(mktemp)
|
||||
TARGET_TAG_NAME="v${TARGET_VERSION}"
|
||||
RELEASE_URL="$(gh repo view --json url -q ".url")/releases/tag/${TARGET_TAG_NAME}"
|
||||
printf "## [${TARGET_TAG_NAME}](${RELEASE_URL}) - $(date -Idate)\n\n" >> "${TMP_CHGLOG}"
|
||||
cat "${REL_NOTES}" >> "${TMP_CHGLOG}"
|
||||
if [ -f "${CHGLOG_FILE}" ]; then
|
||||
printf "\n" | cat - "${CHGLOG_FILE}" >> "${TMP_CHGLOG}"
|
||||
fi
|
||||
## debug
|
||||
#RELEASE_URL="myrepo/releases/tag/${TARGET_TAG_NAME}"
|
||||
|
||||
# Strip leading blank lines from existing changelog to avoid multiple blank lines when appending
|
||||
EXISTING_CL=$(sed -e :a -e '/^\n*$/{$d;N;};/\n$/ba' "${CHGLOG_FILE}")
|
||||
|
||||
{
|
||||
printf "## [${TARGET_TAG_NAME}](${RELEASE_URL}) - $(date -Idate)\n\n"
|
||||
cat "${REL_NOTES}"
|
||||
printf "\n"
|
||||
printf "%s\n" "${EXISTING_CL}"
|
||||
} >> "${TMP_CHGLOG}"
|
||||
|
||||
mv "${TMP_CHGLOG}" "${CHGLOG_FILE}"
|
||||
|
||||
# push changes
|
||||
# Push changes
|
||||
git config --global user.name 'github-actions[bot]'
|
||||
git config --global user.email 'github-actions[bot]@users.noreply.github.com'
|
||||
git add pyproject.toml uv.lock "${CHGLOG_FILE}"
|
||||
@@ -36,5 +72,5 @@ COMMIT_MSG="chore: bump version to ${TARGET_VERSION} [skip ci]"
|
||||
git commit -m "${COMMIT_MSG}"
|
||||
git push origin main
|
||||
|
||||
# create GitHub release (incl. Git tag)
|
||||
# Create GitHub release (incl. Git tag)
|
||||
gh release create "${TARGET_TAG_NAME}" -F "${REL_NOTES}"
|
||||
|
||||
@@ -4,7 +4,10 @@ asgi
|
||||
async
|
||||
(?i)urls
|
||||
uvicorn
|
||||
Config
|
||||
[Ww]ebserver
|
||||
RQ
|
||||
(?i)url
|
||||
keyfile
|
||||
[Ww]ebsocket(s?)
|
||||
[Kk]ubernetes
|
||||
@@ -22,6 +25,7 @@ Kubeflow
|
||||
(?i)ROCm
|
||||
(?i)env
|
||||
Gradio
|
||||
Podman
|
||||
bool
|
||||
Ollama
|
||||
inbody
|
||||
|
||||
2
.github/workflows/actionlint.yml
vendored
2
.github/workflows/actionlint.yml
vendored
@@ -13,7 +13,7 @@ jobs:
|
||||
actionlint:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/checkout@v5
|
||||
- name: Download actionlint
|
||||
id: get_actionlint
|
||||
run: bash <(curl https://raw.githubusercontent.com/rhysd/actionlint/main/scripts/download-actionlint.bash)
|
||||
|
||||
4
.github/workflows/cd.yml
vendored
4
.github/workflows/cd.yml
vendored
@@ -11,7 +11,7 @@ jobs:
|
||||
outputs:
|
||||
TARGET_TAG_V: ${{ steps.version_check.outputs.TRGT_VERSION }}
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/checkout@v5
|
||||
with:
|
||||
fetch-depth: 0 # for fetching tags, required for semantic-release
|
||||
- name: Install uv and set the python version
|
||||
@@ -40,7 +40,7 @@ jobs:
|
||||
with:
|
||||
app-id: ${{ vars.CI_APP_ID }}
|
||||
private-key: ${{ secrets.CI_PRIVATE_KEY }}
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/checkout@v5
|
||||
with:
|
||||
token: ${{ steps.app-token.outputs.token }}
|
||||
fetch-depth: 0 # for fetching tags, required for semantic-release
|
||||
|
||||
42
.github/workflows/discord-release.yml
vendored
Normal file
42
.github/workflows/discord-release.yml
vendored
Normal file
@@ -0,0 +1,42 @@
|
||||
# .github/workflows/discord-release.yml
|
||||
name: Notify Discord on Release
|
||||
|
||||
on:
|
||||
release:
|
||||
types: [published]
|
||||
|
||||
jobs:
|
||||
discord:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Send release info to Discord
|
||||
env:
|
||||
DISCORD_WEBHOOK: ${{ secrets.RELEASES_DISCORD_WEBHOOK }}
|
||||
run: |
|
||||
REPO_NAME=${{ github.repository }}
|
||||
RELEASE_TAG=${{ github.event.release.tag_name }}
|
||||
RELEASE_NAME="${{ github.event.release.name }}"
|
||||
RELEASE_URL=${{ github.event.release.html_url }}
|
||||
|
||||
# Capture the body safely (handles backticks, $, ", etc.)
|
||||
RELEASE_BODY=$(cat <<'EOF'
|
||||
${{ github.event.release.body }}
|
||||
EOF
|
||||
)
|
||||
|
||||
# Fallback if release name is empty
|
||||
if [ -z "$RELEASE_NAME" ]; then
|
||||
RELEASE_NAME=$RELEASE_TAG
|
||||
fi
|
||||
|
||||
PAYLOAD=$(jq -n \
|
||||
--arg title "🚀 New Release: $RELEASE_NAME" \
|
||||
--arg url "$RELEASE_URL" \
|
||||
--arg desc "$RELEASE_BODY" \
|
||||
--arg author_name "$REPO_NAME" \
|
||||
--arg author_icon "https://github.com/docling-project.png" \
|
||||
'{embeds: [{title: $title, url: $url, description: $desc, color: 5814783, author: {name: $author_name, icon_url: $author_icon}}]}')
|
||||
|
||||
curl -H "Content-Type: application/json" \
|
||||
-d "$PAYLOAD" \
|
||||
"$DISCORD_WEBHOOK"
|
||||
2
.github/workflows/job-build.yml
vendored
2
.github/workflows/job-build.yml
vendored
@@ -10,7 +10,7 @@ jobs:
|
||||
matrix:
|
||||
python-version: ['3.12']
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/checkout@v5
|
||||
- name: Install uv and set the python version
|
||||
uses: astral-sh/setup-uv@v6
|
||||
with:
|
||||
|
||||
18
.github/workflows/job-checks.yml
vendored
18
.github/workflows/job-checks.yml
vendored
@@ -10,7 +10,7 @@ jobs:
|
||||
matrix:
|
||||
python-version: ['3.12']
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/checkout@v5
|
||||
- name: Install uv and set the python version
|
||||
uses: astral-sh/setup-uv@v6
|
||||
with:
|
||||
@@ -58,11 +58,11 @@ jobs:
|
||||
- name: Create the server
|
||||
run: .venv/bin/python -c 'from docling_serve.app import create_app; create_app()'
|
||||
|
||||
markdown-lint:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: markdownlint-cli2-action
|
||||
uses: DavidAnson/markdownlint-cli2-action@v16
|
||||
with:
|
||||
globs: "**/*.md"
|
||||
# markdown-lint:
|
||||
# runs-on: ubuntu-latest
|
||||
# steps:
|
||||
# - uses: actions/checkout@v5
|
||||
# - name: markdownlint-cli2-action
|
||||
# uses: DavidAnson/markdownlint-cli2-action@v16
|
||||
# with:
|
||||
# globs: "**/*.md"
|
||||
|
||||
113
.github/workflows/job-image.yml
vendored
113
.github/workflows/job-image.yml
vendored
@@ -53,7 +53,7 @@ jobs:
|
||||
df -h
|
||||
|
||||
- name: Check out the repo
|
||||
uses: actions/checkout@v4
|
||||
uses: actions/checkout@v5
|
||||
|
||||
- name: Log in to the GHCR container image registry
|
||||
if: ${{ inputs.publish }}
|
||||
@@ -88,19 +88,115 @@ jobs:
|
||||
with:
|
||||
images: ${{ env.GHCR_REGISTRY }}/${{ inputs.ghcr_image_name }}
|
||||
|
||||
# # Local test
|
||||
# - name: Set metadata outputs for local testing ## comment out Free up space, Log in to cr, Cache Docker, Extract metadata, and quay blocks and run act
|
||||
# id: ghcr_meta
|
||||
# run: |
|
||||
# echo "tags=ghcr.io/docling-project/docling-serve:pr-123" >> $GITHUB_OUTPUT
|
||||
# echo "labels=org.opencontainers.image.source=https://github.com/docling-project/docling-serve" >> $GITHUB_OUTPUT
|
||||
|
||||
- name: Build and push image to ghcr.io
|
||||
id: ghcr_push
|
||||
uses: docker/build-push-action@v5
|
||||
uses: docker/build-push-action@v6
|
||||
with:
|
||||
context: .
|
||||
push: ${{ inputs.publish }}
|
||||
push: ${{ inputs.publish }} # set 'false' for local test
|
||||
tags: ${{ steps.ghcr_meta.outputs.tags }}
|
||||
labels: ${{ steps.ghcr_meta.outputs.labels }}
|
||||
platforms: ${{ inputs.platforms}}
|
||||
platforms: ${{ inputs.platforms }}
|
||||
cache-from: type=gha
|
||||
cache-to: type=gha,mode=max
|
||||
file: Containerfile
|
||||
build-args: ${{ inputs.build_args }}
|
||||
pull: true
|
||||
##
|
||||
## This stage runs after the build, so it leverages all build cache
|
||||
##
|
||||
- name: Export built image for testing
|
||||
id: ghcr_export_built_image
|
||||
uses: docker/build-push-action@v6
|
||||
with:
|
||||
context: .
|
||||
push: false
|
||||
load: true
|
||||
tags: ${{ env.GHCR_REGISTRY }}/${{ inputs.ghcr_image_name }}:${{ github.sha }}-test
|
||||
labels: |
|
||||
org.opencontainers.image.title=docling-serve
|
||||
org.opencontainers.image.test=true
|
||||
platforms: linux/amd64 # when 'load' is true, we can't use a list ${{ inputs.platforms }}
|
||||
cache-from: type=gha
|
||||
cache-to: type=gha,mode=max
|
||||
file: Containerfile
|
||||
build-args: ${{ inputs.build_args }}
|
||||
|
||||
- name: Test image
|
||||
if: steps.ghcr_export_built_image.outcome == 'success'
|
||||
run: |
|
||||
set -e
|
||||
|
||||
IMAGE_TAG="${{ env.GHCR_REGISTRY }}/${{ inputs.ghcr_image_name }}:${{ github.sha }}-test"
|
||||
echo "Testing local image: $IMAGE_TAG"
|
||||
|
||||
# Remove existing container if any
|
||||
docker rm -f docling-serve-test-container 2>/dev/null || true
|
||||
|
||||
echo "Starting container..."
|
||||
docker run -d -p 5001:5001 --name docling-serve-test-container "$IMAGE_TAG"
|
||||
|
||||
echo "Waiting 15s for container to boot..."
|
||||
sleep 15
|
||||
|
||||
# Health check
|
||||
echo "Checking service health..."
|
||||
for i in {1..20}; do
|
||||
HEALTH_RESPONSE=$(curl -s http://localhost:5001/health || true)
|
||||
echo "Health check response [$i]: $HEALTH_RESPONSE"
|
||||
|
||||
if echo "$HEALTH_RESPONSE" | grep -q '"status":"ok"'; then
|
||||
echo "Service is healthy!"
|
||||
|
||||
# Install pytest and dependencies
|
||||
echo "Installing pytest and dependencies..."
|
||||
pip install uv
|
||||
uv venv --allow-existing
|
||||
source .venv/bin/activate
|
||||
uv sync --all-extras --no-extra flash-attn
|
||||
|
||||
# Run pytest tests
|
||||
echo "Running tests..."
|
||||
# Test import
|
||||
python -c 'from docling_serve.app import create_app; create_app()'
|
||||
|
||||
# Run pytest and check result directly
|
||||
if ! pytest -sv -k "test_convert_url" tests/test_1-url-async.py \
|
||||
--disable-warnings; then
|
||||
echo "Tests failed!"
|
||||
docker logs docling-serve-test-container
|
||||
docker rm -f docling-serve-test-container
|
||||
exit 1
|
||||
fi
|
||||
|
||||
echo "Tests passed successfully!"
|
||||
break
|
||||
else
|
||||
echo "Waiting for service... [$i/20]"
|
||||
sleep 3
|
||||
fi
|
||||
done
|
||||
|
||||
# Final health check if service didn't pass earlier
|
||||
if ! echo "$HEALTH_RESPONSE" | grep -q '"status":"ok"'; then
|
||||
echo "Service did not become healthy in time."
|
||||
docker logs docling-serve-test-container
|
||||
docker rm -f docling-serve-test-container
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Cleanup
|
||||
echo "Cleaning up test container..."
|
||||
docker rm -f docling-serve-test-container
|
||||
echo "Cleaning up test image..."
|
||||
docker rmi "$IMAGE_TAG"
|
||||
|
||||
- name: Generate artifact attestation
|
||||
if: ${{ inputs.publish }}
|
||||
@@ -120,7 +216,7 @@ jobs:
|
||||
- name: Build and push image to quay.io
|
||||
if: ${{ inputs.publish }}
|
||||
# id: push-serve-cpu-quay
|
||||
uses: docker/build-push-action@v5
|
||||
uses: docker/build-push-action@v6
|
||||
with:
|
||||
context: .
|
||||
push: ${{ inputs.publish }}
|
||||
@@ -131,11 +227,8 @@ jobs:
|
||||
cache-to: type=gha,mode=max
|
||||
file: Containerfile
|
||||
build-args: ${{ inputs.build_args }}
|
||||
|
||||
# - name: Inspect the image details
|
||||
# run: |
|
||||
# echo "${{ steps.ghcr_push.outputs.metadata }}"
|
||||
pull: true
|
||||
|
||||
- name: Remove Local Docker Images
|
||||
- name: Remove local Docker images
|
||||
run: |
|
||||
docker image prune -af
|
||||
|
||||
5
.gitignore
vendored
5
.gitignore
vendored
@@ -445,4 +445,7 @@ pip-selfcheck.json
|
||||
.action-lint
|
||||
.markdown-lint
|
||||
|
||||
cookies.txt
|
||||
cookies.txt
|
||||
|
||||
# Examples
|
||||
/examples/splitted_pdf/*
|
||||
@@ -7,12 +7,12 @@ repos:
|
||||
- id: ruff-format
|
||||
name: "Ruff formatter"
|
||||
args: [--config=pyproject.toml]
|
||||
files: '^(docling_serve|tests).*\.(py|ipynb)$'
|
||||
files: '^(docling_serve|tests|examples|scripts).*\.(py|ipynb)$'
|
||||
# Run the Ruff linter.
|
||||
- id: ruff
|
||||
name: "Ruff linter"
|
||||
args: [--exit-non-zero-on-fix, --fix, --config=pyproject.toml]
|
||||
files: '^(docling_serve|tests).*\.(py|ipynb)$'
|
||||
files: '^(docling_serve|tests|examples|scripts).*\.(py|ipynb)$'
|
||||
- repo: local
|
||||
hooks:
|
||||
- id: system
|
||||
@@ -21,6 +21,15 @@ repos:
|
||||
pass_filenames: false
|
||||
language: system
|
||||
files: '\.py$'
|
||||
- repo: local
|
||||
hooks:
|
||||
- id: update-docs-common-parameters
|
||||
name: Update Documentation File
|
||||
entry: uv run scripts/update_doc_usage.py
|
||||
language: python
|
||||
pass_filenames: false
|
||||
# Fail the commit if documentation generation fails
|
||||
require_serial: true
|
||||
- repo: https://github.com/errata-ai/vale
|
||||
rev: v3.12.0 # Use latest stable version
|
||||
hooks:
|
||||
@@ -34,6 +43,6 @@ repos:
|
||||
files: \.md$
|
||||
- repo: https://github.com/astral-sh/uv-pre-commit
|
||||
# uv version, https://github.com/astral-sh/uv-pre-commit/releases
|
||||
rev: 0.8.3
|
||||
rev: 0.8.19
|
||||
hooks:
|
||||
- id: uv-lock
|
||||
|
||||
220
CHANGELOG.md
220
CHANGELOG.md
@@ -1,3 +1,223 @@
|
||||
## [v1.8.0](https://github.com/docling-project/docling-serve/releases/tag/v1.8.0) - 2025-10-31
|
||||
|
||||
### Feature
|
||||
|
||||
* Docling with new standard pipeline with threading ([#428](https://github.com/docling-project/docling-serve/issues/428)) ([`bf132a3`](https://github.com/docling-project/docling-serve/commit/bf132a3c3e615ddbe624841ea5b3a98593c00654))
|
||||
|
||||
### Documentation
|
||||
|
||||
* Expand automatic docs to nested objects. More complete usage docs. ([#426](https://github.com/docling-project/docling-serve/issues/426)) ([`35319b0`](https://github.com/docling-project/docling-serve/commit/35319b0da793a2a1a434fd2b60b7632e10ecced3))
|
||||
* Add docs for docling parameters like performance and debug ([#424](https://github.com/docling-project/docling-serve/issues/424)) ([`f3957ae`](https://github.com/docling-project/docling-serve/commit/f3957aeb577097121fe9d0d21f75a50643f03369))
|
||||
|
||||
### Docling libraries included in this release:
|
||||
- docling 2.60.0
|
||||
- docling-core 2.50.0
|
||||
- docling-ibm-models 3.10.2
|
||||
- docling-jobkit 1.8.0
|
||||
- docling-mcp 1.3.2
|
||||
- docling-parse 4.7.0
|
||||
- docling-serve 1.8.0
|
||||
|
||||
## [v1.7.2](https://github.com/docling-project/docling-serve/releases/tag/v1.7.2) - 2025-10-30
|
||||
|
||||
### Fix
|
||||
|
||||
* Update locked dependencies. Docling fixes, Expose temperature parameter for vlm models ([#423](https://github.com/docling-project/docling-serve/issues/423)) ([`e9b4140`](https://github.com/docling-project/docling-serve/commit/e9b41406c4116ff79a212877ff6484a1151e144d))
|
||||
* Temporary constrain fastapi version ([#418](https://github.com/docling-project/docling-serve/issues/418)) ([`7bf2e7b`](https://github.com/docling-project/docling-serve/commit/7bf2e7b366470e0cf1c4900df7c84becd6a96991))
|
||||
|
||||
### Docling libraries included in this release:
|
||||
- docling 2.59.0
|
||||
- docling-core 2.50.0
|
||||
- docling-ibm-models 3.10.2
|
||||
- docling-jobkit 1.7.1
|
||||
- docling-mcp 1.3.2
|
||||
- docling-parse 4.7.0
|
||||
- docling-serve 1.7.2
|
||||
|
||||
## [v1.7.1](https://github.com/docling-project/docling-serve/releases/tag/v1.7.1) - 2025-10-22
|
||||
|
||||
### Fix
|
||||
|
||||
* Upgrade dependencies ([#417](https://github.com/docling-project/docling-serve/issues/417)) ([`97613a1`](https://github.com/docling-project/docling-serve/commit/97613a19748e8c152db4a0f62b5a57fca807a33a))
|
||||
* Makes task status shared across multiple instances in RQ mode, resolves #378 ([#415](https://github.com/docling-project/docling-serve/issues/415)) ([`0961f2c`](https://github.com/docling-project/docling-serve/commit/0961f2c57425859c76130da3ea8a871d65df4b26))
|
||||
* `DOCLING_SERVE_SYNC_POLL_INTERVAL` controls the synchronous polling time ([#413](https://github.com/docling-project/docling-serve/issues/413)) ([`0f274ab`](https://github.com/docling-project/docling-serve/commit/0f274ab135a9bb41accd05db3c12a9dcce220ad9))
|
||||
|
||||
### Documentation
|
||||
|
||||
* Generate usage.md automatically ([#340](https://github.com/docling-project/docling-serve/issues/340)) ([`9672f31`](https://github.com/docling-project/docling-serve/commit/9672f310b1bb7030af8a276f14691e46f7da0e9e))
|
||||
|
||||
### Docling libraries included in this release:
|
||||
- docling 2.58.0
|
||||
- docling-core 2.49.0
|
||||
- docling-ibm-models 3.10.1
|
||||
- docling-jobkit 1.7.0
|
||||
- docling-mcp 1.3.2
|
||||
- docling-parse 4.7.0
|
||||
- docling-serve 1.7.1
|
||||
|
||||
## [v1.7.0](https://github.com/docling-project/docling-serve/releases/tag/v1.7.0) - 2025-10-17
|
||||
|
||||
### Feature
|
||||
|
||||
* **UI:** Add auto and orcmac options in demo UI ([#408](https://github.com/docling-project/docling-serve/issues/408)) ([`f5af71e`](https://github.com/docling-project/docling-serve/commit/f5af71e8f6de00d7dd702471a3eea2e94d882410))
|
||||
* Docling with auto-ocr ([#403](https://github.com/docling-project/docling-serve/issues/403)) ([`d95ea94`](https://github.com/docling-project/docling-serve/commit/d95ea940870af0d8df689061baa50f6026efce28))
|
||||
|
||||
### Fix
|
||||
|
||||
* Run docling ui behind a reverse proxy using a context path ([#396](https://github.com/docling-project/docling-serve/issues/396)) ([`5344505`](https://github.com/docling-project/docling-serve/commit/53445057184aa731ee7456b33b70bc0ecf82f2a6))
|
||||
|
||||
### Docling libraries included in this release:
|
||||
- docling 2.57.0
|
||||
- docling-core 2.48.4
|
||||
- docling-ibm-models 3.9.1
|
||||
- docling-jobkit 1.6.0
|
||||
- docling-mcp 1.3.2
|
||||
- docling-parse 4.5.0
|
||||
- docling-serve 1.7.0
|
||||
|
||||
## [v1.6.0](https://github.com/docling-project/docling-serve/releases/tag/v1.6.0) - 2025-10-03
|
||||
|
||||
### Feature
|
||||
|
||||
* Pin new version of jobkit with granite-docling and connectors ([#391](https://github.com/docling-project/docling-serve/issues/391)) ([`0595d31`](https://github.com/docling-project/docling-serve/commit/0595d31d5b357553426215ca6771796a47e41324))
|
||||
|
||||
### Fix
|
||||
|
||||
* Update locked dependencies ([#392](https://github.com/docling-project/docling-serve/issues/392)) ([`45f0f3c`](https://github.com/docling-project/docling-serve/commit/45f0f3c8f95d418ac30e3744d27d02a63f9e4490))
|
||||
* **UI:** Allow both lowercase and uppercase extensions ([#386](https://github.com/docling-project/docling-serve/issues/386)) ([`8b22a39`](https://github.com/docling-project/docling-serve/commit/8b22a391418d22c1a4d706f880341f28702057b5))
|
||||
* Correctly raise HTTPException for Gateway Timeout ([#382](https://github.com/docling-project/docling-serve/issues/382)) ([`d4eac05`](https://github.com/docling-project/docling-serve/commit/d4eac053f9ce0a60f9070127335bdd56e193d7fa))
|
||||
* Pinning of higher version of dependencies to fix potential security issues ([#363](https://github.com/docling-project/docling-serve/issues/363)) ([`ba61af2`](https://github.com/docling-project/docling-serve/commit/ba61af23591eff200481aa2e532cf7d0701f0ea4))
|
||||
|
||||
### Documentation
|
||||
|
||||
* Fix docs for websocket breaking condition ([#390](https://github.com/docling-project/docling-serve/issues/390)) ([`f6b5f0e`](https://github.com/docling-project/docling-serve/commit/f6b5f0e06354d2db7d03d274b114499e3407dccf))
|
||||
|
||||
### Docling libraries included in this release:
|
||||
- docling 2.55.1
|
||||
- docling-core 2.48.4
|
||||
- docling-ibm-models 3.9.1
|
||||
- docling-jobkit 1.6.0
|
||||
- docling-mcp 1.3.2
|
||||
- docling-parse 4.5.0
|
||||
- docling-serve 1.6.0
|
||||
|
||||
## [v1.5.1](https://github.com/docling-project/docling-serve/releases/tag/v1.5.1) - 2025-09-17
|
||||
|
||||
### Fix
|
||||
|
||||
* Remove old dependencies, fixes in docling-parse and more minor dependencies upgrade ([#362](https://github.com/docling-project/docling-serve/issues/362)) ([`513ae0c`](https://github.com/docling-project/docling-serve/commit/513ae0c119b66d3b17cf9a5d371a0f7971f43be7))
|
||||
* Updates rapidocr deps ([#361](https://github.com/docling-project/docling-serve/issues/361)) ([`bde0406`](https://github.com/docling-project/docling-serve/commit/bde040661fb65c67699326cd6281c0e6232e26f2))
|
||||
|
||||
### Docling libraries included in this release:
|
||||
- docling 2.52.0
|
||||
- docling-core 2.48.1
|
||||
- docling-ibm-models 3.9.1
|
||||
- docling-jobkit 1.5.0
|
||||
- docling-mcp 1.2.0
|
||||
- docling-parse 4.5.0
|
||||
- docling-serve 1.5.1
|
||||
|
||||
## [v1.5.0](https://github.com/docling-project/docling-serve/releases/tag/v1.5.0) - 2025-09-09
|
||||
|
||||
### Feature
|
||||
|
||||
* Add chunking endpoints ([#353](https://github.com/docling-project/docling-serve/issues/353)) ([`9d6def0`](https://github.com/docling-project/docling-serve/commit/9d6def0ec8b1804ad31aa71defa17658d73d29a1))
|
||||
|
||||
### Docling libraries included in this release:
|
||||
- docling 2.46.0
|
||||
- docling 2.51.0
|
||||
- docling-core 2.47.0
|
||||
- docling-ibm-models 3.9.1
|
||||
- docling-jobkit 1.5.0
|
||||
- docling-mcp 1.2.0
|
||||
- docling-parse 4.4.0
|
||||
- docling-serve 1.5.0
|
||||
|
||||
## [v1.4.1](https://github.com/docling-project/docling-serve/releases/tag/v1.4.1) - 2025-09-08
|
||||
|
||||
### Fix
|
||||
|
||||
* Trigger fix after ci fixes ([#355](https://github.com/docling-project/docling-serve/issues/355)) ([`b0360d7`](https://github.com/docling-project/docling-serve/commit/b0360d723bff202dcf44a25a3173ec1995945fc2))
|
||||
|
||||
### Docling libraries included in this release:
|
||||
- docling 2.46.0
|
||||
- docling 2.51.0
|
||||
- docling-core 2.47.0
|
||||
- docling-ibm-models 3.9.1
|
||||
- docling-jobkit 1.4.1
|
||||
- docling-mcp 1.2.0
|
||||
- docling-parse 4.4.0
|
||||
- docling-serve 1.4.1
|
||||
|
||||
## [v1.4.0](https://github.com/docling-project/docling-serve/releases/tag/v1.4.0) - 2025-09-05
|
||||
|
||||
### Feature
|
||||
|
||||
* **docling:** Perfomance improvements in parsing, new layout model, fixes in html processing ([#352](https://github.com/docling-project/docling-serve/issues/352)) ([`d64a2a9`](https://github.com/docling-project/docling-serve/commit/d64a2a974a276c7ae3b105c448fd79f77a653d20))
|
||||
|
||||
### Fix
|
||||
|
||||
* Upgrade to latest docling version with fixes ([#335](https://github.com/docling-project/docling-serve/issues/335)) ([`e544947`](https://github.com/docling-project/docling-serve/commit/e5449472b2a3e71796f41c8a58c251d8229305c1))
|
||||
|
||||
### Documentation
|
||||
|
||||
* Add split processing example ([#303](https://github.com/docling-project/docling-serve/issues/303)) ([`0d4545a`](https://github.com/docling-project/docling-serve/commit/0d4545a65a5a941fc1fdefda57e39cfb1ea106ab))
|
||||
* Document DOCLING_NUM_THREADS environment variable ([#341](https://github.com/docling-project/docling-serve/issues/341)) ([`27fdd7b`](https://github.com/docling-project/docling-serve/commit/27fdd7b85ab18b3eece428366f46dc5cf0995e38))
|
||||
* Fix parameters typo ([#333](https://github.com/docling-project/docling-serve/issues/333)) ([`81f0a8d`](https://github.com/docling-project/docling-serve/commit/81f0a8ddf80a532042d550ae4568f891458b45e7))
|
||||
* Describe how to use Docling MCP ([#332](https://github.com/docling-project/docling-serve/issues/332)) ([`a69cc86`](https://github.com/docling-project/docling-serve/commit/a69cc867f5a3fb76648803ca866d65cc3a75c6b8))
|
||||
|
||||
### Docling libraries included in this release:
|
||||
- docling 2.46.0
|
||||
- docling 2.51.0
|
||||
- docling-core 2.47.0
|
||||
- docling-ibm-models 3.9.1
|
||||
- docling-jobkit 1.4.1
|
||||
- docling-mcp 1.2.0
|
||||
- docling-parse 4.4.0
|
||||
- docling-serve 1.4.0
|
||||
|
||||
## [v1.3.1](https://github.com/docling-project/docling-serve/releases/tag/v1.3.1) - 2025-08-21
|
||||
|
||||
### Fix
|
||||
|
||||
* Configuration and performance fixes via upgrade of packages ([#328](https://github.com/docling-project/docling-serve/issues/328)) ([`f02dbc0`](https://github.com/docling-project/docling-serve/commit/f02dbc01449fe1caf3fb4a73c0a5f4adf8265faf))
|
||||
|
||||
### Documentation
|
||||
|
||||
* Fix parameter in api key docs ([#323](https://github.com/docling-project/docling-serve/issues/323)) ([`37fe022`](https://github.com/docling-project/docling-serve/commit/37fe02277b3e2358eced28e15b4360e7c82d3b43))
|
||||
|
||||
## [v1.3.0](https://github.com/docling-project/docling-serve/releases/tag/v1.3.0) - 2025-08-14
|
||||
|
||||
### Feature
|
||||
|
||||
* Add configuration option for apikey security ([#322](https://github.com/docling-project/docling-serve/issues/322)) ([`9a64410`](https://github.com/docling-project/docling-serve/commit/9a644105523d312431993ded8dd88e064550a5db))
|
||||
* Add RQ engine ([#315](https://github.com/docling-project/docling-serve/issues/315)) ([`885f319`](https://github.com/docling-project/docling-serve/commit/885f319d3a3488a4090869560447437a4104f14e))
|
||||
|
||||
### Documentation
|
||||
|
||||
* Example of docling-serve deployment in the RQ engine mode ([#321](https://github.com/docling-project/docling-serve/issues/321)) ([`71edf41`](https://github.com/docling-project/docling-serve/commit/71edf4184960d8664ef9da20617e2d0f91793d36))
|
||||
* Handling models in docling-serve ([#319](https://github.com/docling-project/docling-serve/issues/319)) ([`6e9aa8c`](https://github.com/docling-project/docling-serve/commit/6e9aa8c759220458281c7fe4c87443ac41023eee))
|
||||
* Add Gradio cache usage ([#312](https://github.com/docling-project/docling-serve/issues/312)) ([`d584895`](https://github.com/docling-project/docling-serve/commit/d584895e1108d71a0f45deadcd3c669eb0a58133))
|
||||
|
||||
## [v1.2.2](https://github.com/docling-project/docling-serve/releases/tag/v1.2.2) - 2025-08-13
|
||||
|
||||
### Fix
|
||||
|
||||
* Update of transformers module to 4.55.1 ([#316](https://github.com/docling-project/docling-serve/issues/316)) ([`7692eb2`](https://github.com/docling-project/docling-serve/commit/7692eb26006fd4deaa021180c99e23a1b65de506))
|
||||
|
||||
## [v1.2.1](https://github.com/docling-project/docling-serve/releases/tag/v1.2.1) - 2025-08-13
|
||||
|
||||
### Fix
|
||||
|
||||
* Handling of vlm model options and update deps ([#314](https://github.com/docling-project/docling-serve/issues/314)) ([`8b470cb`](https://github.com/docling-project/docling-serve/commit/8b470cba8ef500c271eb84c8368c8a1a1a5a6d6a))
|
||||
* Add missing response type in sync endpoints ([#309](https://github.com/docling-project/docling-serve/issues/309)) ([`8048f45`](https://github.com/docling-project/docling-serve/commit/8048f4589a91de2b2b391ab33a326efd1b29f25b))
|
||||
|
||||
### Documentation
|
||||
|
||||
* Update readme to use v1 ([#306](https://github.com/docling-project/docling-serve/issues/306)) ([`b3058e9`](https://github.com/docling-project/docling-serve/commit/b3058e91e0c56e27110eb50f22cbdd89640bf398))
|
||||
* Update deployment examples to use v1 API ([#308](https://github.com/docling-project/docling-serve/issues/308)) ([`63da9ee`](https://github.com/docling-project/docling-serve/commit/63da9eedebae3ad31d04e65635e573194e413793))
|
||||
* Fix typo in v1 migration instructions ([#307](https://github.com/docling-project/docling-serve/issues/307)) ([`b15dc25`](https://github.com/docling-project/docling-serve/commit/b15dc2529f78d68a475e5221c37408c3f77d8588))
|
||||
|
||||
## [v1.2.0](https://github.com/docling-project/docling-serve/releases/tag/v1.2.0) - 2025-08-07
|
||||
|
||||
### Feature
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
ARG BASE_IMAGE=quay.io/sclorg/python-312-c9s:c9s
|
||||
|
||||
ARG UV_VERSION=0.8.3
|
||||
ARG UV_IMAGE=ghcr.io/astral-sh/uv:0.8.19
|
||||
|
||||
ARG UV_SYNC_EXTRA_ARGS=""
|
||||
|
||||
@@ -25,7 +25,7 @@ RUN /usr/bin/fix-permissions /opt/app-root/src/.cache
|
||||
|
||||
ENV TESSDATA_PREFIX=/usr/share/tesseract/tessdata/
|
||||
|
||||
FROM ghcr.io/astral-sh/uv:${UV_VERSION} AS uv_stage
|
||||
FROM ${UV_IMAGE} AS uv_stage
|
||||
|
||||
###################################################################################################
|
||||
# Docling layer #
|
||||
@@ -58,7 +58,7 @@ RUN --mount=from=uv_stage,source=/uv,target=/bin/uv \
|
||||
uv sync ${UV_SYNC_ARGS} ${UV_SYNC_EXTRA_ARGS} --no-extra flash-attn && \
|
||||
FLASH_ATTENTION_SKIP_CUDA_BUILD=TRUE uv sync ${UV_SYNC_ARGS} ${UV_SYNC_EXTRA_ARGS} --no-build-isolation-package=flash-attn
|
||||
|
||||
ARG MODELS_LIST="layout tableformer picture_classifier easyocr"
|
||||
ARG MODELS_LIST="layout tableformer picture_classifier rapidocr easyocr"
|
||||
|
||||
RUN echo "Downloading models..." && \
|
||||
HF_HUB_DOWNLOAD_TIMEOUT="90" \
|
||||
|
||||
61
Makefile
61
Makefile
@@ -16,6 +16,9 @@ else
|
||||
PIPE_DEV_NULL=
|
||||
endif
|
||||
|
||||
# Container runtime - can be overridden: make CONTAINER_RUNTIME=podman cmd
|
||||
CONTAINER_RUNTIME ?= docker
|
||||
|
||||
TAG=$(shell git rev-parse HEAD)
|
||||
BRANCH_TAG=$(shell git rev-parse --abbrev-ref HEAD)
|
||||
|
||||
@@ -28,44 +31,44 @@ md-lint-file:
|
||||
.PHONY: docling-serve-image
|
||||
docling-serve-image: Containerfile ## Build docling-serve container image
|
||||
$(ECHO_PREFIX) printf " %-12s Containerfile\n" "[docling-serve]"
|
||||
$(CMD_PREFIX) docker build --load -f Containerfile -t ghcr.io/docling-project/docling-serve:$(TAG) .
|
||||
$(CMD_PREFIX) docker tag ghcr.io/docling-project/docling-serve:$(TAG) ghcr.io/docling-project/docling-serve:$(BRANCH_TAG)
|
||||
$(CMD_PREFIX) docker tag ghcr.io/docling-project/docling-serve:$(TAG) quay.io/docling-project/docling-serve:$(BRANCH_TAG)
|
||||
$(CMD_PREFIX) $(CONTAINER_RUNTIME) build --load -f Containerfile -t ghcr.io/docling-project/docling-serve:$(TAG) .
|
||||
$(CMD_PREFIX) $(CONTAINER_RUNTIME) tag ghcr.io/docling-project/docling-serve:$(TAG) ghcr.io/docling-project/docling-serve:$(BRANCH_TAG)
|
||||
$(CMD_PREFIX) $(CONTAINER_RUNTIME) tag ghcr.io/docling-project/docling-serve:$(TAG) quay.io/docling-project/docling-serve:$(BRANCH_TAG)
|
||||
|
||||
.PHONY: docling-serve-cpu-image
|
||||
docling-serve-cpu-image: Containerfile ## Build docling-serve "cpu only" container image
|
||||
$(ECHO_PREFIX) printf " %-12s Containerfile\n" "[docling-serve CPU]"
|
||||
$(CMD_PREFIX) docker build --load --build-arg "UV_SYNC_EXTRA_ARGS=--no-group pypi --group cpu --no-extra flash-attn" -f Containerfile -t ghcr.io/docling-project/docling-serve-cpu:$(TAG) .
|
||||
$(CMD_PREFIX) docker tag ghcr.io/docling-project/docling-serve-cpu:$(TAG) ghcr.io/docling-project/docling-serve-cpu:$(BRANCH_TAG)
|
||||
$(CMD_PREFIX) docker tag ghcr.io/docling-project/docling-serve-cpu:$(TAG) quay.io/docling-project/docling-serve-cpu:$(BRANCH_TAG)
|
||||
$(CMD_PREFIX) $(CONTAINER_RUNTIME) build --load --build-arg "UV_SYNC_EXTRA_ARGS=--no-group pypi --group cpu --no-extra flash-attn" -f Containerfile -t ghcr.io/docling-project/docling-serve-cpu:$(TAG) .
|
||||
$(CMD_PREFIX) $(CONTAINER_RUNTIME) tag ghcr.io/docling-project/docling-serve-cpu:$(TAG) ghcr.io/docling-project/docling-serve-cpu:$(BRANCH_TAG)
|
||||
$(CMD_PREFIX) $(CONTAINER_RUNTIME) tag ghcr.io/docling-project/docling-serve-cpu:$(TAG) quay.io/docling-project/docling-serve-cpu:$(BRANCH_TAG)
|
||||
|
||||
.PHONY: docling-serve-cu124-image
|
||||
docling-serve-cu124-image: Containerfile ## Build docling-serve container image with CUDA 12.4 support
|
||||
$(ECHO_PREFIX) printf " %-12s Containerfile\n" "[docling-serve with Cuda 12.4]"
|
||||
$(CMD_PREFIX) docker build --load --build-arg "UV_SYNC_EXTRA_ARGS=--no-group pypi --group cu124" -f Containerfile --platform linux/amd64 -t ghcr.io/docling-project/docling-serve-cu124:$(TAG) .
|
||||
$(CMD_PREFIX) docker tag ghcr.io/docling-project/docling-serve-cu124:$(TAG) ghcr.io/docling-project/docling-serve-cu124:$(BRANCH_TAG)
|
||||
$(CMD_PREFIX) docker tag ghcr.io/docling-project/docling-serve-cu124:$(TAG) quay.io/docling-project/docling-serve-cu124:$(BRANCH_TAG)
|
||||
$(CMD_PREFIX) $(CONTAINER_RUNTIME) build --load --build-arg "UV_SYNC_EXTRA_ARGS=--no-group pypi --group cu124" -f Containerfile --platform linux/amd64 -t ghcr.io/docling-project/docling-serve-cu124:$(TAG) .
|
||||
$(CMD_PREFIX) $(CONTAINER_RUNTIME) tag ghcr.io/docling-project/docling-serve-cu124:$(TAG) ghcr.io/docling-project/docling-serve-cu124:$(BRANCH_TAG)
|
||||
$(CMD_PREFIX) $(CONTAINER_RUNTIME) tag ghcr.io/docling-project/docling-serve-cu124:$(TAG) quay.io/docling-project/docling-serve-cu124:$(BRANCH_TAG)
|
||||
|
||||
.PHONY: docling-serve-cu126-image
|
||||
docling-serve-cu126-image: Containerfile ## Build docling-serve container image with CUDA 12.6 support
|
||||
$(ECHO_PREFIX) printf " %-12s Containerfile\n" "[docling-serve with Cuda 12.6]"
|
||||
$(CMD_PREFIX) docker build --load --build-arg "UV_SYNC_EXTRA_ARGS=--no-group pypi --group cu126" -f Containerfile --platform linux/amd64 -t ghcr.io/docling-project/docling-serve-cu126:$(TAG) .
|
||||
$(CMD_PREFIX) docker tag ghcr.io/docling-project/docling-serve-cu126:$(TAG) ghcr.io/docling-project/docling-serve-cu126:$(BRANCH_TAG)
|
||||
$(CMD_PREFIX) docker tag ghcr.io/docling-project/docling-serve-cu126:$(TAG) quay.io/docling-project/docling-serve-cu126:$(BRANCH_TAG)
|
||||
$(CMD_PREFIX) $(CONTAINER_RUNTIME) build --load --build-arg "UV_SYNC_EXTRA_ARGS=--no-group pypi --group cu126" -f Containerfile --platform linux/amd64 -t ghcr.io/docling-project/docling-serve-cu126:$(TAG) .
|
||||
$(CMD_PREFIX) $(CONTAINER_RUNTIME) tag ghcr.io/docling-project/docling-serve-cu126:$(TAG) ghcr.io/docling-project/docling-serve-cu126:$(BRANCH_TAG)
|
||||
$(CMD_PREFIX) $(CONTAINER_RUNTIME) tag ghcr.io/docling-project/docling-serve-cu126:$(TAG) quay.io/docling-project/docling-serve-cu126:$(BRANCH_TAG)
|
||||
|
||||
.PHONY: docling-serve-cu128-image
|
||||
docling-serve-cu128-image: Containerfile ## Build docling-serve container image with CUDA 12.8 support
|
||||
$(ECHO_PREFIX) printf " %-12s Containerfile\n" "[docling-serve with Cuda 12.8]"
|
||||
$(CMD_PREFIX) docker build --load --build-arg "UV_SYNC_EXTRA_ARGS=--no-group pypi --group cu128" -f Containerfile --platform linux/amd64 -t ghcr.io/docling-project/docling-serve-cu128:$(TAG) .
|
||||
$(CMD_PREFIX) docker tag ghcr.io/docling-project/docling-serve-cu128:$(TAG) ghcr.io/docling-project/docling-serve-cu128:$(BRANCH_TAG)
|
||||
$(CMD_PREFIX) docker tag ghcr.io/docling-project/docling-serve-cu128:$(TAG) quay.io/docling-project/docling-serve-cu128:$(BRANCH_TAG)
|
||||
$(CMD_PREFIX) $(CONTAINER_RUNTIME) build --load --build-arg "UV_SYNC_EXTRA_ARGS=--no-group pypi --group cu128" -f Containerfile --platform linux/amd64 -t ghcr.io/docling-project/docling-serve-cu128:$(TAG) .
|
||||
$(CMD_PREFIX) $(CONTAINER_RUNTIME) tag ghcr.io/docling-project/docling-serve-cu128:$(TAG) ghcr.io/docling-project/docling-serve-cu128:$(BRANCH_TAG)
|
||||
$(CMD_PREFIX) $(CONTAINER_RUNTIME) tag ghcr.io/docling-project/docling-serve-cu128:$(TAG) quay.io/docling-project/docling-serve-cu128:$(BRANCH_TAG)
|
||||
|
||||
.PHONY: docling-serve-rocm-image
|
||||
docling-serve-rocm-image: Containerfile ## Build docling-serve container image with ROCm support
|
||||
$(ECHO_PREFIX) printf " %-12s Containerfile\n" "[docling-serve with ROCm 6.3]"
|
||||
$(CMD_PREFIX) docker build --load --build-arg "UV_SYNC_EXTRA_ARGS=--no-group pypi --group rocm --no-extra flash-attn" -f Containerfile --platform linux/amd64 -t ghcr.io/docling-project/docling-serve-rocm:$(TAG) .
|
||||
$(CMD_PREFIX) docker tag ghcr.io/docling-project/docling-serve-rocm:$(TAG) ghcr.io/docling-project/docling-serve-rocm:$(BRANCH_TAG)
|
||||
$(CMD_PREFIX) docker tag ghcr.io/docling-project/docling-serve-rocm:$(TAG) quay.io/docling-project/docling-serve-rocm:$(BRANCH_TAG)
|
||||
$(CMD_PREFIX) $(CONTAINER_RUNTIME) build --load --build-arg "UV_SYNC_EXTRA_ARGS=--no-group pypi --group rocm --no-extra flash-attn" -f Containerfile --platform linux/amd64 -t ghcr.io/docling-project/docling-serve-rocm:$(TAG) .
|
||||
$(CMD_PREFIX) $(CONTAINER_RUNTIME) tag ghcr.io/docling-project/docling-serve-rocm:$(TAG) ghcr.io/docling-project/docling-serve-rocm:$(BRANCH_TAG)
|
||||
$(CMD_PREFIX) $(CONTAINER_RUNTIME) tag ghcr.io/docling-project/docling-serve-rocm:$(TAG) quay.io/docling-project/docling-serve-rocm:$(BRANCH_TAG)
|
||||
|
||||
.PHONY: action-lint
|
||||
action-lint: .action-lint ## Lint GitHub Action workflows
|
||||
@@ -88,7 +91,7 @@ action-lint: .action-lint ## Lint GitHub Action workflows
|
||||
md-lint: .md-lint ## Lint markdown files
|
||||
.md-lint: $(wildcard */**/*.md) | md-lint-file
|
||||
$(ECHO_PREFIX) printf " %-12s ./...\n" "[MD LINT]"
|
||||
$(CMD_PREFIX) docker run --rm -v $$(pwd):/workdir davidanson/markdownlint-cli2:v0.16.0 "**/*.md" "#.venv"
|
||||
$(CMD_PREFIX) $(CONTAINER_RUNTIME) run --rm -v $$(pwd):/workdir davidanson/markdownlint-cli2:v0.16.0 "**/*.md" "#.venv"
|
||||
$(CMD_PREFIX) touch $@
|
||||
|
||||
.PHONY: py-Lint
|
||||
@@ -104,34 +107,34 @@ py-lint: ## Lint Python files
|
||||
.PHONY: run-docling-cpu
|
||||
run-docling-cpu: ## Run the docling-serve container with CPU support and assign a container name
|
||||
$(ECHO_PREFIX) printf " %-12s Removing existing container if it exists...\n" "[CLEANUP]"
|
||||
$(CMD_PREFIX) docker rm -f docling-serve-cpu 2>/dev/null || true
|
||||
$(CMD_PREFIX) $(CONTAINER_RUNTIME) rm -f docling-serve-cpu 2>/dev/null || true
|
||||
$(ECHO_PREFIX) printf " %-12s Running docling-serve container with CPU support on port 5001...\n" "[RUN CPU]"
|
||||
$(CMD_PREFIX) docker run -it --name docling-serve-cpu -p 5001:5001 ghcr.io/docling-project/docling-serve-cpu:main
|
||||
$(CMD_PREFIX) $(CONTAINER_RUNTIME) run -it --name docling-serve-cpu -p 5001:5001 ghcr.io/docling-project/docling-serve-cpu:main
|
||||
|
||||
.PHONY: run-docling-cu124
|
||||
run-docling-cu124: ## Run the docling-serve container with GPU support and assign a container name
|
||||
$(ECHO_PREFIX) printf " %-12s Removing existing container if it exists...\n" "[CLEANUP]"
|
||||
$(CMD_PREFIX) docker rm -f docling-serve-cu124 2>/dev/null || true
|
||||
$(CMD_PREFIX) $(CONTAINER_RUNTIME) rm -f docling-serve-cu124 2>/dev/null || true
|
||||
$(ECHO_PREFIX) printf " %-12s Running docling-serve container with GPU support on port 5001...\n" "[RUN CUDA 12.4]"
|
||||
$(CMD_PREFIX) docker run -it --name docling-serve-cu124 -p 5001:5001 ghcr.io/docling-project/docling-serve-cu124:main
|
||||
$(CMD_PREFIX) $(CONTAINER_RUNTIME) run -it --name docling-serve-cu124 -p 5001:5001 ghcr.io/docling-project/docling-serve-cu124:main
|
||||
|
||||
.PHONY: run-docling-cu126
|
||||
run-docling-cu126: ## Run the docling-serve container with GPU support and assign a container name
|
||||
$(ECHO_PREFIX) printf " %-12s Removing existing container if it exists...\n" "[CLEANUP]"
|
||||
$(CMD_PREFIX) docker rm -f docling-serve-cu126 2>/dev/null || true
|
||||
$(CMD_PREFIX) $(CONTAINER_RUNTIME) rm -f docling-serve-cu126 2>/dev/null || true
|
||||
$(ECHO_PREFIX) printf " %-12s Running docling-serve container with GPU support on port 5001...\n" "[RUN CUDA 12.6]"
|
||||
$(CMD_PREFIX) docker run -it --name docling-serve-cu126 -p 5001:5001 ghcr.io/docling-project/docling-serve-cu126:main
|
||||
$(CMD_PREFIX) $(CONTAINER_RUNTIME) run -it --name docling-serve-cu126 -p 5001:5001 ghcr.io/docling-project/docling-serve-cu126:main
|
||||
|
||||
.PHONY: run-docling-cu128
|
||||
run-docling-cu128: ## Run the docling-serve container with GPU support and assign a container name
|
||||
$(ECHO_PREFIX) printf " %-12s Removing existing container if it exists...\n" "[CLEANUP]"
|
||||
$(CMD_PREFIX) docker rm -f docling-serve-cu128 2>/dev/null || true
|
||||
$(CMD_PREFIX) $(CONTAINER_RUNTIME) rm -f docling-serve-cu128 2>/dev/null || true
|
||||
$(ECHO_PREFIX) printf " %-12s Running docling-serve container with GPU support on port 5001...\n" "[RUN CUDA 12.8]"
|
||||
$(CMD_PREFIX) docker run -it --name docling-serve-cu128 -p 5001:5001 ghcr.io/docling-project/docling-serve-cu128:main
|
||||
$(CMD_PREFIX) $(CONTAINER_RUNTIME) run -it --name docling-serve-cu128 -p 5001:5001 ghcr.io/docling-project/docling-serve-cu128:main
|
||||
|
||||
.PHONY: run-docling-rocm
|
||||
run-docling-rocm: ## Run the docling-serve container with GPU support and assign a container name
|
||||
$(ECHO_PREFIX) printf " %-12s Removing existing container if it exists...\n" "[CLEANUP]"
|
||||
$(CMD_PREFIX) docker rm -f docling-serve-rocm 2>/dev/null || true
|
||||
$(CMD_PREFIX) $(CONTAINER_RUNTIME) rm -f docling-serve-rocm 2>/dev/null || true
|
||||
$(ECHO_PREFIX) printf " %-12s Running docling-serve container with GPU support on port 5001...\n" "[RUN ROCm 6.3]"
|
||||
$(CMD_PREFIX) docker run -it --name docling-serve-rocm -p 5001:5001 ghcr.io/docling-project/docling-serve-rocm:main
|
||||
$(CMD_PREFIX) $(CONTAINER_RUNTIME) run -it --name docling-serve-rocm -p 5001:5001 ghcr.io/docling-project/docling-serve-rocm:main
|
||||
|
||||
@@ -36,7 +36,8 @@ The server is available at
|
||||
- API <http://127.0.0.1:5001>
|
||||
- API documentation <http://127.0.0.1:5001/docs>
|
||||
- UI playground <http://127.0.0.1:5001/ui>
|
||||

|
||||
|
||||

|
||||
|
||||
Try it out with a simple conversion:
|
||||
|
||||
@@ -46,7 +47,7 @@ curl -X 'POST' \
|
||||
-H 'accept: application/json' \
|
||||
-H 'Content-Type: application/json' \
|
||||
-d '{
|
||||
"http_sources": [{"url": "https://arxiv.org/pdf/2501.17887"}]
|
||||
"sources": [{"kind": "http", "url": "https://arxiv.org/pdf/2501.17887"}]
|
||||
}'
|
||||
```
|
||||
|
||||
|
||||
@@ -11,6 +11,7 @@ import uvicorn
|
||||
from rich.console import Console
|
||||
|
||||
from docling_serve.settings import docling_serve_settings, uvicorn_settings
|
||||
from docling_serve.storage import get_scratch
|
||||
|
||||
warnings.filterwarnings(action="ignore", category=UserWarning, module="pydantic|torch")
|
||||
warnings.filterwarnings(action="ignore", category=FutureWarning, module="easyocr")
|
||||
@@ -361,6 +362,42 @@ def run(
|
||||
)
|
||||
|
||||
|
||||
@app.command()
|
||||
def rq_worker() -> Any:
|
||||
"""
|
||||
Run the [bold]Docling JobKit[/bold] RQ worker.
|
||||
"""
|
||||
from docling_jobkit.convert.manager import DoclingConverterManagerConfig
|
||||
from docling_jobkit.orchestrators.rq.orchestrator import RQOrchestratorConfig
|
||||
from docling_jobkit.orchestrators.rq.worker import run_worker
|
||||
|
||||
rq_config = RQOrchestratorConfig(
|
||||
redis_url=docling_serve_settings.eng_rq_redis_url,
|
||||
results_prefix=docling_serve_settings.eng_rq_results_prefix,
|
||||
sub_channel=docling_serve_settings.eng_rq_sub_channel,
|
||||
scratch_dir=get_scratch(),
|
||||
)
|
||||
|
||||
cm_config = DoclingConverterManagerConfig(
|
||||
artifacts_path=docling_serve_settings.artifacts_path,
|
||||
options_cache_size=docling_serve_settings.options_cache_size,
|
||||
enable_remote_services=docling_serve_settings.enable_remote_services,
|
||||
allow_external_plugins=docling_serve_settings.allow_external_plugins,
|
||||
max_num_pages=docling_serve_settings.max_num_pages,
|
||||
max_file_size=docling_serve_settings.max_file_size,
|
||||
queue_max_size=docling_serve_settings.queue_max_size,
|
||||
ocr_batch_size=docling_serve_settings.ocr_batch_size,
|
||||
layout_batch_size=docling_serve_settings.layout_batch_size,
|
||||
table_batch_size=docling_serve_settings.table_batch_size,
|
||||
batch_polling_interval_seconds=docling_serve_settings.batch_polling_interval_seconds,
|
||||
)
|
||||
|
||||
run_worker(
|
||||
rq_config=rq_config,
|
||||
cm_config=cm_config,
|
||||
)
|
||||
|
||||
|
||||
def main() -> None:
|
||||
app()
|
||||
|
||||
|
||||
@@ -18,6 +18,7 @@ from fastapi import (
|
||||
UploadFile,
|
||||
WebSocket,
|
||||
WebSocketDisconnect,
|
||||
status,
|
||||
)
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
from fastapi.openapi.docs import (
|
||||
@@ -34,12 +35,17 @@ from docling_jobkit.datamodel.callback import (
|
||||
ProgressCallbackRequest,
|
||||
ProgressCallbackResponse,
|
||||
)
|
||||
from docling_jobkit.datamodel.chunking import (
|
||||
BaseChunkerOptions,
|
||||
ChunkingExportOptions,
|
||||
HierarchicalChunkerOptions,
|
||||
HybridChunkerOptions,
|
||||
)
|
||||
from docling_jobkit.datamodel.http_inputs import FileSource, HttpSource
|
||||
from docling_jobkit.datamodel.s3_coords import S3Coordinates
|
||||
from docling_jobkit.datamodel.task import Task, TaskSource
|
||||
from docling_jobkit.datamodel.task import Task, TaskSource, TaskType
|
||||
from docling_jobkit.datamodel.task_targets import (
|
||||
InBodyTarget,
|
||||
TaskTarget,
|
||||
ZipTarget,
|
||||
)
|
||||
from docling_jobkit.orchestrators.base_orchestrator import (
|
||||
@@ -48,15 +54,20 @@ from docling_jobkit.orchestrators.base_orchestrator import (
|
||||
TaskNotFoundError,
|
||||
)
|
||||
|
||||
from docling_serve.auth import APIKeyAuth, AuthenticationResult
|
||||
from docling_serve.datamodel.convert import ConvertDocumentsRequestOptions
|
||||
from docling_serve.datamodel.requests import (
|
||||
ConvertDocumentsRequest,
|
||||
FileSourceRequest,
|
||||
GenericChunkDocumentsRequest,
|
||||
HttpSourceRequest,
|
||||
S3SourceRequest,
|
||||
TargetName,
|
||||
TargetRequest,
|
||||
make_request_model,
|
||||
)
|
||||
from docling_serve.datamodel.responses import (
|
||||
ChunkDocumentResponse,
|
||||
ClearResponse,
|
||||
ConvertDocumentResponse,
|
||||
HealthCheckResponse,
|
||||
@@ -156,6 +167,7 @@ def create_app(): # noqa: C901
|
||||
offline_docs_assets = True
|
||||
_log.info("Found static assets.")
|
||||
|
||||
require_auth = APIKeyAuth(docling_serve_settings.api_key)
|
||||
app = FastAPI(
|
||||
title="Docling Serve",
|
||||
docs_url=None if offline_docs_assets else "/swagger",
|
||||
@@ -182,16 +194,25 @@ def create_app(): # noqa: C901
|
||||
import gradio as gr
|
||||
|
||||
from docling_serve.gradio_ui import ui as gradio_ui
|
||||
from docling_serve.settings import uvicorn_settings
|
||||
|
||||
tmp_output_dir = get_scratch() / "gradio"
|
||||
tmp_output_dir.mkdir(exist_ok=True, parents=True)
|
||||
gradio_ui.gradio_output_dir = tmp_output_dir
|
||||
|
||||
# Build the root_path for Gradio, accounting for UVICORN_ROOT_PATH
|
||||
gradio_root_path = (
|
||||
f"{uvicorn_settings.root_path}/ui"
|
||||
if uvicorn_settings.root_path
|
||||
else "/ui"
|
||||
)
|
||||
|
||||
app = gr.mount_gradio_app(
|
||||
app,
|
||||
gradio_ui,
|
||||
path="/ui",
|
||||
allowed_paths=["./logo.png", tmp_output_dir],
|
||||
root_path="/ui",
|
||||
root_path=gradio_root_path,
|
||||
)
|
||||
except ImportError:
|
||||
_log.warning(
|
||||
@@ -246,10 +267,11 @@ def create_app(): # noqa: C901
|
||||
########################
|
||||
|
||||
async def _enque_source(
|
||||
orchestrator: BaseOrchestrator, conversion_request: ConvertDocumentsRequest
|
||||
orchestrator: BaseOrchestrator,
|
||||
request: ConvertDocumentsRequest | GenericChunkDocumentsRequest,
|
||||
) -> Task:
|
||||
sources: list[TaskSource] = []
|
||||
for s in conversion_request.sources:
|
||||
for s in request.sources:
|
||||
if isinstance(s, FileSourceRequest):
|
||||
sources.append(FileSource.model_validate(s))
|
||||
elif isinstance(s, HttpSourceRequest):
|
||||
@@ -257,18 +279,41 @@ def create_app(): # noqa: C901
|
||||
elif isinstance(s, S3SourceRequest):
|
||||
sources.append(S3Coordinates.model_validate(s))
|
||||
|
||||
convert_options: ConvertDocumentsRequestOptions
|
||||
chunking_options: BaseChunkerOptions | None = None
|
||||
chunking_export_options = ChunkingExportOptions()
|
||||
task_type: TaskType
|
||||
if isinstance(request, ConvertDocumentsRequest):
|
||||
task_type = TaskType.CONVERT
|
||||
convert_options = request.options
|
||||
elif isinstance(request, GenericChunkDocumentsRequest):
|
||||
task_type = TaskType.CHUNK
|
||||
convert_options = request.convert_options
|
||||
chunking_options = request.chunking_options
|
||||
chunking_export_options.include_converted_doc = (
|
||||
request.include_converted_doc
|
||||
)
|
||||
else:
|
||||
raise RuntimeError("Uknown request type.")
|
||||
|
||||
task = await orchestrator.enqueue(
|
||||
task_type=task_type,
|
||||
sources=sources,
|
||||
options=conversion_request.options,
|
||||
target=conversion_request.target,
|
||||
convert_options=convert_options,
|
||||
chunking_options=chunking_options,
|
||||
chunking_export_options=chunking_export_options,
|
||||
target=request.target,
|
||||
)
|
||||
return task
|
||||
|
||||
async def _enque_file(
|
||||
orchestrator: BaseOrchestrator,
|
||||
files: list[UploadFile],
|
||||
options: ConvertDocumentsRequestOptions,
|
||||
target: TaskTarget,
|
||||
task_type: TaskType,
|
||||
convert_options: ConvertDocumentsRequestOptions,
|
||||
chunking_options: BaseChunkerOptions | None,
|
||||
chunking_export_options: ChunkingExportOptions | None,
|
||||
target: TargetRequest,
|
||||
) -> Task:
|
||||
_log.info(f"Received {len(files)} files for processing.")
|
||||
|
||||
@@ -281,7 +326,12 @@ def create_app(): # noqa: C901
|
||||
file_sources.append(DocumentStream(name=name, stream=buf))
|
||||
|
||||
task = await orchestrator.enqueue(
|
||||
sources=file_sources, options=options, target=target
|
||||
task_type=task_type,
|
||||
sources=file_sources,
|
||||
convert_options=convert_options,
|
||||
chunking_options=chunking_options,
|
||||
chunking_export_options=chunking_export_options,
|
||||
target=target,
|
||||
)
|
||||
return task
|
||||
|
||||
@@ -291,7 +341,7 @@ def create_app(): # noqa: C901
|
||||
task = await orchestrator.task_status(task_id=task_id)
|
||||
if task.is_completed():
|
||||
return True
|
||||
await asyncio.sleep(5)
|
||||
await asyncio.sleep(docling_serve_settings.sync_poll_interval)
|
||||
elapsed_time = time.monotonic() - start_time
|
||||
if elapsed_time > docling_serve_settings.max_sync_wait:
|
||||
return False
|
||||
@@ -378,7 +428,7 @@ def create_app(): # noqa: C901
|
||||
response = RedirectResponse(url=logo_url)
|
||||
return response
|
||||
|
||||
@app.get("/health")
|
||||
@app.get("/health", tags=["health"])
|
||||
def health() -> HealthCheckResponse:
|
||||
return HealthCheckResponse()
|
||||
|
||||
@@ -390,7 +440,8 @@ def create_app(): # noqa: C901
|
||||
# Convert a document from URL(s)
|
||||
@app.post(
|
||||
"/v1/convert/source",
|
||||
response_model=ConvertDocumentResponse,
|
||||
tags=["convert"],
|
||||
response_model=ConvertDocumentResponse | PresignedUrlConvertDocumentResponse,
|
||||
responses={
|
||||
200: {
|
||||
"content": {"application/zip": {}},
|
||||
@@ -400,11 +451,12 @@ def create_app(): # noqa: C901
|
||||
)
|
||||
async def process_url(
|
||||
background_tasks: BackgroundTasks,
|
||||
auth: Annotated[AuthenticationResult, Depends(require_auth)],
|
||||
orchestrator: Annotated[BaseOrchestrator, Depends(get_async_orchestrator)],
|
||||
conversion_request: ConvertDocumentsRequest,
|
||||
):
|
||||
task = await _enque_source(
|
||||
orchestrator=orchestrator, conversion_request=conversion_request
|
||||
orchestrator=orchestrator, request=conversion_request
|
||||
)
|
||||
completed = await _wait_task_complete(
|
||||
orchestrator=orchestrator, task_id=task.task_id
|
||||
@@ -412,21 +464,30 @@ def create_app(): # noqa: C901
|
||||
|
||||
if not completed:
|
||||
# TODO: abort task!
|
||||
return HTTPException(
|
||||
raise HTTPException(
|
||||
status_code=504,
|
||||
detail=f"Conversion is taking too long. The maximum wait time is configure as DOCLING_SERVE_MAX_SYNC_WAIT={docling_serve_settings.max_sync_wait}.",
|
||||
)
|
||||
|
||||
task = await orchestrator.get_raw_task(task_id=task.task_id)
|
||||
task_result = await orchestrator.task_result(task_id=task.task_id)
|
||||
if task_result is None:
|
||||
raise HTTPException(
|
||||
status_code=404,
|
||||
detail="Task result not found. Please wait for a completion status.",
|
||||
)
|
||||
response = await prepare_response(
|
||||
task=task, orchestrator=orchestrator, background_tasks=background_tasks
|
||||
task_id=task.task_id,
|
||||
task_result=task_result,
|
||||
orchestrator=orchestrator,
|
||||
background_tasks=background_tasks,
|
||||
)
|
||||
return response
|
||||
|
||||
# Convert a document from file(s)
|
||||
@app.post(
|
||||
"/v1/convert/file",
|
||||
response_model=ConvertDocumentResponse,
|
||||
tags=["convert"],
|
||||
response_model=ConvertDocumentResponse | PresignedUrlConvertDocumentResponse,
|
||||
responses={
|
||||
200: {
|
||||
"content": {"application/zip": {}},
|
||||
@@ -435,6 +496,7 @@ def create_app(): # noqa: C901
|
||||
)
|
||||
async def process_file(
|
||||
background_tasks: BackgroundTasks,
|
||||
auth: Annotated[AuthenticationResult, Depends(require_auth)],
|
||||
orchestrator: Annotated[BaseOrchestrator, Depends(get_async_orchestrator)],
|
||||
files: list[UploadFile],
|
||||
options: Annotated[
|
||||
@@ -444,7 +506,13 @@ def create_app(): # noqa: C901
|
||||
):
|
||||
target = InBodyTarget() if target_type == TargetName.INBODY else ZipTarget()
|
||||
task = await _enque_file(
|
||||
orchestrator=orchestrator, files=files, options=options, target=target
|
||||
task_type=TaskType.CONVERT,
|
||||
orchestrator=orchestrator,
|
||||
files=files,
|
||||
convert_options=options,
|
||||
chunking_options=None,
|
||||
chunking_export_options=None,
|
||||
target=target,
|
||||
)
|
||||
completed = await _wait_task_complete(
|
||||
orchestrator=orchestrator, task_id=task.task_id
|
||||
@@ -452,34 +520,45 @@ def create_app(): # noqa: C901
|
||||
|
||||
if not completed:
|
||||
# TODO: abort task!
|
||||
return HTTPException(
|
||||
raise HTTPException(
|
||||
status_code=504,
|
||||
detail=f"Conversion is taking too long. The maximum wait time is configure as DOCLING_SERVE_MAX_SYNC_WAIT={docling_serve_settings.max_sync_wait}.",
|
||||
)
|
||||
|
||||
task = await orchestrator.get_raw_task(task_id=task.task_id)
|
||||
task_result = await orchestrator.task_result(task_id=task.task_id)
|
||||
if task_result is None:
|
||||
raise HTTPException(
|
||||
status_code=404,
|
||||
detail="Task result not found. Please wait for a completion status.",
|
||||
)
|
||||
response = await prepare_response(
|
||||
task=task, orchestrator=orchestrator, background_tasks=background_tasks
|
||||
task_id=task.task_id,
|
||||
task_result=task_result,
|
||||
orchestrator=orchestrator,
|
||||
background_tasks=background_tasks,
|
||||
)
|
||||
return response
|
||||
|
||||
# Convert a document from URL(s) using the async api
|
||||
@app.post(
|
||||
"/v1/convert/source/async",
|
||||
tags=["convert"],
|
||||
response_model=TaskStatusResponse,
|
||||
)
|
||||
async def process_url_async(
|
||||
auth: Annotated[AuthenticationResult, Depends(require_auth)],
|
||||
orchestrator: Annotated[BaseOrchestrator, Depends(get_async_orchestrator)],
|
||||
conversion_request: ConvertDocumentsRequest,
|
||||
):
|
||||
task = await _enque_source(
|
||||
orchestrator=orchestrator, conversion_request=conversion_request
|
||||
orchestrator=orchestrator, request=conversion_request
|
||||
)
|
||||
task_queue_position = await orchestrator.get_queue_position(
|
||||
task_id=task.task_id
|
||||
)
|
||||
return TaskStatusResponse(
|
||||
task_id=task.task_id,
|
||||
task_type=task.task_type,
|
||||
task_status=task.task_status,
|
||||
task_position=task_queue_position,
|
||||
task_meta=task.processing_meta,
|
||||
@@ -488,9 +567,11 @@ def create_app(): # noqa: C901
|
||||
# Convert a document from file(s) using the async api
|
||||
@app.post(
|
||||
"/v1/convert/file/async",
|
||||
tags=["convert"],
|
||||
response_model=TaskStatusResponse,
|
||||
)
|
||||
async def process_file_async(
|
||||
auth: Annotated[AuthenticationResult, Depends(require_auth)],
|
||||
orchestrator: Annotated[BaseOrchestrator, Depends(get_async_orchestrator)],
|
||||
background_tasks: BackgroundTasks,
|
||||
files: list[UploadFile],
|
||||
@@ -501,24 +582,253 @@ def create_app(): # noqa: C901
|
||||
):
|
||||
target = InBodyTarget() if target_type == TargetName.INBODY else ZipTarget()
|
||||
task = await _enque_file(
|
||||
orchestrator=orchestrator, files=files, options=options, target=target
|
||||
task_type=TaskType.CONVERT,
|
||||
orchestrator=orchestrator,
|
||||
files=files,
|
||||
convert_options=options,
|
||||
chunking_options=None,
|
||||
chunking_export_options=None,
|
||||
target=target,
|
||||
)
|
||||
task_queue_position = await orchestrator.get_queue_position(
|
||||
task_id=task.task_id
|
||||
)
|
||||
return TaskStatusResponse(
|
||||
task_id=task.task_id,
|
||||
task_type=task.task_type,
|
||||
task_status=task.task_status,
|
||||
task_position=task_queue_position,
|
||||
task_meta=task.processing_meta,
|
||||
)
|
||||
|
||||
# Chunking endpoints
|
||||
for display_name, path_name, opt_cls in (
|
||||
("HybridChunker", "hybrid", HybridChunkerOptions),
|
||||
("HierarchicalChunker", "hierarchical", HierarchicalChunkerOptions),
|
||||
):
|
||||
req_cls = make_request_model(opt_cls)
|
||||
|
||||
@app.post(
|
||||
f"/v1/chunk/{path_name}/source/async",
|
||||
name=f"Chunk sources with {display_name} as async task",
|
||||
tags=["chunk"],
|
||||
response_model=TaskStatusResponse,
|
||||
)
|
||||
async def chunk_source_async(
|
||||
background_tasks: BackgroundTasks,
|
||||
auth: Annotated[AuthenticationResult, Depends(require_auth)],
|
||||
orchestrator: Annotated[BaseOrchestrator, Depends(get_async_orchestrator)],
|
||||
request: req_cls,
|
||||
):
|
||||
task = await _enque_source(orchestrator=orchestrator, request=request)
|
||||
task_queue_position = await orchestrator.get_queue_position(
|
||||
task_id=task.task_id
|
||||
)
|
||||
return TaskStatusResponse(
|
||||
task_id=task.task_id,
|
||||
task_type=task.task_type,
|
||||
task_status=task.task_status,
|
||||
task_position=task_queue_position,
|
||||
task_meta=task.processing_meta,
|
||||
)
|
||||
|
||||
@app.post(
|
||||
f"/v1/chunk/{path_name}/file/async",
|
||||
name=f"Chunk files with {display_name} as async task",
|
||||
tags=["chunk"],
|
||||
response_model=TaskStatusResponse,
|
||||
)
|
||||
async def chunk_file_async(
|
||||
background_tasks: BackgroundTasks,
|
||||
auth: Annotated[AuthenticationResult, Depends(require_auth)],
|
||||
orchestrator: Annotated[BaseOrchestrator, Depends(get_async_orchestrator)],
|
||||
files: list[UploadFile],
|
||||
convert_options: Annotated[
|
||||
ConvertDocumentsRequestOptions,
|
||||
FormDepends(
|
||||
ConvertDocumentsRequestOptions,
|
||||
prefix="convert_",
|
||||
excluded_fields=[
|
||||
"to_formats",
|
||||
],
|
||||
),
|
||||
],
|
||||
chunking_options: Annotated[
|
||||
opt_cls,
|
||||
FormDepends(
|
||||
HybridChunkerOptions,
|
||||
prefix="chunking_",
|
||||
excluded_fields=["chunker"],
|
||||
),
|
||||
],
|
||||
include_converted_doc: Annotated[
|
||||
bool,
|
||||
Form(
|
||||
description="If true, the output will include both the chunks and the converted document."
|
||||
),
|
||||
] = False,
|
||||
target_type: Annotated[
|
||||
TargetName,
|
||||
Form(description="Specification for the type of output target."),
|
||||
] = TargetName.INBODY,
|
||||
):
|
||||
target = InBodyTarget() if target_type == TargetName.INBODY else ZipTarget()
|
||||
task = await _enque_file(
|
||||
task_type=TaskType.CHUNK,
|
||||
orchestrator=orchestrator,
|
||||
files=files,
|
||||
convert_options=convert_options,
|
||||
chunking_options=chunking_options,
|
||||
chunking_export_options=ChunkingExportOptions(
|
||||
include_converted_doc=include_converted_doc
|
||||
),
|
||||
target=target,
|
||||
)
|
||||
task_queue_position = await orchestrator.get_queue_position(
|
||||
task_id=task.task_id
|
||||
)
|
||||
return TaskStatusResponse(
|
||||
task_id=task.task_id,
|
||||
task_type=task.task_type,
|
||||
task_status=task.task_status,
|
||||
task_position=task_queue_position,
|
||||
task_meta=task.processing_meta,
|
||||
)
|
||||
|
||||
@app.post(
|
||||
f"/v1/chunk/{path_name}/source",
|
||||
name=f"Chunk sources with {display_name}",
|
||||
tags=["chunk"],
|
||||
response_model=ChunkDocumentResponse,
|
||||
responses={
|
||||
200: {
|
||||
"content": {"application/zip": {}},
|
||||
# "description": "Return the JSON item or an image.",
|
||||
}
|
||||
},
|
||||
)
|
||||
async def chunk_source(
|
||||
background_tasks: BackgroundTasks,
|
||||
auth: Annotated[AuthenticationResult, Depends(require_auth)],
|
||||
orchestrator: Annotated[BaseOrchestrator, Depends(get_async_orchestrator)],
|
||||
request: req_cls,
|
||||
):
|
||||
task = await _enque_source(orchestrator=orchestrator, request=request)
|
||||
completed = await _wait_task_complete(
|
||||
orchestrator=orchestrator, task_id=task.task_id
|
||||
)
|
||||
|
||||
if not completed:
|
||||
# TODO: abort task!
|
||||
raise HTTPException(
|
||||
status_code=504,
|
||||
detail=f"Conversion is taking too long. The maximum wait time is configure as DOCLING_SERVE_MAX_SYNC_WAIT={docling_serve_settings.max_sync_wait}.",
|
||||
)
|
||||
|
||||
task_result = await orchestrator.task_result(task_id=task.task_id)
|
||||
if task_result is None:
|
||||
raise HTTPException(
|
||||
status_code=404,
|
||||
detail="Task result not found. Please wait for a completion status.",
|
||||
)
|
||||
response = await prepare_response(
|
||||
task_id=task.task_id,
|
||||
task_result=task_result,
|
||||
orchestrator=orchestrator,
|
||||
background_tasks=background_tasks,
|
||||
)
|
||||
return response
|
||||
|
||||
@app.post(
|
||||
f"/v1/chunk/{path_name}/file",
|
||||
name=f"Chunk files with {display_name}",
|
||||
tags=["chunk"],
|
||||
response_model=ChunkDocumentResponse,
|
||||
responses={
|
||||
200: {
|
||||
"content": {"application/zip": {}},
|
||||
}
|
||||
},
|
||||
)
|
||||
async def chunk_file(
|
||||
background_tasks: BackgroundTasks,
|
||||
auth: Annotated[AuthenticationResult, Depends(require_auth)],
|
||||
orchestrator: Annotated[BaseOrchestrator, Depends(get_async_orchestrator)],
|
||||
files: list[UploadFile],
|
||||
convert_options: Annotated[
|
||||
ConvertDocumentsRequestOptions,
|
||||
FormDepends(
|
||||
ConvertDocumentsRequestOptions,
|
||||
prefix="convert_",
|
||||
excluded_fields=[
|
||||
"to_formats",
|
||||
],
|
||||
),
|
||||
],
|
||||
chunking_options: Annotated[
|
||||
opt_cls,
|
||||
FormDepends(
|
||||
HybridChunkerOptions,
|
||||
prefix="chunking_",
|
||||
excluded_fields=["chunker"],
|
||||
),
|
||||
],
|
||||
include_converted_doc: Annotated[
|
||||
bool,
|
||||
Form(
|
||||
description="If true, the output will include both the chunks and the converted document."
|
||||
),
|
||||
] = False,
|
||||
target_type: Annotated[
|
||||
TargetName,
|
||||
Form(description="Specification for the type of output target."),
|
||||
] = TargetName.INBODY,
|
||||
):
|
||||
target = InBodyTarget() if target_type == TargetName.INBODY else ZipTarget()
|
||||
task = await _enque_file(
|
||||
task_type=TaskType.CHUNK,
|
||||
orchestrator=orchestrator,
|
||||
files=files,
|
||||
convert_options=convert_options,
|
||||
chunking_options=chunking_options,
|
||||
chunking_export_options=ChunkingExportOptions(
|
||||
include_converted_doc=include_converted_doc
|
||||
),
|
||||
target=target,
|
||||
)
|
||||
completed = await _wait_task_complete(
|
||||
orchestrator=orchestrator, task_id=task.task_id
|
||||
)
|
||||
|
||||
if not completed:
|
||||
# TODO: abort task!
|
||||
raise HTTPException(
|
||||
status_code=504,
|
||||
detail=f"Conversion is taking too long. The maximum wait time is configure as DOCLING_SERVE_MAX_SYNC_WAIT={docling_serve_settings.max_sync_wait}.",
|
||||
)
|
||||
|
||||
task_result = await orchestrator.task_result(task_id=task.task_id)
|
||||
if task_result is None:
|
||||
raise HTTPException(
|
||||
status_code=404,
|
||||
detail="Task result not found. Please wait for a completion status.",
|
||||
)
|
||||
response = await prepare_response(
|
||||
task_id=task.task_id,
|
||||
task_result=task_result,
|
||||
orchestrator=orchestrator,
|
||||
background_tasks=background_tasks,
|
||||
)
|
||||
return response
|
||||
|
||||
# Task status poll
|
||||
@app.get(
|
||||
"/v1/status/poll/{task_id}",
|
||||
tags=["tasks"],
|
||||
response_model=TaskStatusResponse,
|
||||
)
|
||||
async def task_status_poll(
|
||||
auth: Annotated[AuthenticationResult, Depends(require_auth)],
|
||||
orchestrator: Annotated[BaseOrchestrator, Depends(get_async_orchestrator)],
|
||||
task_id: str,
|
||||
wait: Annotated[
|
||||
@@ -533,6 +843,7 @@ def create_app(): # noqa: C901
|
||||
raise HTTPException(status_code=404, detail="Task not found.")
|
||||
return TaskStatusResponse(
|
||||
task_id=task.task_id,
|
||||
task_type=task.task_type,
|
||||
task_status=task.task_status,
|
||||
task_position=task_queue_position,
|
||||
task_meta=task.processing_meta,
|
||||
@@ -546,11 +857,22 @@ def create_app(): # noqa: C901
|
||||
websocket: WebSocket,
|
||||
orchestrator: Annotated[BaseOrchestrator, Depends(get_async_orchestrator)],
|
||||
task_id: str,
|
||||
api_key: Annotated[str, Query()] = "",
|
||||
):
|
||||
if docling_serve_settings.api_key:
|
||||
if api_key != docling_serve_settings.api_key:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_401_UNAUTHORIZED,
|
||||
detail="Api key is required as ?api_key=SECRET.",
|
||||
)
|
||||
|
||||
assert isinstance(orchestrator.notifier, WebsocketNotifier)
|
||||
await websocket.accept()
|
||||
|
||||
if task_id not in orchestrator.tasks:
|
||||
try:
|
||||
# Get task status from Redis or RQ directly instead of checking in-memory registry
|
||||
task = await orchestrator.task_status(task_id=task_id)
|
||||
except TaskNotFoundError:
|
||||
await websocket.send_text(
|
||||
WebsocketMessage(
|
||||
message=MessageKind.ERROR, error="Task not found."
|
||||
@@ -559,8 +881,6 @@ def create_app(): # noqa: C901
|
||||
await websocket.close()
|
||||
return
|
||||
|
||||
task = orchestrator.tasks[task_id]
|
||||
|
||||
# Track active WebSocket connections for this job
|
||||
orchestrator.notifier.task_subscribers[task_id].add(websocket)
|
||||
|
||||
@@ -568,6 +888,7 @@ def create_app(): # noqa: C901
|
||||
task_queue_position = await orchestrator.get_queue_position(task_id=task_id)
|
||||
task_response = TaskStatusResponse(
|
||||
task_id=task.task_id,
|
||||
task_type=task.task_type,
|
||||
task_status=task.task_status,
|
||||
task_position=task_queue_position,
|
||||
task_meta=task.processing_meta,
|
||||
@@ -583,6 +904,7 @@ def create_app(): # noqa: C901
|
||||
)
|
||||
task_response = TaskStatusResponse(
|
||||
task_id=task.task_id,
|
||||
task_type=task.task_type,
|
||||
task_status=task.task_status,
|
||||
task_position=task_queue_position,
|
||||
task_meta=task.processing_meta,
|
||||
@@ -605,7 +927,10 @@ def create_app(): # noqa: C901
|
||||
# Task result
|
||||
@app.get(
|
||||
"/v1/result/{task_id}",
|
||||
response_model=ConvertDocumentResponse | PresignedUrlConvertDocumentResponse,
|
||||
tags=["tasks"],
|
||||
response_model=ConvertDocumentResponse
|
||||
| PresignedUrlConvertDocumentResponse
|
||||
| ChunkDocumentResponse,
|
||||
responses={
|
||||
200: {
|
||||
"content": {"application/zip": {}},
|
||||
@@ -613,14 +938,23 @@ def create_app(): # noqa: C901
|
||||
},
|
||||
)
|
||||
async def task_result(
|
||||
auth: Annotated[AuthenticationResult, Depends(require_auth)],
|
||||
orchestrator: Annotated[BaseOrchestrator, Depends(get_async_orchestrator)],
|
||||
background_tasks: BackgroundTasks,
|
||||
task_id: str,
|
||||
):
|
||||
try:
|
||||
task = await orchestrator.get_raw_task(task_id=task_id)
|
||||
task_result = await orchestrator.task_result(task_id=task_id)
|
||||
if task_result is None:
|
||||
raise HTTPException(
|
||||
status_code=404,
|
||||
detail="Task result not found. Please wait for a completion status.",
|
||||
)
|
||||
response = await prepare_response(
|
||||
task=task, orchestrator=orchestrator, background_tasks=background_tasks
|
||||
task_id=task_id,
|
||||
task_result=task_result,
|
||||
orchestrator=orchestrator,
|
||||
background_tasks=background_tasks,
|
||||
)
|
||||
return response
|
||||
except TaskNotFoundError:
|
||||
@@ -629,9 +963,12 @@ def create_app(): # noqa: C901
|
||||
# Update task progress
|
||||
@app.post(
|
||||
"/v1/callback/task/progress",
|
||||
tags=["internal"],
|
||||
include_in_schema=False,
|
||||
response_model=ProgressCallbackResponse,
|
||||
)
|
||||
async def callback_task_progress(
|
||||
auth: Annotated[AuthenticationResult, Depends(require_auth)],
|
||||
orchestrator: Annotated[BaseOrchestrator, Depends(get_async_orchestrator)],
|
||||
request: ProgressCallbackRequest,
|
||||
):
|
||||
@@ -650,9 +987,11 @@ def create_app(): # noqa: C901
|
||||
# Offload models
|
||||
@app.get(
|
||||
"/v1/clear/converters",
|
||||
tags=["clear"],
|
||||
response_model=ClearResponse,
|
||||
)
|
||||
async def clear_converters(
|
||||
auth: Annotated[AuthenticationResult, Depends(require_auth)],
|
||||
orchestrator: Annotated[BaseOrchestrator, Depends(get_async_orchestrator)],
|
||||
):
|
||||
await orchestrator.clear_converters()
|
||||
@@ -661,9 +1000,11 @@ def create_app(): # noqa: C901
|
||||
# Clean results
|
||||
@app.get(
|
||||
"/v1/clear/results",
|
||||
tags=["clear"],
|
||||
response_model=ClearResponse,
|
||||
)
|
||||
async def clear_results(
|
||||
auth: Annotated[AuthenticationResult, Depends(require_auth)],
|
||||
orchestrator: Annotated[BaseOrchestrator, Depends(get_async_orchestrator)],
|
||||
older_then: float = 3600,
|
||||
):
|
||||
|
||||
56
docling_serve/auth.py
Normal file
56
docling_serve/auth.py
Normal file
@@ -0,0 +1,56 @@
|
||||
from typing import Any
|
||||
|
||||
from fastapi import HTTPException, Request, status
|
||||
from fastapi.security import APIKeyHeader
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class AuthenticationResult(BaseModel):
|
||||
valid: bool
|
||||
errors: list[str] = []
|
||||
detail: Any | None = None
|
||||
|
||||
|
||||
class APIKeyAuth(APIKeyHeader):
|
||||
"""
|
||||
FastAPI dependency which evaluates a status API Key.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
api_key: str,
|
||||
header_name: str = "X-Api-Key",
|
||||
fail_on_unauthorized: bool = True,
|
||||
) -> None:
|
||||
self.api_key = api_key
|
||||
self.header_name = header_name
|
||||
super().__init__(name=self.header_name, auto_error=False)
|
||||
|
||||
async def _validate_api_key(self, header_api_key: str | None):
|
||||
if header_api_key is None:
|
||||
return AuthenticationResult(
|
||||
valid=False, errors=[f"Missing header {self.header_name}."]
|
||||
)
|
||||
|
||||
header_api_key = header_api_key.strip()
|
||||
|
||||
# Otherwise check the apikey
|
||||
if header_api_key == self.api_key or self.api_key == "":
|
||||
return AuthenticationResult(
|
||||
valid=True,
|
||||
detail=header_api_key,
|
||||
)
|
||||
else:
|
||||
return AuthenticationResult(
|
||||
valid=False,
|
||||
errors=["The provided API Key is invalid."],
|
||||
)
|
||||
|
||||
async def __call__(self, request: Request) -> AuthenticationResult: # type: ignore
|
||||
header_api_key = await super().__call__(request=request)
|
||||
result = await self._validate_api_key(header_api_key)
|
||||
if self.api_key and not result.valid:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_401_UNAUTHORIZED, detail=result.detail
|
||||
)
|
||||
return result
|
||||
@@ -1,16 +1,20 @@
|
||||
import enum
|
||||
from typing import Annotated, Literal
|
||||
from functools import cache
|
||||
from typing import Annotated, Generic, Literal
|
||||
|
||||
from pydantic import BaseModel, Field, model_validator
|
||||
from pydantic_core import PydanticCustomError
|
||||
from typing_extensions import Self
|
||||
from typing_extensions import Self, TypeVar
|
||||
|
||||
from docling_jobkit.datamodel.chunking import (
|
||||
BaseChunkerOptions,
|
||||
)
|
||||
from docling_jobkit.datamodel.http_inputs import FileSource, HttpSource
|
||||
from docling_jobkit.datamodel.s3_coords import S3Coordinates
|
||||
from docling_jobkit.datamodel.task_targets import (
|
||||
InBodyTarget,
|
||||
PutTarget,
|
||||
S3Target,
|
||||
TaskTarget,
|
||||
ZipTarget,
|
||||
)
|
||||
|
||||
@@ -43,12 +47,17 @@ SourceRequestItem = Annotated[
|
||||
FileSourceRequest | HttpSourceRequest | S3SourceRequest, Field(discriminator="kind")
|
||||
]
|
||||
|
||||
TargetRequest = Annotated[
|
||||
InBodyTarget | ZipTarget | S3Target | PutTarget,
|
||||
Field(discriminator="kind"),
|
||||
]
|
||||
|
||||
|
||||
## Complete Source request
|
||||
class ConvertDocumentsRequest(BaseModel):
|
||||
options: ConvertDocumentsRequestOptions = ConvertDocumentsRequestOptions()
|
||||
sources: list[SourceRequestItem]
|
||||
target: TaskTarget = InBodyTarget()
|
||||
target: TargetRequest = InBodyTarget()
|
||||
|
||||
@model_validator(mode="after")
|
||||
def validate_s3_source_and_target(self) -> Self:
|
||||
@@ -70,3 +79,52 @@ class ConvertDocumentsRequest(BaseModel):
|
||||
"error target", 'target kind "s3" requires source kind "s3"'
|
||||
)
|
||||
return self
|
||||
|
||||
|
||||
## Source chunking requests
|
||||
|
||||
|
||||
class BaseChunkDocumentsRequest(BaseModel):
|
||||
convert_options: Annotated[
|
||||
ConvertDocumentsRequestOptions, Field(description="Conversion options.")
|
||||
] = ConvertDocumentsRequestOptions()
|
||||
sources: Annotated[
|
||||
list[SourceRequestItem],
|
||||
Field(description="List of input document sources to process."),
|
||||
]
|
||||
include_converted_doc: Annotated[
|
||||
bool,
|
||||
Field(
|
||||
description="If true, the output will include both the chunks and the converted document."
|
||||
),
|
||||
] = False
|
||||
target: Annotated[
|
||||
TargetRequest, Field(description="Specification for the type of output target.")
|
||||
] = InBodyTarget()
|
||||
|
||||
|
||||
ChunkingOptT = TypeVar("ChunkingOptT", bound=BaseChunkerOptions)
|
||||
|
||||
|
||||
class GenericChunkDocumentsRequest(BaseChunkDocumentsRequest, Generic[ChunkingOptT]):
|
||||
chunking_options: ChunkingOptT
|
||||
|
||||
|
||||
@cache
|
||||
def make_request_model(
|
||||
opt_type: type[ChunkingOptT],
|
||||
) -> type[GenericChunkDocumentsRequest[ChunkingOptT]]:
|
||||
"""
|
||||
Dynamically create (and cache) a subclass of GenericChunkDocumentsRequest[opt_type]
|
||||
with chunking_options having a default factory.
|
||||
"""
|
||||
return type(
|
||||
f"{opt_type.__name__}DocumentsRequest",
|
||||
(GenericChunkDocumentsRequest[opt_type],), # type: ignore[valid-type]
|
||||
{
|
||||
"__annotations__": {"chunking_options": opt_type},
|
||||
"chunking_options": Field(
|
||||
default_factory=opt_type, description="Options specific to the chunker."
|
||||
),
|
||||
},
|
||||
)
|
||||
|
||||
@@ -5,8 +5,12 @@ from pydantic import BaseModel
|
||||
|
||||
from docling.datamodel.document import ConversionStatus, ErrorItem
|
||||
from docling.utils.profiling import ProfilingItem
|
||||
from docling_core.types.doc import DoclingDocument
|
||||
from docling_jobkit.datamodel.task_meta import TaskProcessingMeta
|
||||
from docling_jobkit.datamodel.result import (
|
||||
ChunkedDocumentResultItem,
|
||||
ExportDocumentResponse,
|
||||
ExportResult,
|
||||
)
|
||||
from docling_jobkit.datamodel.task_meta import TaskProcessingMeta, TaskType
|
||||
|
||||
|
||||
# Status
|
||||
@@ -18,17 +22,8 @@ class ClearResponse(BaseModel):
|
||||
status: str = "ok"
|
||||
|
||||
|
||||
class DocumentResponse(BaseModel):
|
||||
filename: str
|
||||
md_content: Optional[str] = None
|
||||
json_content: Optional[DoclingDocument] = None
|
||||
html_content: Optional[str] = None
|
||||
text_content: Optional[str] = None
|
||||
doctags_content: Optional[str] = None
|
||||
|
||||
|
||||
class ConvertDocumentResponse(BaseModel):
|
||||
document: DocumentResponse
|
||||
document: ExportDocumentResponse
|
||||
status: ConversionStatus
|
||||
errors: list[ErrorItem] = []
|
||||
processing_time: float
|
||||
@@ -36,16 +31,25 @@ class ConvertDocumentResponse(BaseModel):
|
||||
|
||||
|
||||
class PresignedUrlConvertDocumentResponse(BaseModel):
|
||||
status: ConversionStatus
|
||||
processing_time: float
|
||||
num_converted: int
|
||||
num_succeeded: int
|
||||
num_failed: int
|
||||
|
||||
|
||||
class ConvertDocumentErrorResponse(BaseModel):
|
||||
status: ConversionStatus
|
||||
|
||||
|
||||
class ChunkDocumentResponse(BaseModel):
|
||||
chunks: list[ChunkedDocumentResultItem]
|
||||
documents: list[ExportResult]
|
||||
processing_time: float
|
||||
|
||||
|
||||
class TaskStatusResponse(BaseModel):
|
||||
task_id: str
|
||||
task_type: TaskType
|
||||
task_status: str
|
||||
task_position: Optional[int] = None
|
||||
task_meta: Optional[TaskProcessingMeta] = None
|
||||
|
||||
@@ -4,6 +4,7 @@ import itertools
|
||||
import json
|
||||
import logging
|
||||
import ssl
|
||||
import sys
|
||||
import tempfile
|
||||
import time
|
||||
from pathlib import Path
|
||||
@@ -224,24 +225,34 @@ def auto_set_return_as_file(
|
||||
|
||||
def change_ocr_lang(ocr_engine):
|
||||
if ocr_engine == "easyocr":
|
||||
return "en,fr,de,es"
|
||||
return gr.update(visible=True, value="en,fr,de,es")
|
||||
elif ocr_engine == "tesseract_cli":
|
||||
return "eng,fra,deu,spa"
|
||||
return gr.update(visible=True, value="eng,fra,deu,spa")
|
||||
elif ocr_engine == "tesseract":
|
||||
return "eng,fra,deu,spa"
|
||||
return gr.update(visible=True, value="eng,fra,deu,spa")
|
||||
elif ocr_engine == "rapidocr":
|
||||
return "english,chinese"
|
||||
return gr.update(visible=True, value="english,chinese")
|
||||
elif ocr_engine == "ocrmac":
|
||||
return gr.update(visible=True, value="fr-FR,de-DE,es-ES,en-US")
|
||||
|
||||
return gr.update(visible=False, value="")
|
||||
|
||||
|
||||
def wait_task_finish(task_id: str, return_as_file: bool):
|
||||
def wait_task_finish(auth: str, task_id: str, return_as_file: bool):
|
||||
conversion_sucess = False
|
||||
task_finished = False
|
||||
task_status = ""
|
||||
|
||||
headers = {}
|
||||
if docling_serve_settings.api_key:
|
||||
headers["X-Api-Key"] = str(auth)
|
||||
|
||||
ssl_ctx = get_ssl_context()
|
||||
while not task_finished:
|
||||
try:
|
||||
response = httpx.get(
|
||||
f"{get_api_endpoint()}/v1/status/poll/{task_id}?wait=5",
|
||||
headers=headers,
|
||||
verify=ssl_ctx,
|
||||
timeout=15,
|
||||
)
|
||||
@@ -265,6 +276,7 @@ def wait_task_finish(task_id: str, return_as_file: bool):
|
||||
try:
|
||||
response = httpx.get(
|
||||
f"{get_api_endpoint()}/v1/result/{task_id}",
|
||||
headers=headers,
|
||||
timeout=15,
|
||||
verify=ssl_ctx,
|
||||
)
|
||||
@@ -279,6 +291,7 @@ def wait_task_finish(task_id: str, return_as_file: bool):
|
||||
|
||||
|
||||
def process_url(
|
||||
auth,
|
||||
input_sources,
|
||||
to_formats,
|
||||
image_export_mode,
|
||||
@@ -326,11 +339,18 @@ def process_url(
|
||||
):
|
||||
logger.error("No input sources provided.")
|
||||
raise gr.Error("No input sources provided.", print_exception=False)
|
||||
|
||||
headers = {}
|
||||
if docling_serve_settings.api_key:
|
||||
headers["X-Api-Key"] = str(auth)
|
||||
|
||||
print(f"{headers=}")
|
||||
try:
|
||||
ssl_ctx = get_ssl_context()
|
||||
response = httpx.post(
|
||||
f"{get_api_endpoint()}/v1/convert/source/async",
|
||||
json=parameters,
|
||||
headers=headers,
|
||||
verify=ssl_ctx,
|
||||
timeout=60,
|
||||
)
|
||||
@@ -354,6 +374,7 @@ def file_to_base64(file):
|
||||
|
||||
|
||||
def process_file(
|
||||
auth,
|
||||
files,
|
||||
to_formats,
|
||||
image_export_mode,
|
||||
@@ -402,11 +423,16 @@ def process_file(
|
||||
"target": target,
|
||||
}
|
||||
|
||||
headers = {}
|
||||
if docling_serve_settings.api_key:
|
||||
headers["X-Api-Key"] = str(auth)
|
||||
|
||||
try:
|
||||
ssl_ctx = get_ssl_context()
|
||||
response = httpx.post(
|
||||
f"{get_api_endpoint()}/v1/convert/source/async",
|
||||
json=parameters,
|
||||
headers=headers,
|
||||
verify=ssl_ctx,
|
||||
timeout=60,
|
||||
)
|
||||
@@ -480,7 +506,7 @@ with gr.Blocks(
|
||||
css=css,
|
||||
theme=theme,
|
||||
title="Docling Serve",
|
||||
delete_cache=(3600, 3600), # Delete all files older than 1 hour every hour
|
||||
delete_cache=(3600, 36000), # Delete all files older than 10 hour every hour
|
||||
) as ui:
|
||||
# Constants stored in states to be able to pass them as inputs to functions
|
||||
processing_text = gr.State("Processing your document(s), please wait...")
|
||||
@@ -549,14 +575,17 @@ with gr.Blocks(
|
||||
with gr.Tab("Convert File"):
|
||||
with gr.Row():
|
||||
with gr.Column(scale=4):
|
||||
raw_exts = itertools.chain.from_iterable(FormatToExtensions.values())
|
||||
file_input = gr.File(
|
||||
elem_id="file_input_zone",
|
||||
label="Upload File",
|
||||
file_types=[
|
||||
f".{v}"
|
||||
for v in itertools.chain.from_iterable(
|
||||
FormatToExtensions.values()
|
||||
)
|
||||
f".{v.lower()}"
|
||||
for v in raw_exts # lowercase
|
||||
]
|
||||
+ [
|
||||
f".{v.upper()}"
|
||||
for v in raw_exts # uppercase
|
||||
],
|
||||
file_count="multiple",
|
||||
scale=4,
|
||||
@@ -565,6 +594,15 @@ with gr.Blocks(
|
||||
file_process_btn = gr.Button("Process File", scale=1)
|
||||
file_reset_btn = gr.Button("Reset", scale=1)
|
||||
|
||||
# Auth
|
||||
with gr.Row(visible=bool(docling_serve_settings.api_key)):
|
||||
with gr.Column():
|
||||
auth = gr.Textbox(
|
||||
label="Authentication",
|
||||
placeholder="API Key",
|
||||
type="password",
|
||||
)
|
||||
|
||||
# Options
|
||||
with gr.Accordion("Options") as options:
|
||||
with gr.Row():
|
||||
@@ -590,6 +628,7 @@ with gr.Blocks(
|
||||
label="Image Export Mode",
|
||||
value="embedded",
|
||||
)
|
||||
|
||||
with gr.Row():
|
||||
with gr.Column(scale=1, min_width=200):
|
||||
pipeline = gr.Radio(
|
||||
@@ -602,18 +641,25 @@ with gr.Blocks(
|
||||
ocr = gr.Checkbox(label="Enable OCR", value=True)
|
||||
force_ocr = gr.Checkbox(label="Force OCR", value=False)
|
||||
with gr.Column(scale=1):
|
||||
engines_list = [
|
||||
("Auto", "auto"),
|
||||
("EasyOCR", "easyocr"),
|
||||
("Tesseract", "tesseract"),
|
||||
("RapidOCR", "rapidocr"),
|
||||
]
|
||||
if sys.platform == "darwin":
|
||||
engines_list.append(("OCRMac", "ocrmac"))
|
||||
|
||||
ocr_engine = gr.Radio(
|
||||
[
|
||||
("EasyOCR", "easyocr"),
|
||||
("Tesseract", "tesseract"),
|
||||
("RapidOCR", "rapidocr"),
|
||||
],
|
||||
engines_list,
|
||||
label="OCR Engine",
|
||||
value="easyocr",
|
||||
value="auto",
|
||||
)
|
||||
with gr.Column(scale=1, min_width=200):
|
||||
ocr_lang = gr.Textbox(
|
||||
label="OCR Language (beware of the format)", value="en,fr,de,es"
|
||||
label="OCR Language (beware of the format)",
|
||||
value="en,fr,de,es",
|
||||
visible=False,
|
||||
)
|
||||
ocr_engine.change(change_ocr_lang, inputs=[ocr_engine], outputs=[ocr_lang])
|
||||
with gr.Row():
|
||||
@@ -724,6 +770,7 @@ with gr.Blocks(
|
||||
).then(
|
||||
process_url,
|
||||
inputs=[
|
||||
auth,
|
||||
url_input,
|
||||
to_formats,
|
||||
image_export_mode,
|
||||
@@ -750,7 +797,7 @@ with gr.Blocks(
|
||||
outputs=[content_output, file_output],
|
||||
).then(
|
||||
wait_task_finish,
|
||||
inputs=[task_id_rendered, return_as_file],
|
||||
inputs=[auth, task_id_rendered, return_as_file],
|
||||
outputs=[
|
||||
output_markdown,
|
||||
output_markdown_rendered,
|
||||
@@ -811,6 +858,7 @@ with gr.Blocks(
|
||||
).then(
|
||||
process_file,
|
||||
inputs=[
|
||||
auth,
|
||||
file_input,
|
||||
to_formats,
|
||||
image_export_mode,
|
||||
@@ -837,7 +885,7 @@ with gr.Blocks(
|
||||
outputs=[content_output, file_output],
|
||||
).then(
|
||||
wait_task_finish,
|
||||
inputs=[task_id_rendered, return_as_file],
|
||||
inputs=[auth, task_id_rendered, return_as_file],
|
||||
outputs=[
|
||||
output_markdown,
|
||||
output_markdown_rendered,
|
||||
|
||||
@@ -29,10 +29,15 @@ def is_pydantic_model(type_):
|
||||
|
||||
# Adapted from
|
||||
# https://github.com/fastapi/fastapi/discussions/8971#discussioncomment-7892972
|
||||
def FormDepends(cls: type[BaseModel]):
|
||||
def FormDepends(
|
||||
cls: type[BaseModel], prefix: str = "", excluded_fields: list[str] = []
|
||||
):
|
||||
new_parameters = []
|
||||
|
||||
for field_name, model_field in cls.model_fields.items():
|
||||
if field_name in excluded_fields:
|
||||
continue
|
||||
|
||||
annotation = model_field.annotation
|
||||
description = model_field.description
|
||||
default = (
|
||||
@@ -63,7 +68,7 @@ def FormDepends(cls: type[BaseModel]):
|
||||
|
||||
new_parameters.append(
|
||||
inspect.Parameter(
|
||||
name=field_name,
|
||||
name=f"{prefix}{field_name}",
|
||||
kind=inspect.Parameter.POSITIONAL_ONLY,
|
||||
default=default,
|
||||
annotation=annotation,
|
||||
@@ -71,19 +76,23 @@ def FormDepends(cls: type[BaseModel]):
|
||||
)
|
||||
|
||||
async def as_form_func(**data):
|
||||
newdata = {}
|
||||
for field_name, model_field in cls.model_fields.items():
|
||||
value = data.get(field_name)
|
||||
if field_name in excluded_fields:
|
||||
continue
|
||||
value = data.get(f"{prefix}{field_name}")
|
||||
newdata[field_name] = value
|
||||
annotation = model_field.annotation
|
||||
|
||||
# Parse nested models from JSON string
|
||||
if value is not None and is_pydantic_model(annotation):
|
||||
try:
|
||||
validator = TypeAdapter(annotation)
|
||||
data[field_name] = validator.validate_json(value)
|
||||
newdata[field_name] = validator.validate_json(value)
|
||||
except Exception as e:
|
||||
raise ValueError(f"Invalid JSON for field '{field_name}': {e}")
|
||||
|
||||
return cls(**data)
|
||||
return cls(**newdata)
|
||||
|
||||
sig = inspect.signature(as_form_func)
|
||||
sig = sig.replace(parameters=new_parameters)
|
||||
|
||||
@@ -1,8 +1,266 @@
|
||||
import json
|
||||
import logging
|
||||
from functools import lru_cache
|
||||
from typing import Any, Optional
|
||||
|
||||
from docling_jobkit.orchestrators.base_orchestrator import BaseOrchestrator
|
||||
import redis.asyncio as redis
|
||||
|
||||
from docling_jobkit.datamodel.task import Task
|
||||
from docling_jobkit.datamodel.task_meta import TaskStatus
|
||||
from docling_jobkit.orchestrators.base_orchestrator import (
|
||||
BaseOrchestrator,
|
||||
TaskNotFoundError,
|
||||
)
|
||||
|
||||
from docling_serve.settings import AsyncEngine, docling_serve_settings
|
||||
from docling_serve.storage import get_scratch
|
||||
|
||||
_log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class RedisTaskStatusMixin:
|
||||
tasks: dict[str, Task]
|
||||
_task_result_keys: dict[str, str]
|
||||
config: Any
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.redis_prefix = "docling:tasks:"
|
||||
self._redis_pool = redis.ConnectionPool.from_url(
|
||||
self.config.redis_url,
|
||||
max_connections=10,
|
||||
socket_timeout=2.0,
|
||||
)
|
||||
|
||||
async def task_status(self, task_id: str, wait: float = 0.0) -> Task:
|
||||
"""
|
||||
Get task status by checking Redis first, then falling back to RQ verification.
|
||||
|
||||
When Redis shows 'pending' but RQ shows 'success', we update Redis
|
||||
and return the RQ status for cross-instance consistency.
|
||||
"""
|
||||
_log.info(f"Task {task_id} status check")
|
||||
|
||||
# Always check RQ directly first - this is the most reliable source
|
||||
rq_task = await self._get_task_from_rq_direct(task_id)
|
||||
if rq_task:
|
||||
_log.info(f"Task {task_id} in RQ: {rq_task.task_status}")
|
||||
|
||||
# Update memory registry
|
||||
self.tasks[task_id] = rq_task
|
||||
|
||||
# Store/update in Redis for other instances
|
||||
await self._store_task_in_redis(rq_task)
|
||||
return rq_task
|
||||
|
||||
# If not in RQ, check Redis (maybe it's cached from another instance)
|
||||
task = await self._get_task_from_redis(task_id)
|
||||
if task:
|
||||
_log.info(f"Task {task_id} in Redis: {task.task_status}")
|
||||
|
||||
# CRITICAL FIX: Check if Redis status might be stale
|
||||
# STARTED tasks might have completed since they were cached
|
||||
if task.task_status in [TaskStatus.PENDING, TaskStatus.STARTED]:
|
||||
_log.debug(f"Task {task_id} verifying stale status")
|
||||
|
||||
# Try to get fresh status from RQ
|
||||
fresh_rq_task = await self._get_task_from_rq_direct(task_id)
|
||||
if fresh_rq_task and fresh_rq_task.task_status != task.task_status:
|
||||
_log.info(
|
||||
f"Task {task_id} status updated: {fresh_rq_task.task_status}"
|
||||
)
|
||||
|
||||
# Update memory and Redis with fresh status
|
||||
self.tasks[task_id] = fresh_rq_task
|
||||
await self._store_task_in_redis(fresh_rq_task)
|
||||
return fresh_rq_task
|
||||
else:
|
||||
_log.debug(f"Task {task_id} status consistent")
|
||||
|
||||
return task
|
||||
|
||||
# Fall back to parent implementation
|
||||
try:
|
||||
parent_task = await super().task_status(task_id, wait) # type: ignore[misc]
|
||||
_log.debug(f"Task {task_id} from parent: {parent_task.task_status}")
|
||||
|
||||
# Store in Redis for other instances to find
|
||||
await self._store_task_in_redis(parent_task)
|
||||
return parent_task
|
||||
except TaskNotFoundError:
|
||||
_log.warning(f"Task {task_id} not found")
|
||||
raise
|
||||
|
||||
async def _get_task_from_redis(self, task_id: str) -> Optional[Task]:
|
||||
try:
|
||||
async with redis.Redis(connection_pool=self._redis_pool) as r:
|
||||
task_data = await r.get(f"{self.redis_prefix}{task_id}:metadata")
|
||||
if not task_data:
|
||||
return None
|
||||
|
||||
data: dict[str, Any] = json.loads(task_data)
|
||||
meta = data.get("processing_meta") or {}
|
||||
meta.setdefault("num_docs", 0)
|
||||
meta.setdefault("num_processed", 0)
|
||||
meta.setdefault("num_succeeded", 0)
|
||||
meta.setdefault("num_failed", 0)
|
||||
|
||||
return Task(
|
||||
task_id=data["task_id"],
|
||||
task_type=data["task_type"],
|
||||
task_status=TaskStatus(data["task_status"]),
|
||||
processing_meta=meta,
|
||||
)
|
||||
except Exception as e:
|
||||
_log.error(f"Redis get task {task_id}: {e}")
|
||||
return None
|
||||
|
||||
async def _get_task_from_rq_direct(self, task_id: str) -> Optional[Task]:
|
||||
try:
|
||||
_log.debug(f"Checking RQ for task {task_id}")
|
||||
|
||||
temp_task = Task(
|
||||
task_id=task_id,
|
||||
task_type="convert",
|
||||
task_status=TaskStatus.PENDING,
|
||||
processing_meta={
|
||||
"num_docs": 0,
|
||||
"num_processed": 0,
|
||||
"num_succeeded": 0,
|
||||
"num_failed": 0,
|
||||
},
|
||||
)
|
||||
|
||||
original_task = self.tasks.get(task_id)
|
||||
self.tasks[task_id] = temp_task
|
||||
|
||||
try:
|
||||
await super()._update_task_from_rq(task_id) # type: ignore[misc]
|
||||
|
||||
updated_task = self.tasks.get(task_id)
|
||||
if updated_task and updated_task.task_status != TaskStatus.PENDING:
|
||||
_log.debug(f"RQ task {task_id}: {updated_task.task_status}")
|
||||
|
||||
# Store result key if available
|
||||
if task_id in self._task_result_keys:
|
||||
try:
|
||||
async with redis.Redis(
|
||||
connection_pool=self._redis_pool
|
||||
) as r:
|
||||
await r.set(
|
||||
f"{self.redis_prefix}{task_id}:result_key",
|
||||
self._task_result_keys[task_id],
|
||||
ex=86400,
|
||||
)
|
||||
_log.debug(f"Stored result key for {task_id}")
|
||||
except Exception as e:
|
||||
_log.error(f"Store result key {task_id}: {e}")
|
||||
|
||||
return updated_task
|
||||
return None
|
||||
|
||||
finally:
|
||||
# Restore original task state
|
||||
if original_task:
|
||||
self.tasks[task_id] = original_task
|
||||
elif task_id in self.tasks and self.tasks[task_id] == temp_task:
|
||||
# Only remove if it's still our temp task
|
||||
del self.tasks[task_id]
|
||||
|
||||
except Exception as e:
|
||||
_log.error(f"RQ check {task_id}: {e}")
|
||||
return None
|
||||
|
||||
async def get_raw_task(self, task_id: str) -> Task:
|
||||
if task_id in self.tasks:
|
||||
return self.tasks[task_id]
|
||||
|
||||
task = await self._get_task_from_redis(task_id)
|
||||
if task:
|
||||
self.tasks[task_id] = task
|
||||
return task
|
||||
|
||||
try:
|
||||
parent_task = await super().get_raw_task(task_id) # type: ignore[misc]
|
||||
await self._store_task_in_redis(parent_task)
|
||||
return parent_task
|
||||
except TaskNotFoundError:
|
||||
raise
|
||||
|
||||
async def _store_task_in_redis(self, task: Task) -> None:
|
||||
try:
|
||||
meta: Any = task.processing_meta
|
||||
if hasattr(meta, "model_dump"):
|
||||
meta = meta.model_dump()
|
||||
elif not isinstance(meta, dict):
|
||||
meta = {
|
||||
"num_docs": 0,
|
||||
"num_processed": 0,
|
||||
"num_succeeded": 0,
|
||||
"num_failed": 0,
|
||||
}
|
||||
|
||||
data: dict[str, Any] = {
|
||||
"task_id": task.task_id,
|
||||
"task_type": task.task_type.value
|
||||
if hasattr(task.task_type, "value")
|
||||
else str(task.task_type),
|
||||
"task_status": task.task_status.value,
|
||||
"processing_meta": meta,
|
||||
}
|
||||
async with redis.Redis(connection_pool=self._redis_pool) as r:
|
||||
await r.set(
|
||||
f"{self.redis_prefix}{task.task_id}:metadata",
|
||||
json.dumps(data),
|
||||
ex=86400,
|
||||
)
|
||||
except Exception as e:
|
||||
_log.error(f"Store task {task.task_id}: {e}")
|
||||
|
||||
async def enqueue(self, **kwargs): # type: ignore[override]
|
||||
task = await super().enqueue(**kwargs) # type: ignore[misc]
|
||||
await self._store_task_in_redis(task)
|
||||
return task
|
||||
|
||||
async def task_result(self, task_id: str): # type: ignore[override]
|
||||
result = await super().task_result(task_id) # type: ignore[misc]
|
||||
if result is not None:
|
||||
return result
|
||||
|
||||
try:
|
||||
async with redis.Redis(connection_pool=self._redis_pool) as r:
|
||||
result_key = await r.get(f"{self.redis_prefix}{task_id}:result_key")
|
||||
if result_key:
|
||||
self._task_result_keys[task_id] = result_key.decode("utf-8")
|
||||
return await super().task_result(task_id) # type: ignore[misc]
|
||||
except Exception as e:
|
||||
_log.error(f"Redis result key {task_id}: {e}")
|
||||
|
||||
return None
|
||||
|
||||
async def _update_task_from_rq(self, task_id: str) -> None:
|
||||
original_status = (
|
||||
self.tasks[task_id].task_status if task_id in self.tasks else None
|
||||
)
|
||||
|
||||
await super()._update_task_from_rq(task_id) # type: ignore[misc]
|
||||
|
||||
if task_id in self.tasks:
|
||||
new_status = self.tasks[task_id].task_status
|
||||
if original_status != new_status:
|
||||
_log.debug(f"Task {task_id} status: {original_status} -> {new_status}")
|
||||
await self._store_task_in_redis(self.tasks[task_id])
|
||||
|
||||
if task_id in self._task_result_keys:
|
||||
try:
|
||||
async with redis.Redis(connection_pool=self._redis_pool) as r:
|
||||
await r.set(
|
||||
f"{self.redis_prefix}{task_id}:result_key",
|
||||
self._task_result_keys[task_id],
|
||||
ex=86400,
|
||||
)
|
||||
except Exception as e:
|
||||
_log.error(f"Store result key {task_id}: {e}")
|
||||
|
||||
|
||||
@lru_cache
|
||||
@@ -20,6 +278,7 @@ def get_async_orchestrator() -> BaseOrchestrator:
|
||||
local_config = LocalOrchestratorConfig(
|
||||
num_workers=docling_serve_settings.eng_loc_num_workers,
|
||||
shared_models=docling_serve_settings.eng_loc_share_models,
|
||||
scratch_dir=get_scratch(),
|
||||
)
|
||||
|
||||
cm_config = DoclingConverterManagerConfig(
|
||||
@@ -29,10 +288,34 @@ def get_async_orchestrator() -> BaseOrchestrator:
|
||||
allow_external_plugins=docling_serve_settings.allow_external_plugins,
|
||||
max_num_pages=docling_serve_settings.max_num_pages,
|
||||
max_file_size=docling_serve_settings.max_file_size,
|
||||
queue_max_size=docling_serve_settings.queue_max_size,
|
||||
ocr_batch_size=docling_serve_settings.ocr_batch_size,
|
||||
layout_batch_size=docling_serve_settings.layout_batch_size,
|
||||
table_batch_size=docling_serve_settings.table_batch_size,
|
||||
batch_polling_interval_seconds=docling_serve_settings.batch_polling_interval_seconds,
|
||||
)
|
||||
cm = DoclingConverterManager(config=cm_config)
|
||||
|
||||
return LocalOrchestrator(config=local_config, converter_manager=cm)
|
||||
|
||||
elif docling_serve_settings.eng_kind == AsyncEngine.RQ:
|
||||
from docling_jobkit.orchestrators.rq.orchestrator import (
|
||||
RQOrchestrator,
|
||||
RQOrchestratorConfig,
|
||||
)
|
||||
|
||||
class RedisAwareRQOrchestrator(RedisTaskStatusMixin, RQOrchestrator): # type: ignore[misc]
|
||||
pass
|
||||
|
||||
rq_config = RQOrchestratorConfig(
|
||||
redis_url=docling_serve_settings.eng_rq_redis_url,
|
||||
results_prefix=docling_serve_settings.eng_rq_results_prefix,
|
||||
sub_channel=docling_serve_settings.eng_rq_sub_channel,
|
||||
scratch_dir=get_scratch(),
|
||||
)
|
||||
|
||||
return RedisAwareRQOrchestrator(config=rq_config)
|
||||
|
||||
elif docling_serve_settings.eng_kind == AsyncEngine.KFP:
|
||||
from docling_jobkit.orchestrators.kfp.orchestrator import (
|
||||
KfpOrchestrator,
|
||||
|
||||
@@ -1,317 +1,78 @@
|
||||
import asyncio
|
||||
import logging
|
||||
import os
|
||||
import shutil
|
||||
import time
|
||||
from collections.abc import Iterable
|
||||
from pathlib import Path
|
||||
from typing import Union
|
||||
|
||||
import httpx
|
||||
from fastapi import BackgroundTasks, HTTPException
|
||||
from fastapi.responses import FileResponse
|
||||
from fastapi import BackgroundTasks, Response
|
||||
|
||||
from docling.datamodel.base_models import OutputFormat
|
||||
from docling.datamodel.document import ConversionResult, ConversionStatus
|
||||
from docling_core.types.doc import ImageRefMode
|
||||
from docling_jobkit.datamodel.convert import ConvertDocumentsOptions
|
||||
from docling_jobkit.datamodel.task import Task
|
||||
from docling_jobkit.datamodel.task_targets import InBodyTarget, PutTarget, TaskTarget
|
||||
from docling_jobkit.datamodel.result import (
|
||||
ChunkedDocumentResult,
|
||||
DoclingTaskResult,
|
||||
ExportResult,
|
||||
RemoteTargetResult,
|
||||
ZipArchiveResult,
|
||||
)
|
||||
from docling_jobkit.orchestrators.base_orchestrator import (
|
||||
BaseOrchestrator,
|
||||
)
|
||||
|
||||
from docling_serve.datamodel.responses import (
|
||||
ChunkDocumentResponse,
|
||||
ConvertDocumentResponse,
|
||||
DocumentResponse,
|
||||
PresignedUrlConvertDocumentResponse,
|
||||
)
|
||||
from docling_serve.settings import docling_serve_settings
|
||||
from docling_serve.storage import get_scratch
|
||||
|
||||
_log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def _export_document_as_content(
|
||||
conv_res: ConversionResult,
|
||||
export_json: bool,
|
||||
export_html: bool,
|
||||
export_md: bool,
|
||||
export_txt: bool,
|
||||
export_doctags: bool,
|
||||
image_mode: ImageRefMode,
|
||||
md_page_break_placeholder: str,
|
||||
):
|
||||
document = DocumentResponse(filename=conv_res.input.file.name)
|
||||
|
||||
if conv_res.status == ConversionStatus.SUCCESS:
|
||||
new_doc = conv_res.document._make_copy_with_refmode(
|
||||
Path(), image_mode, page_no=None
|
||||
)
|
||||
|
||||
# Create the different formats
|
||||
if export_json:
|
||||
document.json_content = new_doc
|
||||
if export_html:
|
||||
document.html_content = new_doc.export_to_html(image_mode=image_mode)
|
||||
if export_txt:
|
||||
document.text_content = new_doc.export_to_markdown(
|
||||
strict_text=True,
|
||||
image_mode=image_mode,
|
||||
)
|
||||
if export_md:
|
||||
document.md_content = new_doc.export_to_markdown(
|
||||
image_mode=image_mode,
|
||||
page_break_placeholder=md_page_break_placeholder or None,
|
||||
)
|
||||
if export_doctags:
|
||||
document.doctags_content = new_doc.export_to_doctags()
|
||||
elif conv_res.status == ConversionStatus.SKIPPED:
|
||||
raise HTTPException(status_code=400, detail=conv_res.errors)
|
||||
else:
|
||||
raise HTTPException(status_code=500, detail=conv_res.errors)
|
||||
|
||||
return document
|
||||
|
||||
|
||||
def _export_documents_as_files(
|
||||
conv_results: Iterable[ConversionResult],
|
||||
output_dir: Path,
|
||||
export_json: bool,
|
||||
export_html: bool,
|
||||
export_md: bool,
|
||||
export_txt: bool,
|
||||
export_doctags: bool,
|
||||
image_export_mode: ImageRefMode,
|
||||
md_page_break_placeholder: str,
|
||||
) -> ConversionStatus:
|
||||
success_count = 0
|
||||
failure_count = 0
|
||||
|
||||
# Default failure in case results is empty
|
||||
conv_result = ConversionStatus.FAILURE
|
||||
|
||||
artifacts_dir = Path("artifacts/") # will be relative to the fname
|
||||
|
||||
for conv_res in conv_results:
|
||||
conv_result = conv_res.status
|
||||
if conv_res.status == ConversionStatus.SUCCESS:
|
||||
success_count += 1
|
||||
doc_filename = conv_res.input.file.stem
|
||||
|
||||
# Export JSON format:
|
||||
if export_json:
|
||||
fname = output_dir / f"{doc_filename}.json"
|
||||
_log.info(f"writing JSON output to {fname}")
|
||||
conv_res.document.save_as_json(
|
||||
filename=fname,
|
||||
image_mode=image_export_mode,
|
||||
artifacts_dir=artifacts_dir,
|
||||
)
|
||||
|
||||
# Export HTML format:
|
||||
if export_html:
|
||||
fname = output_dir / f"{doc_filename}.html"
|
||||
_log.info(f"writing HTML output to {fname}")
|
||||
conv_res.document.save_as_html(
|
||||
filename=fname,
|
||||
image_mode=image_export_mode,
|
||||
artifacts_dir=artifacts_dir,
|
||||
)
|
||||
|
||||
# Export Text format:
|
||||
if export_txt:
|
||||
fname = output_dir / f"{doc_filename}.txt"
|
||||
_log.info(f"writing TXT output to {fname}")
|
||||
conv_res.document.save_as_markdown(
|
||||
filename=fname,
|
||||
strict_text=True,
|
||||
image_mode=ImageRefMode.PLACEHOLDER,
|
||||
)
|
||||
|
||||
# Export Markdown format:
|
||||
if export_md:
|
||||
fname = output_dir / f"{doc_filename}.md"
|
||||
_log.info(f"writing Markdown output to {fname}")
|
||||
conv_res.document.save_as_markdown(
|
||||
filename=fname,
|
||||
artifacts_dir=artifacts_dir,
|
||||
image_mode=image_export_mode,
|
||||
page_break_placeholder=md_page_break_placeholder or None,
|
||||
)
|
||||
|
||||
# Export Document Tags format:
|
||||
if export_doctags:
|
||||
fname = output_dir / f"{doc_filename}.doctags"
|
||||
_log.info(f"writing Doc Tags output to {fname}")
|
||||
conv_res.document.save_as_doctags(filename=fname)
|
||||
|
||||
else:
|
||||
_log.warning(f"Document {conv_res.input.file} failed to convert.")
|
||||
failure_count += 1
|
||||
|
||||
_log.info(
|
||||
f"Processed {success_count + failure_count} docs, "
|
||||
f"of which {failure_count} failed"
|
||||
)
|
||||
return conv_result
|
||||
|
||||
|
||||
def process_results(
|
||||
conversion_options: ConvertDocumentsOptions,
|
||||
target: TaskTarget,
|
||||
conv_results: Iterable[ConversionResult],
|
||||
work_dir: Path,
|
||||
) -> Union[ConvertDocumentResponse, FileResponse, PresignedUrlConvertDocumentResponse]:
|
||||
# Let's start by processing the documents
|
||||
try:
|
||||
start_time = time.monotonic()
|
||||
|
||||
# Convert the iterator to a list to count the number of results and get timings
|
||||
# As it's an iterator (lazy evaluation), it will also start the conversion
|
||||
conv_results = list(conv_results)
|
||||
|
||||
processing_time = time.monotonic() - start_time
|
||||
|
||||
_log.info(
|
||||
f"Processed {len(conv_results)} docs in {processing_time:.2f} seconds."
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
if len(conv_results) == 0:
|
||||
raise HTTPException(
|
||||
status_code=500, detail="No documents were generated by Docling."
|
||||
)
|
||||
|
||||
# We have some results, let's prepare the response
|
||||
response: Union[
|
||||
FileResponse, ConvertDocumentResponse, PresignedUrlConvertDocumentResponse
|
||||
]
|
||||
|
||||
# Booleans to know what to export
|
||||
export_json = OutputFormat.JSON in conversion_options.to_formats
|
||||
export_html = OutputFormat.HTML in conversion_options.to_formats
|
||||
export_md = OutputFormat.MARKDOWN in conversion_options.to_formats
|
||||
export_txt = OutputFormat.TEXT in conversion_options.to_formats
|
||||
export_doctags = OutputFormat.DOCTAGS in conversion_options.to_formats
|
||||
|
||||
# Only 1 document was processed, and we are not returning it as a file
|
||||
if len(conv_results) == 1 and isinstance(target, InBodyTarget):
|
||||
conv_res = conv_results[0]
|
||||
document = _export_document_as_content(
|
||||
conv_res,
|
||||
export_json=export_json,
|
||||
export_html=export_html,
|
||||
export_md=export_md,
|
||||
export_txt=export_txt,
|
||||
export_doctags=export_doctags,
|
||||
image_mode=conversion_options.image_export_mode,
|
||||
md_page_break_placeholder=conversion_options.md_page_break_placeholder,
|
||||
)
|
||||
|
||||
response = ConvertDocumentResponse(
|
||||
document=document,
|
||||
status=conv_res.status,
|
||||
processing_time=processing_time,
|
||||
timings=conv_res.timings,
|
||||
)
|
||||
|
||||
# Multiple documents were processed, or we are forced returning as a file
|
||||
else:
|
||||
# Temporary directory to store the outputs
|
||||
output_dir = work_dir / "output"
|
||||
output_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Worker pid to use in archive identification as we may have multiple workers
|
||||
os.getpid()
|
||||
|
||||
# Export the documents
|
||||
conv_result = _export_documents_as_files(
|
||||
conv_results=conv_results,
|
||||
output_dir=output_dir,
|
||||
export_json=export_json,
|
||||
export_html=export_html,
|
||||
export_md=export_md,
|
||||
export_txt=export_txt,
|
||||
export_doctags=export_doctags,
|
||||
image_export_mode=conversion_options.image_export_mode,
|
||||
md_page_break_placeholder=conversion_options.md_page_break_placeholder,
|
||||
)
|
||||
|
||||
files = os.listdir(output_dir)
|
||||
if len(files) == 0:
|
||||
raise HTTPException(status_code=500, detail="No documents were exported.")
|
||||
|
||||
file_path = work_dir / "converted_docs.zip"
|
||||
shutil.make_archive(
|
||||
base_name=str(file_path.with_suffix("")),
|
||||
format="zip",
|
||||
root_dir=output_dir,
|
||||
)
|
||||
|
||||
# Other cleanups after the response is sent
|
||||
# Output directory
|
||||
# background_tasks.add_task(shutil.rmtree, work_dir, ignore_errors=True)
|
||||
|
||||
if isinstance(target, PutTarget):
|
||||
try:
|
||||
with open(file_path, "rb") as file_data:
|
||||
r = httpx.put(str(target.url), files={"file": file_data})
|
||||
r.raise_for_status()
|
||||
response = PresignedUrlConvertDocumentResponse(
|
||||
status=conv_result,
|
||||
processing_time=processing_time,
|
||||
)
|
||||
except Exception as exc:
|
||||
_log.error("An error occour while uploading zip to s3", exc_info=exc)
|
||||
raise HTTPException(
|
||||
status_code=500, detail="An error occour while uploading zip to s3."
|
||||
)
|
||||
else:
|
||||
response = FileResponse(
|
||||
file_path, filename=file_path.name, media_type="application/zip"
|
||||
)
|
||||
|
||||
return response
|
||||
|
||||
|
||||
async def prepare_response(
|
||||
task: Task, orchestrator: BaseOrchestrator, background_tasks: BackgroundTasks
|
||||
task_id: str,
|
||||
task_result: DoclingTaskResult,
|
||||
orchestrator: BaseOrchestrator,
|
||||
background_tasks: BackgroundTasks,
|
||||
):
|
||||
if task.results is None:
|
||||
raise HTTPException(
|
||||
status_code=404,
|
||||
detail="Task result not found. Please wait for a completion status.",
|
||||
)
|
||||
assert task.options is not None
|
||||
|
||||
work_dir = get_scratch() / task.task_id
|
||||
response = process_results(
|
||||
conversion_options=task.options,
|
||||
target=task.target,
|
||||
conv_results=task.results,
|
||||
work_dir=work_dir,
|
||||
response: (
|
||||
Response
|
||||
| ConvertDocumentResponse
|
||||
| PresignedUrlConvertDocumentResponse
|
||||
| ChunkDocumentResponse
|
||||
)
|
||||
|
||||
if work_dir.exists():
|
||||
task.scratch_dir = work_dir
|
||||
if not isinstance(response, FileResponse):
|
||||
_log.warning(
|
||||
f"Task {task.task_id=} produced content in {work_dir=} but the response is not a file."
|
||||
)
|
||||
shutil.rmtree(work_dir, ignore_errors=True)
|
||||
if isinstance(task_result.result, ExportResult):
|
||||
response = ConvertDocumentResponse(
|
||||
document=task_result.result.content,
|
||||
status=task_result.result.status,
|
||||
processing_time=task_result.processing_time,
|
||||
timings=task_result.result.timings,
|
||||
errors=task_result.result.errors,
|
||||
)
|
||||
elif isinstance(task_result.result, ZipArchiveResult):
|
||||
response = Response(
|
||||
content=task_result.result.content,
|
||||
media_type="application/zip",
|
||||
headers={
|
||||
"Content-Disposition": 'attachment; filename="converted_docs.zip"'
|
||||
},
|
||||
)
|
||||
elif isinstance(task_result.result, RemoteTargetResult):
|
||||
response = PresignedUrlConvertDocumentResponse(
|
||||
processing_time=task_result.processing_time,
|
||||
num_converted=task_result.num_converted,
|
||||
num_succeeded=task_result.num_succeeded,
|
||||
num_failed=task_result.num_failed,
|
||||
)
|
||||
elif isinstance(task_result.result, ChunkedDocumentResult):
|
||||
response = ChunkDocumentResponse(
|
||||
chunks=task_result.result.chunks,
|
||||
documents=task_result.result.documents,
|
||||
processing_time=task_result.processing_time,
|
||||
)
|
||||
else:
|
||||
raise ValueError("Unknown result type")
|
||||
|
||||
if docling_serve_settings.single_use_results:
|
||||
if task.scratch_dir is not None:
|
||||
background_tasks.add_task(
|
||||
shutil.rmtree, task.scratch_dir, ignore_errors=True
|
||||
)
|
||||
|
||||
async def _remove_task_impl():
|
||||
await asyncio.sleep(docling_serve_settings.result_removal_delay)
|
||||
await orchestrator.delete_task(task_id=task.task_id)
|
||||
await orchestrator.delete_task(task_id=task_id)
|
||||
|
||||
async def _remove_task():
|
||||
asyncio.create_task(_remove_task_impl()) # noqa: RUF006
|
||||
|
||||
@@ -28,6 +28,7 @@ class UvicornSettings(BaseSettings):
|
||||
class AsyncEngine(str, enum.Enum):
|
||||
LOCAL = "local"
|
||||
KFP = "kfp"
|
||||
RQ = "rq"
|
||||
|
||||
|
||||
class DoclingServeSettings(BaseSettings):
|
||||
@@ -50,10 +51,20 @@ class DoclingServeSettings(BaseSettings):
|
||||
enable_remote_services: bool = False
|
||||
allow_external_plugins: bool = False
|
||||
|
||||
api_key: str = ""
|
||||
|
||||
max_document_timeout: float = 3_600 * 24 * 7 # 7 days
|
||||
max_num_pages: int = sys.maxsize
|
||||
max_file_size: int = sys.maxsize
|
||||
|
||||
# Threading pipeline
|
||||
queue_max_size: Optional[int] = None
|
||||
ocr_batch_size: Optional[int] = None
|
||||
layout_batch_size: Optional[int] = None
|
||||
table_batch_size: Optional[int] = None
|
||||
batch_polling_interval_seconds: Optional[float] = None
|
||||
|
||||
sync_poll_interval: int = 2 # seconds
|
||||
max_sync_wait: int = 120 # 2 minutes
|
||||
|
||||
cors_origins: list[str] = ["*"]
|
||||
@@ -64,6 +75,10 @@ class DoclingServeSettings(BaseSettings):
|
||||
# Local engine
|
||||
eng_loc_num_workers: int = 2
|
||||
eng_loc_share_models: bool = False
|
||||
# RQ engine
|
||||
eng_rq_redis_url: str = ""
|
||||
eng_rq_results_prefix: str = "docling:results"
|
||||
eng_rq_sub_channel: str = "docling:updates"
|
||||
# KFP engine
|
||||
eng_kfp_endpoint: Optional[AnyUrl] = None
|
||||
eng_kfp_token: Optional[str] = None
|
||||
@@ -87,6 +102,10 @@ class DoclingServeSettings(BaseSettings):
|
||||
"KFP is not yet working. To enable the development version, you must set DOCLING_SERVE_ENG_KFP_EXPERIMENTAL=true."
|
||||
)
|
||||
|
||||
if self.eng_kind == AsyncEngine.RQ:
|
||||
if not self.eng_rq_redis_url:
|
||||
raise ValueError("RQ Redis url is required when using the RQ engine.")
|
||||
|
||||
return self
|
||||
|
||||
|
||||
|
||||
@@ -30,25 +30,47 @@ class WebsocketNotifier(BaseNotifier):
|
||||
if task_id not in self.task_subscribers:
|
||||
raise RuntimeError(f"Task {task_id} does not have a subscribers list.")
|
||||
|
||||
task = await self.orchestrator.get_raw_task(task_id=task_id)
|
||||
task_queue_position = await self.orchestrator.get_queue_position(task_id)
|
||||
msg = TaskStatusResponse(
|
||||
task_id=task.task_id,
|
||||
task_status=task.task_status,
|
||||
task_position=task_queue_position,
|
||||
task_meta=task.processing_meta,
|
||||
)
|
||||
for websocket in self.task_subscribers[task_id]:
|
||||
await websocket.send_text(
|
||||
WebsocketMessage(message=MessageKind.UPDATE, task=msg).model_dump_json()
|
||||
try:
|
||||
# Get task status from Redis or RQ directly instead of in-memory registry
|
||||
task = await self.orchestrator.task_status(task_id=task_id)
|
||||
task_queue_position = await self.orchestrator.get_queue_position(task_id)
|
||||
msg = TaskStatusResponse(
|
||||
task_id=task.task_id,
|
||||
task_type=task.task_type,
|
||||
task_status=task.task_status,
|
||||
task_position=task_queue_position,
|
||||
task_meta=task.processing_meta,
|
||||
)
|
||||
if task.is_completed():
|
||||
await websocket.close()
|
||||
for websocket in self.task_subscribers[task_id]:
|
||||
await websocket.send_text(
|
||||
WebsocketMessage(
|
||||
message=MessageKind.UPDATE, task=msg
|
||||
).model_dump_json()
|
||||
)
|
||||
if task.is_completed():
|
||||
await websocket.close()
|
||||
except Exception as e:
|
||||
# Log the error but don't crash the notifier
|
||||
import logging
|
||||
|
||||
_log = logging.getLogger(__name__)
|
||||
_log.error(f"Error notifying subscribers for task {task_id}: {e}")
|
||||
|
||||
async def notify_queue_positions(self):
|
||||
"""Notify all subscribers of pending tasks about queue position updates."""
|
||||
for task_id in self.task_subscribers.keys():
|
||||
# notify only pending tasks
|
||||
if self.orchestrator.tasks[task_id].task_status != TaskStatus.PENDING:
|
||||
continue
|
||||
try:
|
||||
# Check task status directly from Redis or RQ
|
||||
task = await self.orchestrator.task_status(task_id)
|
||||
|
||||
await self.notify_task_subscribers(task_id)
|
||||
# Notify only pending tasks
|
||||
if task.task_status == TaskStatus.PENDING:
|
||||
await self.notify_task_subscribers(task_id)
|
||||
except Exception as e:
|
||||
# Log the error but don't crash the notifier
|
||||
import logging
|
||||
|
||||
_log = logging.getLogger(__name__)
|
||||
_log.error(
|
||||
f"Error checking task {task_id} status for queue position notification: {e}"
|
||||
)
|
||||
|
||||
@@ -3,7 +3,9 @@
|
||||
This documentation pages explore the webserver configurations, runtime options, deployment examples as well as development best practices.
|
||||
|
||||
- [Configuration](./configuration.md)
|
||||
- [Advance usage](./usage.md)
|
||||
- [Handling models](./models.md)
|
||||
- [Usage](./usage.md)
|
||||
- [Deployment](./deployment.md)
|
||||
- [MCP](./mcp.md)
|
||||
- [Development](./development.md)
|
||||
- [`v1` migration](./v1_migration.md)
|
||||
|
||||
@@ -46,13 +46,33 @@ THe following table describes the options to configure the Docling Serve app.
|
||||
| | `DOCLING_SERVE_MAX_DOCUMENT_TIMEOUT` | `604800` (7 days) | The maximum time for processing a document. |
|
||||
| | `DOCLING_SERVE_MAX_NUM_PAGES` | | The maximum number of pages for a document to be processed. |
|
||||
| | `DOCLING_SERVE_MAX_FILE_SIZE` | | The maximum file size for a document to be processed. |
|
||||
| | `DOCLING_SERVE_SYNC_POLL_INTERVAL` | `2` | Number of seconds to sleep between polling the task status in the sync endpoints. |
|
||||
| | `DOCLING_SERVE_MAX_SYNC_WAIT` | `120` | Max number of seconds a synchronous endpoint is waiting for the task completion. |
|
||||
| | `DOCLING_SERVE_LOAD_MODELS_AT_BOOT` | `True` | If enabled, the models for the default options will be loaded at boot. |
|
||||
| | `DOCLING_SERVE_OPTIONS_CACHE_SIZE` | `2` | How many DocumentConveter objects (including their loaded models) to keep in the cache. |
|
||||
| | `DOCLING_SERVE_QUEUE_MAX_SIZE` | | Size of the pages queue. Potentially so many pages opened at the same time. |
|
||||
| | `DOCLING_SERVE_OCR_BATCH_SIZE` | | Batch size for the OCR stage. |
|
||||
| | `DOCLING_SERVE_LAYOUT_BATCH_SIZE` | | Batch size for the layout detection stage. |
|
||||
| | `DOCLING_SERVE_TABLE_BATCH_SIZE` | | Batch size for the table structure stage. |
|
||||
| | `DOCLING_SERVE_BATCH_POLLING_INTERVAL_SECONDS` | | Wait time for gathering pages before starting a stage processing. |
|
||||
| | `DOCLING_SERVE_CORS_ORIGINS` | `["*"]` | A list of origins that should be permitted to make cross-origin requests. |
|
||||
| | `DOCLING_SERVE_CORS_METHODS` | `["*"]` | A list of HTTP methods that should be allowed for cross-origin requests. |
|
||||
| | `DOCLING_SERVE_CORS_HEADERS` | `["*"]` | A list of HTTP request headers that should be supported for cross-origin requests. |
|
||||
| | `DOCLING_SERVE_ENG_KIND` | `local` | The compute engine to use for the async tasks. Possible values are `local` and `kfp`. See below for more configurations of the engines. |
|
||||
| | `DOCLING_SERVE_API_KEY` | | If specified, all the API requests must contain the header `X-Api-Key` with this value. |
|
||||
| | `DOCLING_SERVE_ENG_KIND` | `local` | The compute engine to use for the async tasks. Possible values are `local`, `rq` and `kfp`. See below for more configurations of the engines. |
|
||||
|
||||
### Docling configuration
|
||||
|
||||
Some Docling settings, mostly about performance, are exposed as environment variable which can be used also when running Docling Serve.
|
||||
|
||||
| ENV | Default | Description |
|
||||
| ----|---------|-------------|
|
||||
| `DOCLING_NUM_THREADS` | `4` | Number of concurrent threads used for the `torch` CPU execution. |
|
||||
| `DOCLING_DEVICE` | | Device used for the model execution. Valid values are `cpu`, `cude`, `mps`. When unset, the best device is chosen. For CUDA-enabled environments, you can choose which GPU using the syntax `cuda:0`, `cuda:1`, ... |
|
||||
| `DOCLING_PERF_PAGE_BATCH_SIZE` | `4` | Number of pages processed in the same batch. |
|
||||
| `DOCLING_PERF_ELEMENTS_BATCH_SIZE` | `8` | Number of document items/elements processed in the same batch during enrichment. |
|
||||
| `DOCLING_DEBUG_PROFILE_PIPELINE_TIMINGS` | `false` | When enabled, Docling will provide detailed timings information. |
|
||||
|
||||
|
||||
### Compute engine
|
||||
|
||||
@@ -68,6 +88,16 @@ The following table describes the options to configure the Docling Serve local e
|
||||
| `DOCLING_SERVE_ENG_LOC_NUM_WORKERS` | 2 | Number of workers/threads processing the incoming tasks. |
|
||||
| `DOCLING_SERVE_ENG_LOC_SHARE_MODELS` | False | If true, each process will share the same models among all thread workers. Otherwise, one instance of the models is allocated for each worker thread. |
|
||||
|
||||
#### RQ engine
|
||||
|
||||
The following table describes the options to configure the Docling Serve RQ engine.
|
||||
|
||||
| ENV | Default | Description |
|
||||
|-----|---------|-------------|
|
||||
| `DOCLING_SERVE_ENG_RQ_REDIS_URL` | (required) | The connection Redis url, e.g. `redis://localhost:6373/` |
|
||||
| `DOCLING_SERVE_ENG_RQ_RESULTS_PREFIX` | `docling:results` | The prefix used for storing the results in Redis. |
|
||||
| `DOCLING_SERVE_ENG_RQ_SUB_CHANNEL` | `docling:updates` | The channel key name used for storing communicating updates between the workers and the orchestrator. |
|
||||
|
||||
#### KFP engine
|
||||
|
||||
The following table describes the options to configure the Docling Serve KFP engine.
|
||||
@@ -80,3 +110,10 @@ The following table describes the options to configure the Docling Serve KFP eng
|
||||
| `DOCLING_SERVE_ENG_KFP_SELF_CALLBACK_ENDPOINT` | | If set, it enables internal callbacks providing status update of the KFP job. Usually something like `https://NAME.NAMESPACE.svc.cluster.local:5001/v1/callback/task/progress`. |
|
||||
| `DOCLING_SERVE_ENG_KFP_SELF_CALLBACK_TOKEN_PATH` | | The token used for authenticating the progress callback. For cluster-internal workloads, use `/run/secrets/kubernetes.io/serviceaccount/token`. |
|
||||
| `DOCLING_SERVE_ENG_KFP_SELF_CALLBACK_CA_CERT_PATH` | | The CA certificate for the progress callback. For cluster-inetrnal workloads, use `/var/run/secrets/kubernetes.io/serviceaccount/service-ca.crt`. |
|
||||
|
||||
#### Gradio UI
|
||||
|
||||
When using Gradio UI and using the option to output conversion as file, Gradio uses cache to prevent files to be overwritten ([more info here](https://www.gradio.app/guides/file-access#the-gradio-cache)), and we defined the cache clean frequency of one hour to clean files older than 10hours. For situations that files need to be available to download from UI older than 10 hours, there is two options:
|
||||
|
||||
- Increase the older age of files to clean [here](https://github.com/docling-project/docling-serve/blob/main/docling_serve/gradio_ui.py#L483) to suffice the age desired;
|
||||
- Or set the clean up manually by defining the temporary dir of Gradio to use the same as `DOCLING_SERVE_SCRATCH_PATH` absolute path. This can be achieved by setting the environment variable `GRADIO_TEMP_DIR`, that can be done via command line `export GRADIO_TEMP_DIR="<same_path_as_scratch>"` or in `Dockerfile` using `ENV GRADIO_TEMP_DIR="<same_path_as_scratch>"`. After this, set the clean of cache to `None` [here](https://github.com/docling-project/docling-serve/blob/main/docling_serve/gradio_ui.py#L483). Now, the clean up of `DOCLING_SERVE_SCRATCH_PATH` will also clean the Gradio temporary dir. (If you use this option, please remember when reversing changes to remove the environment variable `GRADIO_TEMP_DIR`, otherwise may lead to files not be available to download).
|
||||
|
||||
192
docs/deploy-examples/docling-serve-rq-workers.yaml
Normal file
192
docs/deploy-examples/docling-serve-rq-workers.yaml
Normal file
@@ -0,0 +1,192 @@
|
||||
# This example deployment configures Docling Serve with a Service and RQ workers
|
||||
|
||||
# Create following secret
|
||||
# kubectl create secret generic docling-serve-rq-secrets --from-literal=REDIS_PASSWORD=myredispassword --from-literal=RQ_REDIS_URL=redis://:myredispassword@docling-serve-redis-service:6373/
|
||||
---
|
||||
apiVersion: v1
|
||||
kind: Service
|
||||
metadata:
|
||||
name: docling-serve
|
||||
labels:
|
||||
app: docling-serve
|
||||
component: docling-serve-api
|
||||
spec:
|
||||
ports:
|
||||
- name: http
|
||||
port: 5001
|
||||
targetPort: http
|
||||
selector:
|
||||
app: docling-serve
|
||||
component: docling-serve-api
|
||||
---
|
||||
kind: Deployment
|
||||
apiVersion: apps/v1
|
||||
metadata:
|
||||
name: docling-serve
|
||||
labels:
|
||||
app: docling-serve
|
||||
component: docling-serve-api
|
||||
spec:
|
||||
replicas: 1
|
||||
selector:
|
||||
matchLabels:
|
||||
app: docling-serve
|
||||
component: docling-serve-api
|
||||
template:
|
||||
metadata:
|
||||
labels:
|
||||
app: docling-serve
|
||||
component: docling-serve-api
|
||||
spec:
|
||||
restartPolicy: Always
|
||||
containers:
|
||||
- name: api
|
||||
resources:
|
||||
limits:
|
||||
cpu: 1
|
||||
memory: 8Gi
|
||||
requests:
|
||||
cpu: 250m
|
||||
memory: 1Gi
|
||||
env:
|
||||
- name: DOCLING_SERVE_ENABLE_UI
|
||||
value: 'true'
|
||||
- name: DOCLING_SERVE_ENG_KIND
|
||||
value: 'rq'
|
||||
- name: DOCLING_SERVE_ENG_RQ_REDIS_URL
|
||||
valueFrom:
|
||||
secretKeyRef:
|
||||
name: docling-serve-rq-secrets
|
||||
key: RQ_REDIS_URL
|
||||
ports:
|
||||
- name: http
|
||||
containerPort: 5001
|
||||
protocol: TCP
|
||||
imagePullPolicy: Always
|
||||
image: 'ghcr.io/docling-project/docling-serve-cpu'
|
||||
---
|
||||
kind: Deployment
|
||||
apiVersion: apps/v1
|
||||
metadata:
|
||||
name: docling-serve-rq-workers
|
||||
labels:
|
||||
app: docling-serve-rq-workers
|
||||
component: docling-serve-rq-worker
|
||||
spec:
|
||||
replicas: 2
|
||||
selector:
|
||||
matchLabels:
|
||||
app: docling-serve-rq-workers
|
||||
component: docling-serve-rq-worker
|
||||
template:
|
||||
metadata:
|
||||
labels:
|
||||
app: docling-serve-rq-workers
|
||||
component: docling-serve-rq-worker
|
||||
spec:
|
||||
restartPolicy: Always
|
||||
containers:
|
||||
- name: worker
|
||||
resources:
|
||||
limits:
|
||||
cpu: 1
|
||||
memory: 4Gi
|
||||
requests:
|
||||
cpu: 250m
|
||||
memory: 1Gi
|
||||
env:
|
||||
- name: DOCLING_SERVE_ENG_KIND
|
||||
value: 'rq'
|
||||
- name: DOCLING_SERVE_ENG_RQ_REDIS_URL
|
||||
valueFrom:
|
||||
secretKeyRef:
|
||||
name: docling-serve-rq-secrets
|
||||
key: RQ_REDIS_URL
|
||||
ports:
|
||||
- name: http
|
||||
containerPort: 5001
|
||||
protocol: TCP
|
||||
imagePullPolicy: Always
|
||||
image: 'ghcr.io/docling-project/docling-serve-cpu'
|
||||
command: ["docling-serve"]
|
||||
args: ["rq-worker"]
|
||||
---
|
||||
apiVersion: apps/v1
|
||||
kind: Deployment
|
||||
metadata:
|
||||
name: docling-serve-redis
|
||||
labels:
|
||||
app: docling-serve-redis
|
||||
spec:
|
||||
replicas: 1
|
||||
selector:
|
||||
matchLabels:
|
||||
app: docling-serve-redis
|
||||
template:
|
||||
metadata:
|
||||
labels:
|
||||
app: docling-serve-redis
|
||||
spec:
|
||||
restartPolicy: Always
|
||||
terminationGracePeriodSeconds: 30
|
||||
containers:
|
||||
- name: redis
|
||||
resources:
|
||||
limits:
|
||||
cpu: 1
|
||||
memory: 1Gi
|
||||
requests:
|
||||
cpu: 250m
|
||||
memory: 100Mi
|
||||
image: redis:latest
|
||||
command: ["redis-server"]
|
||||
args:
|
||||
- "--port"
|
||||
- "6373"
|
||||
- "--dir"
|
||||
- "/mnt/redis/data"
|
||||
- "--appendonly"
|
||||
- "yes"
|
||||
- "--requirepass"
|
||||
- "$(REDIS_PASSWORD)"
|
||||
ports:
|
||||
- containerPort: 6373
|
||||
env:
|
||||
- name: REDIS_PASSWORD
|
||||
valueFrom:
|
||||
secretKeyRef:
|
||||
name: docling-serve-rq-secrets
|
||||
key: REDIS_PASSWORD
|
||||
volumeMounts:
|
||||
- name: redis-data
|
||||
mountPath: /mnt/redis/data
|
||||
securityContext:
|
||||
fsGroup: 1004
|
||||
runAsNonRoot: true
|
||||
allowPrivilegeEscalation: false
|
||||
capabilities:
|
||||
drop:
|
||||
- ALL
|
||||
seccompProfile:
|
||||
type: RuntimeDefault
|
||||
volumes:
|
||||
- name: redis-data
|
||||
emptyDir:
|
||||
medium: Memory
|
||||
sizeLimit: 2Gi
|
||||
---
|
||||
apiVersion: v1
|
||||
kind: Service
|
||||
metadata:
|
||||
name: docling-serve-redis-service
|
||||
labels:
|
||||
app: docling-serve-redis
|
||||
spec:
|
||||
type: NodePort
|
||||
ports:
|
||||
- name: redis-service
|
||||
protocol: TCP
|
||||
port: 6373
|
||||
targetPort: 6373
|
||||
selector:
|
||||
app: docling-serve-redis
|
||||
@@ -35,7 +35,7 @@ curl -X 'POST' \
|
||||
-H "accept: application/json" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"http_sources": [{"url": "https://arxiv.org/pdf/2501.17887"}]
|
||||
"sources": [{"kind": "http", "url": "https://arxiv.org/pdf/2501.17887"}]
|
||||
}'
|
||||
```
|
||||
|
||||
@@ -148,7 +148,7 @@ curl -X 'POST' \
|
||||
-H "accept: application/json" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"http_sources": [{"url": "https://arxiv.org/pdf/2501.17887"}]
|
||||
"sources": [{"kind": "http", "url": "https://arxiv.org/pdf/2501.17887"}]
|
||||
}'
|
||||
```
|
||||
|
||||
@@ -221,10 +221,35 @@ curl -X 'POST' \
|
||||
-H "accept: application/json" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"http_sources": [{"url": "https://arxiv.org/pdf/2501.17887"}]
|
||||
"sources": [{"kind": "http", "url": "https://arxiv.org/pdf/2501.17887"}]
|
||||
}'
|
||||
```
|
||||
|
||||
### Multiple workers with RQ
|
||||
|
||||
Manifest example: [`docling-serve-rq-workers.yaml`](./deploy-examples/docling-serve-rq-workers.yaml)
|
||||
|
||||
This deployment example has the following features:
|
||||
|
||||
- Deployment configuration
|
||||
- Service configuration
|
||||
- Redis deployment
|
||||
- Multiple (2 by default) worker Pods
|
||||
|
||||
Install the app with:
|
||||
|
||||
- create k8s secret:
|
||||
|
||||
```sh
|
||||
kubectl create secret generic docling-serve-rq-secrets --from-literal=REDIS_PASSWORD=myredispassword --from-literal=RQ_REDIS_URL=redis://:myredispassword@docling-serve-redis-service:6373/
|
||||
```
|
||||
|
||||
- apply deployment manifest:
|
||||
|
||||
```sh
|
||||
oc apply -f docs/deploy-examples/docling-serve-rq-workers.yaml
|
||||
```
|
||||
|
||||
### Secure deployment with `oauth-proxy`
|
||||
|
||||
Manifest example: [docling-serve-oauth.yaml](./deploy-examples/docling-serve-oauth.yaml)
|
||||
@@ -258,7 +283,7 @@ curl -X 'POST' \
|
||||
-H "accept: application/json" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"http_sources": [{"url": "https://arxiv.org/pdf/2501.17887"}]
|
||||
"sources": [{"kind": "http", "url": "https://arxiv.org/pdf/2501.17887"}]
|
||||
}'
|
||||
```
|
||||
|
||||
@@ -291,7 +316,7 @@ task_id=$(curl -s -X 'POST' \
|
||||
-H "accept: application/json" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"http_sources": [{"url": "https://arxiv.org/pdf/2501.17887"}]
|
||||
"sources": [{"kind": "http", "url": "https://arxiv.org/pdf/2501.17887"}]
|
||||
}' \
|
||||
-c cookies.txt | grep -oP '"task_id":"\K[^"]+')
|
||||
```
|
||||
|
||||
22
docs/examples.md
Normal file
22
docs/examples.md
Normal file
@@ -0,0 +1,22 @@
|
||||
# Examples
|
||||
|
||||
## Split processing
|
||||
|
||||
The example of provided of split processing demonstrates how to split a PDF into chunks of pages and send them for conversion. At the end, it concatenates all split pages into a single conversion `JSON`.
|
||||
|
||||
At beginning of file there's variables to be used (and modified) such as:
|
||||
| Variable | Description |
|
||||
| ---------|-------------|
|
||||
| `path_to_pdf`| Path to PDF file to be split |
|
||||
| `pages_per_file`| The number of pages per chunk to split PDF |
|
||||
| `base_url`| Base url of the `docling-serve` host |
|
||||
| `out_dir`| The output folder of each conversion `JSON` of split PDF and the final concatenated `JSON` |
|
||||
|
||||
The example follows the following logic:
|
||||
- Get the number of pages of the `PDF`
|
||||
- Based on the number of chunks of pages, send each chunk to conversion using `page_range` parameter
|
||||
- Wait all conversions to finish
|
||||
- Get all conversion results
|
||||
- Save each conversion `JSON` result into a `JSON` file
|
||||
- Concatenate all `JSONs` into a single `JSON` using `docling` concatenate method
|
||||
- Save concatenated `JSON` into a `JSON` file
|
||||
39
docs/mcp.md
Normal file
39
docs/mcp.md
Normal file
@@ -0,0 +1,39 @@
|
||||
# Docling MCP in Docling Serve
|
||||
|
||||
The `docling-serve` container image includes all MCP (Model Communication Protocol) features starting from version v1.1.0. To leverage these features, you simply need to use a different entrypoint—no custom image builds or additional installations are required. The image provides the `docling-mcp-server` executable, which enables MCP functionality out of the box as of version v1.1.0 ([changelog](https://github.com/docling-project/docling-serve/blob/624f65d41b734e8b39ff267bc8bf6e766c376d6d/CHANGELOG.md)).
|
||||
|
||||
Read more on [Docling MCP](https://github.com/docling-project/docling-mcp) in its dedicated repository.
|
||||
|
||||
## Launching the MCP Service
|
||||
|
||||
By default, the container runs `docling-serve run` and exposes port 5001. To start the MCP service, override the entrypoint and specify your desired port mapping. For example:
|
||||
|
||||
```sh
|
||||
podman run -p 8000:8000 quay.io/docling-project/docling-serve -- docling-mcp-server --transport streamable-http --port 8000 --host 0.0.0.0
|
||||
```
|
||||
|
||||
This command starts the MCP server on port 8000, accessible at `http://localhost:8000/mcp`. Adjust the port and host as needed. Key arguments for `docling-mcp-server` include `--transport streamable-http` (HTTP transport for client connections), `--port <PORT>`, and `--host <HOST>` (use `0.0.0.0` to accept connections from any interface).
|
||||
|
||||
## Configuring MCP Clients
|
||||
|
||||
Most MCP-compatible clients, such as LM Studio and Claude Desktop, allow you to specify custom MCP server endpoints. The standard configuration uses a JSON block to define available MCP servers. For example, to connect to the Docling MCP server running on port 8000:
|
||||
|
||||
```json
|
||||
{
|
||||
"mcpServers": {
|
||||
"docling": {
|
||||
"url": "http://localhost:8000/mcp"
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
Insert this configuration in your client's settings where MCP servers are defined. Update the URL if you use a different port.
|
||||
|
||||
### LM Studio and Claude Desktop
|
||||
|
||||
Both LM Studio and Claude Desktop support MCP endpoints via configuration files or UI settings. Paste the above JSON block into the appropriate configuration section. For Claude Desktop, add the MCP server in the "Custom Model" or "MCP Server" section. For LM Studio, refer to its documentation for the location of the MCP server configuration.
|
||||
|
||||
### Other MCP Clients
|
||||
|
||||
Other clients, such as Continue Coding Assistant, also support custom MCP endpoints. Use the same configuration pattern: provide the MCP server URL ending with `/mcp` and ensure the port matches your container setup. See the [Docling MCP docs](https://github.com/docling-project/docling-mcp/tree/main/docs/integrations) for more details.
|
||||
175
docs/models.md
Normal file
175
docs/models.md
Normal file
@@ -0,0 +1,175 @@
|
||||
# Handling Models in Docling Serve
|
||||
|
||||
When enabling steps in Docling Serve that require extra models (such as picture classification, picture description, table detection, code recognition, formula extraction, or vision-language modules), you must ensure those models are available in the runtime environment. The standard container image includes only the default models. Any additional models must be downloaded and made available before use. If required models are missing, Docling Serve will raise runtime errors rather than downloading them automatically. This default choice wants to guarantee the system is not calling external services.
|
||||
|
||||
## Model Storage Location
|
||||
|
||||
Docling Serve loads models from the directory specified by the `DOCLING_SERVE_ARTIFACTS_PATH` environment variable. This path must be consistent across model download and runtime. When running with multiple workers or reload enabled, you must use the environment variable rather than the CLI argument for configuration [[source]](./configuration.md).
|
||||
|
||||
## Approaches for Making Extra Models Available
|
||||
|
||||
There are several ways to ensure required models are present:
|
||||
|
||||
### 1. Disable Local Models (Trigger Auto-Download)
|
||||
|
||||
You can configure the container to download all models at startup by clearing the artifacts path:
|
||||
|
||||
```sh
|
||||
podman run -d -p 5001:5001 --name docling-serve \
|
||||
-e DOCLING_SERVE_ARTIFACTS_PATH="" \
|
||||
-e DOCLING_SERVE_ENABLE_UI=true \
|
||||
quay.io/docling-project/docling-serve
|
||||
```
|
||||
|
||||
This approach is simple for local development but not recommended for production, as it increases startup time and depends on network availability.
|
||||
|
||||
### 2. Build a Custom Image with Pre-Downloaded Models
|
||||
|
||||
You can create a new image that includes the required models:
|
||||
|
||||
```Dockerfile
|
||||
FROM quay.io/docling-project/docling-serve
|
||||
RUN docling-tools models download smolvlm
|
||||
```
|
||||
|
||||
This method is suitable for production, as it ensures all models are present in the image and avoids runtime downloads.
|
||||
|
||||
### 3. Update the Entrypoint to Download Models Before Startup
|
||||
|
||||
You can override the entrypoint to download models before starting the service:
|
||||
|
||||
```sh
|
||||
podman run -p 5001:5001 -e DOCLING_SERVE_ENABLE_UI=true \
|
||||
quay.io/docling-project/docling-serve \
|
||||
-- sh -c 'exec docling-tools models download smolvlm && exec docling-serve run'
|
||||
```
|
||||
|
||||
This is useful for environments where you want to keep the base image unchanged but still automate model preparation.
|
||||
|
||||
### 4. Mount a Volume with Pre-Downloaded Models
|
||||
|
||||
Download models locally and mount them into the container:
|
||||
|
||||
```sh
|
||||
# Download the models locally
|
||||
docling-tools models download --all -o models
|
||||
|
||||
# Start the container with the local models folder
|
||||
podman run -p 5001:5001 \
|
||||
-v $(pwd)/models:/opt/app-root/src/models \
|
||||
-e DOCLING_SERVE_ARTIFACTS_PATH="/opt/app-root/src/models" \
|
||||
-e DOCLING_SERVE_ENABLE_UI=true \
|
||||
quay.io/docling-project/docling-serve
|
||||
```
|
||||
|
||||
This approach is robust for both local and production deployments, especially when using persistent storage.
|
||||
|
||||
## Kubernetes/Cluster Deployments
|
||||
|
||||
For Kubernetes or OpenShift clusters, the recommended approach is to use a PersistentVolumeClaim (PVC) for model storage, a Kubernetes Job to download models, and mount the volume into the deployment. This ensures models persist across pod restarts and scale-out scenarios.
|
||||
|
||||
### Example: PersistentVolumeClaim
|
||||
|
||||
```yaml
|
||||
apiVersion: v1
|
||||
kind: PersistentVolumeClaim
|
||||
metadata:
|
||||
name: docling-model-cache-pvc
|
||||
spec:
|
||||
accessModes:
|
||||
- ReadWriteOnce
|
||||
volumeMode: Filesystem
|
||||
resources:
|
||||
requests:
|
||||
storage: 10Gi
|
||||
```
|
||||
|
||||
If you don't want to use default storage class, set your custom storage class with following:
|
||||
|
||||
```yaml
|
||||
spec:
|
||||
...
|
||||
storageClassName: <Storage Class Name>
|
||||
```
|
||||
|
||||
Manifest example: [docling-model-cache-pvc.yaml](./deploy-examples/docling-model-cache-pvc.yaml)
|
||||
|
||||
### Example: Model Download Job
|
||||
|
||||
```yaml
|
||||
apiVersion: batch/v1
|
||||
kind: Job
|
||||
metadata:
|
||||
name: docling-model-cache-load
|
||||
spec:
|
||||
template:
|
||||
spec:
|
||||
containers:
|
||||
- name: loader
|
||||
image: ghcr.io/docling-project/docling-serve-cpu:main
|
||||
command:
|
||||
- docling-tools
|
||||
- models
|
||||
- download
|
||||
- '--output-dir=/modelcache'
|
||||
- 'layout'
|
||||
- 'tableformer'
|
||||
- 'code_formula'
|
||||
- 'picture_classifier'
|
||||
- 'smolvlm'
|
||||
- 'granite_vision'
|
||||
- 'easyocr'
|
||||
volumeMounts:
|
||||
- name: docling-model-cache
|
||||
mountPath: /modelcache
|
||||
volumes:
|
||||
- name: docling-model-cache
|
||||
persistentVolumeClaim:
|
||||
claimName: docling-model-cache-pvc
|
||||
restartPolicy: Never
|
||||
```
|
||||
|
||||
The job will mount the previously created persistent volume and execute command similar to how we would load models locally:
|
||||
`docling-tools models download --output-dir <MOUNT-PATH> [LIST_OF_MODELS]`
|
||||
|
||||
In manifest, we specify desired models individually, or we can use `--all` parameter to download all models.
|
||||
|
||||
Manifest example: [docling-model-cache-job.yaml](./deploy-examples/docling-model-cache-job.yaml)
|
||||
|
||||
### Example: Deployment with Mounted Volume
|
||||
|
||||
```yaml
|
||||
spec:
|
||||
template:
|
||||
spec:
|
||||
containers:
|
||||
- name: api
|
||||
env:
|
||||
- name: DOCLING_SERVE_ARTIFACTS_PATH
|
||||
value: '/modelcache'
|
||||
volumeMounts:
|
||||
- name: docling-model-cache
|
||||
mountPath: /modelcache
|
||||
volumes:
|
||||
- name: docling-model-cache
|
||||
persistentVolumeClaim:
|
||||
claimName: docling-model-cache-pvc
|
||||
```
|
||||
|
||||
The value of `DOCLING_SERVE_ARTIFACTS_PATH` must match the mount path where models are stored.
|
||||
|
||||
Now, when docling-serve is executing tasks, the underlying docling installation will load model weights from mounted volume.
|
||||
|
||||
Manifest example: [docling-model-cache-deployment.yaml](./deploy-examples/docling-model-cache-deployment.yaml)
|
||||
|
||||
## Local Docker Execution
|
||||
|
||||
For local Docker or Podman execution, you can use any of the approaches above. Mounting a local directory with pre-downloaded models is the most reliable for repeated runs and avoids network dependencies.
|
||||
|
||||
## Troubleshooting and Best Practices
|
||||
|
||||
- If a required model is missing from the artifacts path, Docling Serve will raise a runtime error.
|
||||
- Always ensure the value of `DOCLING_SERVE_ARTIFACTS_PATH` matches the directory where models are stored and mounted.
|
||||
- For production and cluster environments, prefer persistent storage and pre-loading models via a dedicated job.
|
||||
|
||||
For more details and YAML manifest examples, see the [deployment documentation](./deployment.md).
|
||||
@@ -1,103 +0,0 @@
|
||||
# Pre-loading models for docling
|
||||
|
||||
This document provides examples for pre-loading docling models to a persistent volume and re-using it for docling-serve deployments.
|
||||
|
||||
1. We need to create a persistent volume that will store models weights:
|
||||
|
||||
```yaml
|
||||
apiVersion: v1
|
||||
kind: PersistentVolumeClaim
|
||||
metadata:
|
||||
name: docling-model-cache-pvc
|
||||
spec:
|
||||
accessModes:
|
||||
- ReadWriteOnce
|
||||
volumeMode: Filesystem
|
||||
resources:
|
||||
requests:
|
||||
storage: 10Gi
|
||||
```
|
||||
|
||||
If you don't want to use default storage class, set your custom storage class with following:
|
||||
|
||||
```yaml
|
||||
spec:
|
||||
...
|
||||
storageClassName: <Storage Class Name>
|
||||
```
|
||||
|
||||
Manifest example: [docling-model-cache-pvc.yaml](./deploy-examples/docling-model-cache-pvc.yaml)
|
||||
|
||||
2. In order to load model weights, we can use docling-toolkit to download them, as this is a one time operation we can use kubernetes job for this:
|
||||
|
||||
```yaml
|
||||
apiVersion: batch/v1
|
||||
kind: Job
|
||||
metadata:
|
||||
name: docling-model-cache-load
|
||||
spec:
|
||||
selector: {}
|
||||
template:
|
||||
metadata:
|
||||
name: docling-model-load
|
||||
spec:
|
||||
containers:
|
||||
- name: loader
|
||||
image: ghcr.io/docling-project/docling-serve-cpu:main
|
||||
command:
|
||||
- docling-tools
|
||||
- models
|
||||
- download
|
||||
- '--output-dir=/modelcache'
|
||||
- 'layout'
|
||||
- 'tableformer'
|
||||
- 'code_formula'
|
||||
- 'picture_classifier'
|
||||
- 'smolvlm'
|
||||
- 'granite_vision'
|
||||
- 'easyocr'
|
||||
volumeMounts:
|
||||
- name: docling-model-cache
|
||||
mountPath: /modelcache
|
||||
volumes:
|
||||
- name: docling-model-cache
|
||||
persistentVolumeClaim:
|
||||
claimName: docling-model-cache-pvc
|
||||
restartPolicy: Never
|
||||
```
|
||||
|
||||
The job will mount previously created persistent volume and execute command similar to how we would load models locally:
|
||||
`docling-tools models download --output-dir <MOUNT-PATH> [LIST_OF_MODELS]`
|
||||
|
||||
In manifest, we specify desired models individually, or we can use `--all` parameter to download all models.
|
||||
|
||||
Manifest example: [docling-model-cache-job.yaml](./deploy-examples/docling-model-cache-job.yaml)
|
||||
|
||||
3. Now we can mount volume in the docling-serve deployment and set env `DOCLING_SERVE_ARTIFACTS_PATH` to point to it.
|
||||
Following additions to deployment should be made:
|
||||
|
||||
```yaml
|
||||
spec:
|
||||
template:
|
||||
spec:
|
||||
containers:
|
||||
- name: api
|
||||
env:
|
||||
...
|
||||
- name: DOCLING_SERVE_ARTIFACTS_PATH
|
||||
value: '/modelcache'
|
||||
volumeMounts:
|
||||
- name: docling-model-cache
|
||||
mountPath: /modelcache
|
||||
...
|
||||
volumes:
|
||||
- name: docling-model-cache
|
||||
persistentVolumeClaim:
|
||||
claimName: docling-model-cache-pvc
|
||||
```
|
||||
|
||||
Make sure that value of `DOCLING_SERVE_ARTIFACTS_PATH` is the same as where models were downloaded and where volume is mounted.
|
||||
|
||||
Now when docling-serve is executing tasks, the underlying docling installation will load model weights from mounted volume.
|
||||
|
||||
Manifest example: [docling-model-cache-deployment.yaml](./deploy-examples/docling-model-cache-deployment.yaml)
|
||||
112
docs/usage.md
112
docs/usage.md
@@ -4,31 +4,93 @@ The API provides two endpoints: one for urls, one for files. This is necessary t
|
||||
|
||||
## Common parameters
|
||||
|
||||
On top of the source of file (see below), both endpoints support the same parameters, which are almost the same as the Docling CLI.
|
||||
On top of the source of file (see below), both endpoints support the same parameters.
|
||||
|
||||
- `from_formats` (List[str]): Input format(s) to convert from. Allowed values: `docx`, `pptx`, `html`, `image`, `pdf`, `asciidoc`, `md`. Defaults to all formats.
|
||||
- `to_formats` (List[str]): Output format(s) to convert to. Allowed values: `md`, `json`, `html`, `text`, `doctags`. Defaults to `md`.
|
||||
- `pipeline` (str). The choice of which pipeline to use. Allowed values are `standard` and `vlm`. Defaults to `standard`.
|
||||
- `page_range` (tuple). If specified, only convert a range of pages. The page number starts at 1.
|
||||
- `do_ocr` (bool): If enabled, the bitmap content will be processed using OCR. Defaults to `True`.
|
||||
- `image_export_mode`: Image export mode for the document (only in case of JSON, Markdown or HTML). Allowed values: embedded, placeholder, referenced. Optional, defaults to `embedded`.
|
||||
- `force_ocr` (bool): If enabled, replace any existing text with OCR-generated text over the full content. Defaults to `False`.
|
||||
- `ocr_engine` (str): OCR engine to use. Allowed values: `easyocr`, `tesserocr`, `tesseract`, `rapidocr`, `ocrmac`. Defaults to `easyocr`. To use the `tesserocr` engine, `tesserocr` must be installed where docling-serve is running: `pip install tesserocr`
|
||||
- `ocr_lang` (List[str]): List of languages used by the OCR engine. Note that each OCR engine has different values for the language names. Defaults to empty.
|
||||
- `pdf_backend` (str): PDF backend to use. Allowed values: `pypdfium2`, `dlparse_v1`, `dlparse_v2`, `dlparse_v4`. Defaults to `dlparse_v4`.
|
||||
- `table_mode` (str): Table mode to use. Allowed values: `fast`, `accurate`. Defaults to `fast`.
|
||||
- `abort_on_error` (bool): If enabled, abort on error. Defaults to false.
|
||||
- `md_page_break_placeholder` (str): Add this placeholder between pages in the markdown output.
|
||||
- `do_table_structure` (bool): If enabled, the table structure will be extracted. Defaults to true.
|
||||
- `do_code_enrichment` (bool): If enabled, perform OCR code enrichment. Defaults to false.
|
||||
- `do_formula_enrichment` (bool): If enabled, perform formula OCR, return LaTeX code. Defaults to false.
|
||||
- `do_picture_classification` (bool): If enabled, classify pictures in documents. Defaults to false.
|
||||
- `do_picture_description` (bool): If enabled, describe pictures in documents. Defaults to false.
|
||||
- `picture_description_area_threshold` (float): Minimum percentage of the area for a picture to be processed with the models. Defaults to 0.05.
|
||||
- `picture_description_local` (dict): Options for running a local vision-language model in the picture description. The parameters refer to a model hosted on Hugging Face. This parameter is mutually exclusive with `picture_description_api`.
|
||||
- `picture_description_api` (dict): API details for using a vision-language model in the picture description. This parameter is mutually exclusive with `picture_description_local`.
|
||||
- `include_images` (bool): If enabled, images will be extracted from the document. Defaults to false.
|
||||
- `images_scale` (float): Scale factor for images. Defaults to 2.0.
|
||||
<!-- begin: parameters-docs -->
|
||||
<h4>ConvertDocumentsRequestOptions</h4>
|
||||
|
||||
| Field Name | Type | Description |
|
||||
|------------|------|-------------|
|
||||
| `from_formats` | List[InputFormat] | Input format(s) to convert from. String or list of strings. Allowed values: `docx`, `pptx`, `html`, `image`, `pdf`, `asciidoc`, `md`, `csv`, `xlsx`, `xml_uspto`, `xml_jats`, `mets_gbs`, `json_docling`, `audio`, `vtt`. Optional, defaults to all formats. |
|
||||
| `to_formats` | List[OutputFormat] | Output format(s) to convert to. String or list of strings. Allowed values: `md`, `json`, `html`, `html_split_page`, `text`, `doctags`. Optional, defaults to Markdown. |
|
||||
| `image_export_mode` | ImageRefMode | Image export mode for the document (in case of JSON, Markdown or HTML). Allowed values: `placeholder`, `embedded`, `referenced`. Optional, defaults to Embedded. |
|
||||
| `do_ocr` | bool | If enabled, the bitmap content will be processed using OCR. Boolean. Optional, defaults to true |
|
||||
| `force_ocr` | bool | If enabled, replace existing text with OCR-generated text over content. Boolean. Optional, defaults to false. |
|
||||
| `ocr_engine` | `ocr_engines_enum` | The OCR engine to use. String. Allowed values: `auto`, `easyocr`, `ocrmac`, `rapidocr`, `tesserocr`, `tesseract`. Optional, defaults to `easyocr`. |
|
||||
| `ocr_lang` | List[str] or NoneType | List of languages used by the OCR engine. Note that each OCR engine has different values for the language names. String or list of strings. Optional, defaults to empty. |
|
||||
| `pdf_backend` | PdfBackend | The PDF backend to use. String. Allowed values: `pypdfium2`, `dlparse_v1`, `dlparse_v2`, `dlparse_v4`. Optional, defaults to `dlparse_v4`. |
|
||||
| `table_mode` | TableFormerMode | Mode to use for table structure, String. Allowed values: `fast`, `accurate`. Optional, defaults to accurate. |
|
||||
| `table_cell_matching` | bool | If true, matches table cells predictions back to PDF cells. Can break table output if PDF cells are merged across table columns. If false, let table structure model define the text cells, ignore PDF cells. |
|
||||
| `pipeline` | ProcessingPipeline | Choose the pipeline to process PDF or image files. |
|
||||
| `page_range` | Tuple | Only convert a range of pages. The page number starts at 1. |
|
||||
| `document_timeout` | float | The timeout for processing each document, in seconds. |
|
||||
| `abort_on_error` | bool | Abort on error if enabled. Boolean. Optional, defaults to false. |
|
||||
| `do_table_structure` | bool | If enabled, the table structure will be extracted. Boolean. Optional, defaults to true. |
|
||||
| `include_images` | bool | If enabled, images will be extracted from the document. Boolean. Optional, defaults to true. |
|
||||
| `images_scale` | float | Scale factor for images. Float. Optional, defaults to 2.0. |
|
||||
| `md_page_break_placeholder` | str | Add this placeholder between pages in the markdown output. |
|
||||
| `do_code_enrichment` | bool | If enabled, perform OCR code enrichment. Boolean. Optional, defaults to false. |
|
||||
| `do_formula_enrichment` | bool | If enabled, perform formula OCR, return LaTeX code. Boolean. Optional, defaults to false. |
|
||||
| `do_picture_classification` | bool | If enabled, classify pictures in documents. Boolean. Optional, defaults to false. |
|
||||
| `do_picture_description` | bool | If enabled, describe pictures in documents. Boolean. Optional, defaults to false. |
|
||||
| `picture_description_area_threshold` | float | Minimum percentage of the area for a picture to be processed with the models. |
|
||||
| `picture_description_local` | PictureDescriptionLocal or NoneType | Options for running a local vision-language model in the picture description. The parameters refer to a model hosted on Hugging Face. This parameter is mutually exclusive with `picture_description_api`. |
|
||||
| `picture_description_api` | PictureDescriptionApi or NoneType | API details for using a vision-language model in the picture description. This parameter is mutually exclusive with `picture_description_local`. |
|
||||
| `vlm_pipeline_model` | VlmModelType or NoneType | Preset of local and API models for the `vlm` pipeline. This parameter is mutually exclusive with `vlm_pipeline_model_local` and `vlm_pipeline_model_api`. Use the other options for more parameters. |
|
||||
| `vlm_pipeline_model_local` | VlmModelLocal or NoneType | Options for running a local vision-language model for the `vlm` pipeline. The parameters refer to a model hosted on Hugging Face. This parameter is mutually exclusive with `vlm_pipeline_model_api` and `vlm_pipeline_model`. |
|
||||
| `vlm_pipeline_model_api` | VlmModelApi or NoneType | API details for using a vision-language model for the `vlm` pipeline. This parameter is mutually exclusive with `vlm_pipeline_model_local` and `vlm_pipeline_model`. |
|
||||
|
||||
<h4>VlmModelApi</h4>
|
||||
|
||||
| Field Name | Type | Description |
|
||||
|------------|------|-------------|
|
||||
| `url` | AnyUrl | Endpoint which accepts openai-api compatible requests. |
|
||||
| `headers` | Dict[str, str] | Headers used for calling the API endpoint. For example, it could include authentication headers. |
|
||||
| `params` | Dict[str, Any] | Model parameters. |
|
||||
| `timeout` | float | Timeout for the API request. |
|
||||
| `concurrency` | int | Maximum number of concurrent requests to the API. |
|
||||
| `prompt` | str | Prompt used when calling the vision-language model. |
|
||||
| `scale` | float | Scale factor of the images used. |
|
||||
| `response_format` | ResponseFormat | Type of response generated by the model. |
|
||||
| `temperature` | float | Temperature parameter controlling the reproducibility of the result. |
|
||||
|
||||
<h4>VlmModelLocal</h4>
|
||||
|
||||
| Field Name | Type | Description |
|
||||
|------------|------|-------------|
|
||||
| `repo_id` | str | Repository id from the Hugging Face Hub. |
|
||||
| `prompt` | str | Prompt used when calling the vision-language model. |
|
||||
| `scale` | float | Scale factor of the images used. |
|
||||
| `response_format` | ResponseFormat | Type of response generated by the model. |
|
||||
| `inference_framework` | InferenceFramework | Inference framework to use. |
|
||||
| `transformers_model_type` | TransformersModelType | Type of transformers auto-model to use. |
|
||||
| `extra_generation_config` | Dict[str, Any] | Config from https://huggingface.co/docs/transformers/en/main_classes/text_generation#transformers.GenerationConfig |
|
||||
| `temperature` | float | Temperature parameter controlling the reproducibility of the result. |
|
||||
|
||||
<h4>PictureDescriptionApi</h4>
|
||||
|
||||
| Field Name | Type | Description |
|
||||
|------------|------|-------------|
|
||||
| `url` | AnyUrl | Endpoint which accepts openai-api compatible requests. |
|
||||
| `headers` | Dict[str, str] | Headers used for calling the API endpoint. For example, it could include authentication headers. |
|
||||
| `params` | Dict[str, Any] | Model parameters. |
|
||||
| `timeout` | float | Timeout for the API request. |
|
||||
| `concurrency` | int | Maximum number of concurrent requests to the API. |
|
||||
| `prompt` | str | Prompt used when calling the vision-language model. |
|
||||
|
||||
<h4>PictureDescriptionLocal</h4>
|
||||
|
||||
| Field Name | Type | Description |
|
||||
|------------|------|-------------|
|
||||
| `repo_id` | str | Repository id from the Hugging Face Hub. |
|
||||
| `prompt` | str | Prompt used when calling the vision-language model. |
|
||||
| `generation_config` | Dict[str, Any] | Config from https://huggingface.co/docs/transformers/en/main_classes/text_generation#transformers.GenerationConfig |
|
||||
|
||||
<!-- end: parameters-docs -->
|
||||
|
||||
### Authentication
|
||||
|
||||
When authentication is activated (see the parameter `DOCLING_SERVE_API_KEY` in [configuration.md](./configuration.md)), all the API requests **must** provide the header `X-Api-Key` with the correct secret key.
|
||||
|
||||
## Convert endpoints
|
||||
|
||||
@@ -429,7 +491,7 @@ with connect(uri) as websocket:
|
||||
payload = json.loads(message)
|
||||
if payload["message"] == "error":
|
||||
break
|
||||
if payload["message"] == "error" and payload["task"]["task_status"] in ("success", "failure"):
|
||||
if payload["message"] == "update" and payload["task"]["task_status"] in ("success", "failure"):
|
||||
break
|
||||
except:
|
||||
break
|
||||
|
||||
@@ -37,7 +37,7 @@ New version:
|
||||
"options": {}, // conversion options
|
||||
"sources": [
|
||||
// input document provided as base64-encoded string
|
||||
{"kind": "kind", "base64_string": "abc123...", "filename": "file.pdf"},
|
||||
{"kind": "file", "base64_string": "abc123...", "filename": "file.pdf"},
|
||||
// input document provided as http urls
|
||||
{"kind": "http", "url": "https://..."},
|
||||
]
|
||||
|
||||
124
examples/split_processing.py
Normal file
124
examples/split_processing.py
Normal file
@@ -0,0 +1,124 @@
|
||||
import json
|
||||
import time
|
||||
from pathlib import Path
|
||||
|
||||
import httpx
|
||||
from pydantic import BaseModel
|
||||
from pypdf import PdfReader
|
||||
|
||||
from docling_core.types.doc.document import DoclingDocument
|
||||
|
||||
# Variables to use
|
||||
path_to_pdf = Path("./tests/2206.01062v1.pdf")
|
||||
pages_per_file = 4
|
||||
base_url = "http://localhost:5001/v1"
|
||||
out_dir = Path("examples/splitted_pdf/")
|
||||
|
||||
|
||||
class ConvertedSplittedPdf(BaseModel):
|
||||
task_id: str
|
||||
conversion_finished: bool = False
|
||||
result: dict | None = None
|
||||
|
||||
|
||||
def get_task_result(task_id: str):
|
||||
response = httpx.get(
|
||||
f"{base_url}/result/{task_id}",
|
||||
timeout=15,
|
||||
)
|
||||
return response.json()
|
||||
|
||||
|
||||
def check_task_status(task_id: str):
|
||||
response = httpx.get(f"{base_url}/status/poll/{task_id}", timeout=15)
|
||||
task = response.json()
|
||||
task_status = task["task_status"]
|
||||
|
||||
task_finished = False
|
||||
if task_status == "success":
|
||||
task_finished = True
|
||||
|
||||
if task_status in ("failure", "revoked"):
|
||||
raise RuntimeError("A conversion failed")
|
||||
|
||||
time.sleep(5)
|
||||
|
||||
return task_finished
|
||||
|
||||
|
||||
def post_file(file_path: Path, start_page: int, end_page: int):
|
||||
payload = {
|
||||
"to_formats": ["json"],
|
||||
"image_export_mode": "placeholder",
|
||||
"ocr": False,
|
||||
"abort_on_error": False,
|
||||
"page_range": [start_page, end_page],
|
||||
}
|
||||
|
||||
files = {
|
||||
"files": (file_path.name, file_path.open("rb"), "application/pdf"),
|
||||
}
|
||||
response = httpx.post(
|
||||
f"{base_url}/convert/file/async",
|
||||
files=files,
|
||||
data=payload,
|
||||
timeout=15,
|
||||
)
|
||||
|
||||
task = response.json()
|
||||
|
||||
return task["task_id"]
|
||||
|
||||
|
||||
def main():
|
||||
filename = path_to_pdf
|
||||
|
||||
splitted_pdfs: list[ConvertedSplittedPdf] = []
|
||||
|
||||
with open(filename, "rb") as input_pdf_file:
|
||||
pdf_reader = PdfReader(input_pdf_file)
|
||||
total_pages = len(pdf_reader.pages)
|
||||
|
||||
for start_page in range(0, total_pages, pages_per_file):
|
||||
task_id = post_file(
|
||||
filename, start_page + 1, min(start_page + pages_per_file, total_pages)
|
||||
)
|
||||
splitted_pdfs.append(ConvertedSplittedPdf(task_id=task_id))
|
||||
|
||||
all_files_converted = False
|
||||
while not all_files_converted:
|
||||
found_conversion_running = False
|
||||
for splitted_pdf in splitted_pdfs:
|
||||
if not splitted_pdf.conversion_finished:
|
||||
found_conversion_running = True
|
||||
print("checking conversion status...")
|
||||
splitted_pdf.conversion_finished = check_task_status(
|
||||
splitted_pdf.task_id
|
||||
)
|
||||
if not found_conversion_running:
|
||||
all_files_converted = True
|
||||
|
||||
for splitted_pdf in splitted_pdfs:
|
||||
splitted_pdf.result = get_task_result(splitted_pdf.task_id)
|
||||
|
||||
files = []
|
||||
for i, splitted_pdf in enumerate(splitted_pdfs):
|
||||
json_content = json.dumps(
|
||||
splitted_pdf.result.get("document").get("json_content"), indent=2
|
||||
)
|
||||
doc = DoclingDocument.model_validate_json(json_content)
|
||||
filename = f"{out_dir}/splited_json_{i}.json"
|
||||
doc.save_as_json(filename=filename)
|
||||
files.append(filename)
|
||||
|
||||
docs = [DoclingDocument.load_from_json(filename=f) for f in files]
|
||||
concate_doc = DoclingDocument.concatenate(docs=docs)
|
||||
|
||||
exp_json_file = Path(f"{out_dir}/concatenated.json")
|
||||
concate_doc.save_as_json(exp_json_file)
|
||||
|
||||
print("Finished")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
BIN
img/fastapi-ui.png
Normal file
BIN
img/fastapi-ui.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 226 KiB |
BIN
img/swagger.png
BIN
img/swagger.png
Binary file not shown.
|
Before Width: | Height: | Size: 24 KiB |
@@ -1,6 +1,6 @@
|
||||
[project]
|
||||
name = "docling-serve"
|
||||
version = "1.2.0" # DO NOT EDIT, updated automatically
|
||||
version = "1.8.0" # DO NOT EDIT, updated automatically
|
||||
description = "Running Docling as a service"
|
||||
license = {text = "MIT"}
|
||||
authors = [
|
||||
@@ -34,9 +34,9 @@ classifiers = [
|
||||
requires-python = ">=3.10"
|
||||
dependencies = [
|
||||
"docling~=2.38",
|
||||
"docling-core>=2.44.1",
|
||||
"docling-jobkit[kfp,vlm]~=1.3",
|
||||
"fastapi[standard]~=0.115",
|
||||
"docling-core>=2.45.0",
|
||||
"docling-jobkit[kfp,rq,vlm]>=1.8.0,<2.0.0",
|
||||
"fastapi[standard]<0.119.0", # ~=0.115
|
||||
"httpx~=0.28",
|
||||
"pydantic~=2.10",
|
||||
"pydantic-settings~=2.4",
|
||||
@@ -50,15 +50,17 @@ dependencies = [
|
||||
|
||||
[project.optional-dependencies]
|
||||
ui = [
|
||||
"gradio~=5.9",
|
||||
"pydantic<2.11.0", # fix compatibility between gradio and new pydantic 2.11
|
||||
"gradio>=5.23.2,<6.0.0",
|
||||
]
|
||||
tesserocr = [
|
||||
"tesserocr~=2.7"
|
||||
]
|
||||
easyocr = [
|
||||
"easyocr>=1.7",
|
||||
]
|
||||
rapidocr = [
|
||||
"rapidocr-onnxruntime~=1.4; python_version<'3.13'",
|
||||
"onnxruntime~=1.7",
|
||||
"rapidocr (>=3.3,<4.0.0) ; python_version < '3.14'",
|
||||
"onnxruntime (>=1.7.0,<2.0.0)",
|
||||
]
|
||||
flash-attn = [
|
||||
"flash-attn~=2.8.2; sys_platform == 'linux' and platform_machine == 'x86_64'"
|
||||
@@ -69,6 +71,7 @@ dev = [
|
||||
"asgi-lifespan~=2.0",
|
||||
"mypy~=1.11",
|
||||
"pre-commit-uv~=4.1",
|
||||
"pypdf>=6.0.0",
|
||||
"pytest~=8.3",
|
||||
"pytest-asyncio~=0.24",
|
||||
"pytest-check~=2.4",
|
||||
@@ -86,25 +89,25 @@ cpu = [
|
||||
"torchvision>=0.22.1",
|
||||
]
|
||||
|
||||
cu124 = [
|
||||
"torch>=2.6.0 ; sys_platform == 'linux' and platform_machine == 'x86_64' and python_version < '3.13'",
|
||||
"torchvision>=0.21.0 ; sys_platform == 'linux' and platform_machine == 'x86_64' and python_version < '3.13'",
|
||||
]
|
||||
# cu124 = [
|
||||
# "torch>=2.6.0",
|
||||
# "torchvision>=0.21.0",
|
||||
# ]
|
||||
|
||||
cu126 = [
|
||||
"torch>=2.7.1 ; sys_platform == 'linux' and platform_machine == 'x86_64' and python_version < '3.13'",
|
||||
"torchvision>=0.22.1 ; sys_platform == 'linux' and platform_machine == 'x86_64' and python_version < '3.13'",
|
||||
"torch>=2.7.1",
|
||||
"torchvision>=0.22.1",
|
||||
]
|
||||
|
||||
cu128 = [
|
||||
"torch>=2.7.1 ; sys_platform == 'linux' and platform_machine == 'x86_64' and python_version < '3.13'",
|
||||
"torchvision>=0.22.1 ; sys_platform == 'linux' and platform_machine == 'x86_64' and python_version < '3.13'",
|
||||
"torch>=2.7.1",
|
||||
"torchvision>=0.22.1",
|
||||
]
|
||||
|
||||
rocm = [
|
||||
"torch>=2.7.1 ; sys_platform == 'linux' and platform_machine == 'x86_64' and python_version < '3.13'",
|
||||
"torchvision>=0.22.1 ; sys_platform == 'linux' and platform_machine == 'x86_64' and python_version < '3.13'",
|
||||
"pytorch-triton-rocm>=3.3.1 ; sys_platform == 'linux' and platform_machine == 'x86_64' and python_version < '3.13'",
|
||||
"torch>=2.7.1",
|
||||
"torchvision>=0.22.1",
|
||||
"pytorch-triton-rocm>=3.3.1 ; sys_platform == 'linux' and platform_machine == 'x86_64'",
|
||||
]
|
||||
|
||||
[tool.uv]
|
||||
@@ -114,7 +117,7 @@ conflicts = [
|
||||
[
|
||||
{ group = "pypi" },
|
||||
{ group = "cpu" },
|
||||
{ group = "cu124" },
|
||||
# { group = "cu124" },
|
||||
{ group = "cu126" },
|
||||
{ group = "cu128" },
|
||||
{ group = "rocm" },
|
||||
@@ -122,14 +125,15 @@ conflicts = [
|
||||
]
|
||||
environments = ["sys_platform != 'darwin' or platform_machine != 'x86_64'"]
|
||||
override-dependencies = [
|
||||
"urllib3~=2.0"
|
||||
"urllib3~=2.0",
|
||||
"xgrammar>=0.1.24"
|
||||
]
|
||||
|
||||
[tool.uv.sources]
|
||||
torch = [
|
||||
{ index = "pytorch-pypi", group = "pypi" },
|
||||
{ index = "pytorch-cpu", group = "cpu" },
|
||||
{ index = "pytorch-cu124", group = "cu124", marker = "sys_platform == 'linux'" },
|
||||
# { index = "pytorch-cu124", group = "cu124", marker = "sys_platform == 'linux'" },
|
||||
{ index = "pytorch-cu126", group = "cu126", marker = "sys_platform == 'linux'" },
|
||||
{ index = "pytorch-cu128", group = "cu128", marker = "sys_platform == 'linux'" },
|
||||
{ index = "pytorch-rocm", group = "rocm", marker = "sys_platform == 'linux'" },
|
||||
@@ -138,7 +142,7 @@ torch = [
|
||||
torchvision = [
|
||||
{ index = "pytorch-pypi", group = "pypi" },
|
||||
{ index = "pytorch-cpu", group = "cpu" },
|
||||
{ index = "pytorch-cu124", group = "cu124", marker = "sys_platform == 'linux'" },
|
||||
# { index = "pytorch-cu124", group = "cu124", marker = "sys_platform == 'linux'" },
|
||||
{ index = "pytorch-cu126", group = "cu126", marker = "sys_platform == 'linux'" },
|
||||
{ index = "pytorch-cu128", group = "cu128", marker = "sys_platform == 'linux'" },
|
||||
{ index = "pytorch-rocm", group = "rocm", marker = "sys_platform == 'linux'" },
|
||||
@@ -161,10 +165,10 @@ name = "pytorch-cpu"
|
||||
url = "https://download.pytorch.org/whl/cpu"
|
||||
explicit = true
|
||||
|
||||
[[tool.uv.index]]
|
||||
name = "pytorch-cu124"
|
||||
url = "https://download.pytorch.org/whl/cu124"
|
||||
explicit = true
|
||||
# [[tool.uv.index]]
|
||||
# name = "pytorch-cu124"
|
||||
# url = "https://download.pytorch.org/whl/cu124"
|
||||
# explicit = true
|
||||
|
||||
[[tool.uv.index]]
|
||||
name = "pytorch-cu126"
|
||||
@@ -278,6 +282,7 @@ module = [
|
||||
"kfp.*",
|
||||
"kfp_server_api.*",
|
||||
"mlx_vlm.*",
|
||||
"mlx.*",
|
||||
"scalar_fastapi.*",
|
||||
]
|
||||
ignore_missing_imports = true
|
||||
|
||||
0
scripts/__init__.py
Normal file
0
scripts/__init__.py
Normal file
199
scripts/update_doc_usage.py
Normal file
199
scripts/update_doc_usage.py
Normal file
@@ -0,0 +1,199 @@
|
||||
import re
|
||||
from typing import Annotated, Any, Union, get_args, get_origin
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from docling_serve.datamodel.convert import ConvertDocumentsRequestOptions
|
||||
|
||||
DOCS_FILE = "docs/usage.md"
|
||||
|
||||
VARIABLE_WORDS: list[str] = [
|
||||
"picture_description_local",
|
||||
"vlm_pipeline_model",
|
||||
"vlm",
|
||||
"vlm_pipeline_model_api",
|
||||
"ocr_engines_enum",
|
||||
"easyocr",
|
||||
"dlparse_v4",
|
||||
"fast",
|
||||
"picture_description_api",
|
||||
"vlm_pipeline_model_local",
|
||||
]
|
||||
|
||||
|
||||
def format_variable_names(text: str) -> str:
|
||||
"""Format specific words in description to be code-formatted."""
|
||||
sorted_words = sorted(VARIABLE_WORDS, key=len, reverse=True)
|
||||
|
||||
escaped_words = [re.escape(word) for word in sorted_words]
|
||||
|
||||
for word in escaped_words:
|
||||
pattern = rf"(?<!`)\b{word}\b(?!`)"
|
||||
text = re.sub(pattern, f"`{word}`", text)
|
||||
|
||||
return text
|
||||
|
||||
|
||||
def format_allowed_values_description(description: str) -> str:
|
||||
"""Format description to code-format allowed values."""
|
||||
# Regex pattern to find text after "Allowed values:"
|
||||
match = re.search(r"Allowed values:(.+?)(?:\.|$)", description, re.DOTALL)
|
||||
|
||||
if match:
|
||||
# Extract the allowed values
|
||||
values_str = match.group(1).strip()
|
||||
|
||||
# Split values, handling both comma and 'and' separators
|
||||
values = re.split(r"\s*(?:,\s*|\s+and\s+)", values_str)
|
||||
|
||||
# Remove any remaining punctuation and whitespace
|
||||
values = [value.strip("., ") for value in values]
|
||||
|
||||
# Create code-formatted values
|
||||
formatted_values = ", ".join(f"`{value}`" for value in values)
|
||||
|
||||
# Replace the original allowed values with formatted version
|
||||
formatted_description = re.sub(
|
||||
r"(Allowed values:)(.+?)(?:\.|$)",
|
||||
f"\\1 {formatted_values}.",
|
||||
description,
|
||||
flags=re.DOTALL,
|
||||
)
|
||||
|
||||
return formatted_description
|
||||
|
||||
return description
|
||||
|
||||
|
||||
def _format_type(type_hint: Any) -> str:
|
||||
"""Format type ccrrectly, like Annotation or Union."""
|
||||
if get_origin(type_hint) is Annotated:
|
||||
base_type = get_args(type_hint)[0]
|
||||
return _format_type(base_type)
|
||||
|
||||
if hasattr(type_hint, "__origin__"):
|
||||
origin = type_hint.__origin__
|
||||
args = get_args(type_hint)
|
||||
|
||||
if origin is list:
|
||||
return f"List[{_format_type(args[0])}]"
|
||||
elif origin is dict:
|
||||
return f"Dict[{_format_type(args[0])}, {_format_type(args[1])}]"
|
||||
elif str(origin).__contains__("Union") or str(origin).__contains__("Optional"):
|
||||
return " or ".join(_format_type(arg) for arg in args)
|
||||
elif origin is None:
|
||||
return "null"
|
||||
|
||||
if hasattr(type_hint, "__name__"):
|
||||
return type_hint.__name__
|
||||
|
||||
return str(type_hint)
|
||||
|
||||
|
||||
def _unroll_types(tp) -> list[type]:
|
||||
"""
|
||||
Unrolls typing.Union and typing.Optional types into a flat list of types.
|
||||
"""
|
||||
origin = get_origin(tp)
|
||||
if origin is Union:
|
||||
# Recursively unroll each type inside the Union
|
||||
types = []
|
||||
for arg in get_args(tp):
|
||||
types.extend(_unroll_types(arg))
|
||||
# Remove duplicates while preserving order
|
||||
return list(dict.fromkeys(types))
|
||||
else:
|
||||
# If it's not a Union, just return it as a single-element list
|
||||
return [tp]
|
||||
|
||||
|
||||
def generate_model_doc(model: type[BaseModel]) -> str:
|
||||
"""Generate documentation for a Pydantic model."""
|
||||
|
||||
models_stack = [model]
|
||||
|
||||
doc = ""
|
||||
while models_stack:
|
||||
current_model = models_stack.pop()
|
||||
|
||||
doc += f"<h4>{current_model.__name__}</h4>\n"
|
||||
|
||||
doc += "\n| Field Name | Type | Description |\n"
|
||||
doc += "|------------|------|-------------|\n"
|
||||
|
||||
base_models = []
|
||||
if hasattr(current_model, "__mro__"):
|
||||
base_models = current_model.__mro__
|
||||
else:
|
||||
base_models = [current_model]
|
||||
|
||||
for base_model in base_models:
|
||||
# Check if this is a Pydantic model
|
||||
if hasattr(base_model, "model_fields"):
|
||||
# Iterate through fields of this model
|
||||
for field_name, field in base_model.model_fields.items():
|
||||
# Extract description from Annotated field if possible
|
||||
description = field.description or "No description provided."
|
||||
description = format_allowed_values_description(description)
|
||||
description = format_variable_names(description)
|
||||
|
||||
# Handle Annotated types
|
||||
original_type = field.annotation
|
||||
if get_origin(original_type) is Annotated:
|
||||
# Extract base type and additional metadata
|
||||
type_args = get_args(original_type)
|
||||
base_type = type_args[0]
|
||||
else:
|
||||
base_type = original_type
|
||||
|
||||
field_type = _format_type(base_type)
|
||||
field_type = format_variable_names(field_type)
|
||||
|
||||
doc += f"| `{field_name}` | {field_type} | {description} |\n"
|
||||
|
||||
for field_type in _unroll_types(base_type):
|
||||
if issubclass(field_type, BaseModel):
|
||||
models_stack.append(field_type)
|
||||
|
||||
# stop iterating the base classes
|
||||
break
|
||||
|
||||
doc += "\n"
|
||||
return doc
|
||||
|
||||
|
||||
def update_documentation():
|
||||
"""Update the documentation file with model information."""
|
||||
doc_request = generate_model_doc(ConvertDocumentsRequestOptions)
|
||||
|
||||
with open(DOCS_FILE) as f:
|
||||
content = f.readlines()
|
||||
|
||||
# Prepare to update the content
|
||||
new_content = []
|
||||
in_cp_section = False
|
||||
|
||||
for line in content:
|
||||
if line.startswith("<!-- begin: parameters-docs -->"):
|
||||
in_cp_section = True
|
||||
new_content.append(line)
|
||||
new_content.append(doc_request)
|
||||
continue
|
||||
|
||||
if in_cp_section and line.strip() == "<!-- end: parameters-docs -->":
|
||||
in_cp_section = False
|
||||
|
||||
if not in_cp_section:
|
||||
new_content.append(line)
|
||||
|
||||
# Only write to the file if new_content is different from content
|
||||
if "".join(new_content) != "".join(content):
|
||||
with open(DOCS_FILE, "w") as f:
|
||||
f.writelines(new_content)
|
||||
print(f"Documentation updated in {DOCS_FILE}")
|
||||
else:
|
||||
print("No changes detected. Documentation file remains unchanged.")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
update_documentation()
|
||||
@@ -6,10 +6,15 @@ import pytest
|
||||
import pytest_asyncio
|
||||
from pytest_check import check
|
||||
|
||||
from docling_serve.settings import docling_serve_settings
|
||||
|
||||
|
||||
@pytest_asyncio.fixture
|
||||
async def async_client():
|
||||
async with httpx.AsyncClient(timeout=60.0) as client:
|
||||
headers = {}
|
||||
if docling_serve_settings.api_key:
|
||||
headers["X-Api-Key"] = docling_serve_settings.api_key
|
||||
async with httpx.AsyncClient(timeout=60.0, headers=headers) as client:
|
||||
yield client
|
||||
|
||||
|
||||
|
||||
@@ -6,10 +6,15 @@ import httpx
|
||||
import pytest
|
||||
import pytest_asyncio
|
||||
|
||||
from docling_serve.settings import docling_serve_settings
|
||||
|
||||
|
||||
@pytest_asyncio.fixture
|
||||
async def async_client():
|
||||
async with httpx.AsyncClient(timeout=60.0) as client:
|
||||
headers = {}
|
||||
if docling_serve_settings.api_key:
|
||||
headers["X-Api-Key"] = docling_serve_settings.api_key
|
||||
async with httpx.AsyncClient(timeout=60.0, headers=headers) as client:
|
||||
yield client
|
||||
|
||||
|
||||
|
||||
@@ -5,10 +5,15 @@ import pytest
|
||||
import pytest_asyncio
|
||||
from pytest_check import check
|
||||
|
||||
from docling_serve.settings import docling_serve_settings
|
||||
|
||||
|
||||
@pytest_asyncio.fixture
|
||||
async def async_client():
|
||||
async with httpx.AsyncClient(timeout=60.0) as client:
|
||||
headers = {}
|
||||
if docling_serve_settings.api_key:
|
||||
headers["X-Api-Key"] = docling_serve_settings.api_key
|
||||
async with httpx.AsyncClient(timeout=60.0, headers=headers) as client:
|
||||
yield client
|
||||
|
||||
|
||||
|
||||
@@ -6,16 +6,24 @@ import pytest
|
||||
import pytest_asyncio
|
||||
from websockets.sync.client import connect
|
||||
|
||||
from docling_serve.settings import docling_serve_settings
|
||||
|
||||
|
||||
@pytest_asyncio.fixture
|
||||
async def async_client():
|
||||
async with httpx.AsyncClient(timeout=60.0) as client:
|
||||
headers = {}
|
||||
if docling_serve_settings.api_key:
|
||||
headers["X-Api-Key"] = docling_serve_settings.api_key
|
||||
async with httpx.AsyncClient(timeout=60.0, headers=headers) as client:
|
||||
yield client
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_convert_url(async_client: httpx.AsyncClient):
|
||||
"""Test convert URL to all outputs"""
|
||||
headers = {}
|
||||
if docling_serve_settings.api_key:
|
||||
headers["X-Api-Key"] = docling_serve_settings.api_key
|
||||
|
||||
doc_filename = Path("tests/2408.09869v5.pdf")
|
||||
encoded_doc = base64.b64encode(doc_filename.read_bytes()).decode()
|
||||
@@ -57,7 +65,13 @@ async def test_convert_url(async_client: httpx.AsyncClient):
|
||||
|
||||
task = response.json()
|
||||
|
||||
uri = f"ws://localhost:5001/v1/status/ws/{task['task_id']}"
|
||||
uri = f"ws://localhost:5001/v1/status/ws/{task['task_id']}?api_key={docling_serve_settings.api_key}"
|
||||
with connect(uri) as websocket:
|
||||
for message in websocket:
|
||||
print(message)
|
||||
|
||||
result_resp = await async_client.get(f"{base_url}/result/{task['task_id']}")
|
||||
assert result_resp.status_code == 200, "Response should be 200 OK"
|
||||
result = result_resp.json()
|
||||
print(f"{result['processing_time']=}")
|
||||
assert result["processing_time"] > 1.0
|
||||
|
||||
@@ -6,10 +6,15 @@ import httpx
|
||||
import pytest
|
||||
import pytest_asyncio
|
||||
|
||||
from docling_serve.settings import docling_serve_settings
|
||||
|
||||
|
||||
@pytest_asyncio.fixture
|
||||
async def async_client():
|
||||
async with httpx.AsyncClient(timeout=60.0) as client:
|
||||
headers = {}
|
||||
if docling_serve_settings.api_key:
|
||||
headers["X-Api-Key"] = docling_serve_settings.api_key
|
||||
async with httpx.AsyncClient(timeout=60.0, headers=headers) as client:
|
||||
yield client
|
||||
|
||||
|
||||
@@ -57,3 +62,60 @@ async def test_convert_url(async_client):
|
||||
time.sleep(2)
|
||||
|
||||
assert task["task_status"] == "success"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize("include_converted_doc", [False, True])
|
||||
async def test_chunk_url(async_client, include_converted_doc: bool):
|
||||
"""Test chunk URL"""
|
||||
|
||||
example_docs = [
|
||||
"https://arxiv.org/pdf/2311.18481",
|
||||
]
|
||||
|
||||
base_url = "http://localhost:5001/v1"
|
||||
payload = {
|
||||
"sources": [{"kind": "http", "url": random.choice(example_docs)}],
|
||||
"include_converted_doc": include_converted_doc,
|
||||
}
|
||||
|
||||
response = await async_client.post(
|
||||
f"{base_url}/chunk/hybrid/source/async", json=payload
|
||||
)
|
||||
assert response.status_code == 200, "Response should be 200 OK"
|
||||
|
||||
task = response.json()
|
||||
|
||||
print(json.dumps(task, indent=2))
|
||||
|
||||
while task["task_status"] not in ("success", "failure"):
|
||||
response = await async_client.get(f"{base_url}/status/poll/{task['task_id']}")
|
||||
assert response.status_code == 200, "Response should be 200 OK"
|
||||
task = response.json()
|
||||
print(f"{task['task_status']=}")
|
||||
print(f"{task['task_position']=}")
|
||||
|
||||
time.sleep(2)
|
||||
|
||||
assert task["task_status"] == "success"
|
||||
|
||||
result_resp = await async_client.get(f"{base_url}/result/{task['task_id']}")
|
||||
assert result_resp.status_code == 200, "Response should be 200 OK"
|
||||
result = result_resp.json()
|
||||
print("Got result.")
|
||||
|
||||
assert "chunks" in result
|
||||
assert len(result["chunks"]) > 0
|
||||
|
||||
assert "documents" in result
|
||||
assert len(result["documents"]) > 0
|
||||
assert result["documents"][0]["status"] == "success"
|
||||
|
||||
if include_converted_doc:
|
||||
assert result["documents"][0]["content"]["json_content"] is not None
|
||||
assert (
|
||||
result["documents"][0]["content"]["json_content"]["schema_name"]
|
||||
== "DoclingDocument"
|
||||
)
|
||||
else:
|
||||
assert result["documents"][0]["content"]["json_content"] is None
|
||||
|
||||
@@ -5,10 +5,15 @@ import pytest
|
||||
import pytest_asyncio
|
||||
from pytest_check import check
|
||||
|
||||
from docling_serve.settings import docling_serve_settings
|
||||
|
||||
|
||||
@pytest_asyncio.fixture
|
||||
async def async_client():
|
||||
async with httpx.AsyncClient(timeout=60.0) as client:
|
||||
headers = {}
|
||||
if docling_serve_settings.api_key:
|
||||
headers["X-Api-Key"] = docling_serve_settings.api_key
|
||||
async with httpx.AsyncClient(timeout=60.0, headers=headers) as client:
|
||||
yield client
|
||||
|
||||
|
||||
|
||||
@@ -3,10 +3,15 @@ import pytest
|
||||
import pytest_asyncio
|
||||
from pytest_check import check
|
||||
|
||||
from docling_serve.settings import docling_serve_settings
|
||||
|
||||
|
||||
@pytest_asyncio.fixture
|
||||
async def async_client():
|
||||
async with httpx.AsyncClient(timeout=60.0) as client:
|
||||
headers = {}
|
||||
if docling_serve_settings.api_key:
|
||||
headers["X-Api-Key"] = docling_serve_settings.api_key
|
||||
async with httpx.AsyncClient(timeout=60.0, headers=headers) as client:
|
||||
yield client
|
||||
|
||||
|
||||
|
||||
@@ -6,10 +6,15 @@ import pytest
|
||||
import pytest_asyncio
|
||||
from pytest_check import check
|
||||
|
||||
from docling_serve.settings import docling_serve_settings
|
||||
|
||||
|
||||
@pytest_asyncio.fixture
|
||||
async def async_client():
|
||||
async with httpx.AsyncClient(timeout=60.0) as client:
|
||||
headers = {}
|
||||
if docling_serve_settings.api_key:
|
||||
headers["X-Api-Key"] = docling_serve_settings.api_key
|
||||
async with httpx.AsyncClient(timeout=60.0, headers=headers) as client:
|
||||
yield client
|
||||
|
||||
|
||||
|
||||
@@ -13,6 +13,7 @@ from pytest_check import check
|
||||
from docling_core.types.doc import DoclingDocument, PictureItem
|
||||
|
||||
from docling_serve.app import create_app
|
||||
from docling_serve.settings import docling_serve_settings
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
@@ -20,6 +21,14 @@ def event_loop():
|
||||
return asyncio.get_event_loop()
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def auth_headers():
|
||||
headers = {}
|
||||
if docling_serve_settings.api_key:
|
||||
headers["X-Api-Key"] = docling_serve_settings.api_key
|
||||
return headers
|
||||
|
||||
|
||||
@pytest_asyncio.fixture(scope="session")
|
||||
async def app():
|
||||
app = create_app()
|
||||
@@ -46,7 +55,15 @@ async def test_health(client: AsyncClient):
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_convert_file(client: AsyncClient):
|
||||
async def test_openapijson(client: AsyncClient):
|
||||
response = await client.get("/openapi.json")
|
||||
assert response.status_code == 200
|
||||
schema = response.json()
|
||||
assert "openapi" in schema
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_convert_file(client: AsyncClient, auth_headers: dict):
|
||||
"""Test convert single file to all outputs"""
|
||||
|
||||
endpoint = "/v1/convert/file"
|
||||
@@ -79,7 +96,9 @@ async def test_convert_file(client: AsyncClient):
|
||||
"files": ("2206.01062v1.pdf", open(file_path, "rb"), "application/pdf"),
|
||||
}
|
||||
|
||||
response = await client.post(endpoint, files=files, data=options)
|
||||
response = await client.post(
|
||||
endpoint, files=files, data=options, headers=auth_headers
|
||||
)
|
||||
assert response.status_code == 200, "Response should be 200 OK"
|
||||
|
||||
data = response.json()
|
||||
@@ -160,7 +179,7 @@ async def test_convert_file(client: AsyncClient):
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_referenced_artifacts(client: AsyncClient):
|
||||
async def test_referenced_artifacts(client: AsyncClient, auth_headers: dict):
|
||||
"""Test that paths in the zip file are relative to the zip file root."""
|
||||
|
||||
endpoint = "/v1/convert/file"
|
||||
@@ -178,7 +197,9 @@ async def test_referenced_artifacts(client: AsyncClient):
|
||||
"files": ("2206.01062v1.pdf", open(file_path, "rb"), "application/pdf"),
|
||||
}
|
||||
|
||||
response = await client.post(endpoint, files=files, data=options)
|
||||
response = await client.post(
|
||||
endpoint, files=files, data=options, headers=auth_headers
|
||||
)
|
||||
assert response.status_code == 200, "Response should be 200 OK"
|
||||
|
||||
with zipfile.ZipFile(io.BytesIO(response.content)) as zip_file:
|
||||
|
||||
@@ -11,6 +11,7 @@ from docling_core.types import DoclingDocument
|
||||
from docling_core.types.doc.document import PictureDescriptionData
|
||||
|
||||
from docling_serve.app import create_app
|
||||
from docling_serve.settings import docling_serve_settings
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
@@ -18,6 +19,14 @@ def event_loop():
|
||||
return asyncio.get_event_loop()
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def auth_headers():
|
||||
headers = {}
|
||||
if docling_serve_settings.api_key:
|
||||
headers["X-Api-Key"] = docling_serve_settings.api_key
|
||||
return headers
|
||||
|
||||
|
||||
@pytest_asyncio.fixture(scope="session")
|
||||
async def app():
|
||||
app = create_app()
|
||||
@@ -37,7 +46,7 @@ async def client(app):
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_convert_file(client: AsyncClient):
|
||||
async def test_convert_file(client: AsyncClient, auth_headers: dict):
|
||||
"""Test convert single file to all outputs"""
|
||||
|
||||
endpoint = "/v1/convert/file"
|
||||
@@ -63,7 +72,9 @@ async def test_convert_file(client: AsyncClient):
|
||||
"files": ("2206.01062v1.pdf", open(file_path, "rb"), "application/pdf"),
|
||||
}
|
||||
|
||||
response = await client.post(endpoint, files=files, data=options)
|
||||
response = await client.post(
|
||||
endpoint, files=files, data=options, headers=auth_headers
|
||||
)
|
||||
assert response.status_code == 200, "Response should be 200 OK"
|
||||
|
||||
data = response.json()
|
||||
|
||||
@@ -17,6 +17,14 @@ def event_loop():
|
||||
return asyncio.get_event_loop()
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def auth_headers():
|
||||
headers = {}
|
||||
if docling_serve_settings.api_key:
|
||||
headers["X-Api-Key"] = docling_serve_settings.api_key
|
||||
return headers
|
||||
|
||||
|
||||
@pytest_asyncio.fixture(scope="session")
|
||||
async def app():
|
||||
app = create_app()
|
||||
@@ -35,7 +43,7 @@ async def client(app):
|
||||
yield client
|
||||
|
||||
|
||||
async def convert_file(client: AsyncClient):
|
||||
async def convert_file(client: AsyncClient, auth_headers: dict):
|
||||
doc_filename = Path("tests/2408.09869v5.pdf")
|
||||
encoded_doc = base64.b64encode(doc_filename.read_bytes()).decode()
|
||||
|
||||
@@ -52,7 +60,9 @@ async def convert_file(client: AsyncClient):
|
||||
],
|
||||
}
|
||||
|
||||
response = await client.post("/v1/convert/source/async", json=payload)
|
||||
response = await client.post(
|
||||
"/v1/convert/source/async", json=payload, headers=auth_headers
|
||||
)
|
||||
assert response.status_code == 200, "Response should be 200 OK"
|
||||
|
||||
task = response.json()
|
||||
@@ -60,7 +70,9 @@ async def convert_file(client: AsyncClient):
|
||||
print(json.dumps(task, indent=2))
|
||||
|
||||
while task["task_status"] not in ("success", "failure"):
|
||||
response = await client.get(f"/v1/status/poll/{task['task_id']}")
|
||||
response = await client.get(
|
||||
f"/v1/status/poll/{task['task_id']}", headers=auth_headers
|
||||
)
|
||||
assert response.status_code == 200, "Response should be 200 OK"
|
||||
task = response.json()
|
||||
print(f"{task['task_status']=}")
|
||||
@@ -74,52 +86,62 @@ async def convert_file(client: AsyncClient):
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_clear_results(client: AsyncClient):
|
||||
async def test_clear_results(client: AsyncClient, auth_headers: dict):
|
||||
"""Test removal of task."""
|
||||
|
||||
# Set long delay deletion
|
||||
docling_serve_settings.result_removal_delay = 100
|
||||
|
||||
# Convert and wait for completion
|
||||
task = await convert_file(client)
|
||||
task = await convert_file(client, auth_headers=auth_headers)
|
||||
|
||||
# Get result once
|
||||
result_response = await client.get(f"/v1/result/{task['task_id']}")
|
||||
result_response = await client.get(
|
||||
f"/v1/result/{task['task_id']}", headers=auth_headers
|
||||
)
|
||||
assert result_response.status_code == 200, "Response should be 200 OK"
|
||||
print("Result 1 ok.")
|
||||
result = result_response.json()
|
||||
assert result["document"]["json_content"]["schema_name"] == "DoclingDocument"
|
||||
|
||||
# Get result twice
|
||||
result_response = await client.get(f"/v1/result/{task['task_id']}")
|
||||
result_response = await client.get(
|
||||
f"/v1/result/{task['task_id']}", headers=auth_headers
|
||||
)
|
||||
assert result_response.status_code == 200, "Response should be 200 OK"
|
||||
print("Result 2 ok.")
|
||||
result = result_response.json()
|
||||
assert result["document"]["json_content"]["schema_name"] == "DoclingDocument"
|
||||
|
||||
# Clear
|
||||
clear_response = await client.get("/v1/clear/results?older_then=0")
|
||||
clear_response = await client.get(
|
||||
"/v1/clear/results?older_then=0", headers=auth_headers
|
||||
)
|
||||
assert clear_response.status_code == 200, "Response should be 200 OK"
|
||||
print("Clear ok.")
|
||||
|
||||
# Get deleted result
|
||||
result_response = await client.get(f"/v1/result/{task['task_id']}")
|
||||
result_response = await client.get(
|
||||
f"/v1/result/{task['task_id']}", headers=auth_headers
|
||||
)
|
||||
assert result_response.status_code == 404, "Response should be removed"
|
||||
print("Result was no longer found.")
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_delay_remove(client: AsyncClient):
|
||||
async def test_delay_remove(client: AsyncClient, auth_headers: dict):
|
||||
"""Test automatic removal of task with delay."""
|
||||
|
||||
# Set short delay deletion
|
||||
docling_serve_settings.result_removal_delay = 5
|
||||
|
||||
# Convert and wait for completion
|
||||
task = await convert_file(client)
|
||||
task = await convert_file(client, auth_headers=auth_headers)
|
||||
|
||||
# Get result once
|
||||
result_response = await client.get(f"/v1/result/{task['task_id']}")
|
||||
result_response = await client.get(
|
||||
f"/v1/result/{task['task_id']}", headers=auth_headers
|
||||
)
|
||||
assert result_response.status_code == 200, "Response should be 200 OK"
|
||||
print("Result ok.")
|
||||
result = result_response.json()
|
||||
@@ -129,5 +151,7 @@ async def test_delay_remove(client: AsyncClient):
|
||||
await asyncio.sleep(10)
|
||||
|
||||
# Get deleted result
|
||||
result_response = await client.get(f"/v1/result/{task['task_id']}")
|
||||
result_response = await client.get(
|
||||
f"/v1/result/{task['task_id']}", headers=auth_headers
|
||||
)
|
||||
assert result_response.status_code == 404, "Response should be removed"
|
||||
|
||||
Reference in New Issue
Block a user