mirror of
https://github.com/docling-project/docling-serve.git
synced 2025-11-29 16:43:24 +00:00
Compare commits
8 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
24db461b14 | ||
|
|
8706706e87 | ||
|
|
766adb2481 | ||
|
|
8222cf8955 | ||
|
|
b922824e5b | ||
|
|
56e328baf7 | ||
|
|
daa924a77e | ||
|
|
e63197e89e |
35
.github/styles/config/vocabularies/Docling/accept.txt
vendored
Normal file
35
.github/styles/config/vocabularies/Docling/accept.txt
vendored
Normal file
@@ -0,0 +1,35 @@
|
||||
[Dd]ocling
|
||||
precommit
|
||||
asgi
|
||||
async
|
||||
(?i)urls
|
||||
uvicorn
|
||||
[Ww]ebserver
|
||||
keyfile
|
||||
[Ww]ebsocket(s?)
|
||||
[Kk]ubernetes
|
||||
UI
|
||||
(?i)vllm
|
||||
APIs
|
||||
[Ss]ubprocesses
|
||||
(?i)api
|
||||
Kubeflow
|
||||
(?i)Jobkit
|
||||
(?i)cpu
|
||||
(?i)PyTorch
|
||||
(?i)CUDA
|
||||
(?i)NVIDIA
|
||||
(?i)env
|
||||
Gradio
|
||||
bool
|
||||
Ollama
|
||||
inbody
|
||||
LGTMs
|
||||
Dolfi
|
||||
Lysak
|
||||
Nikos
|
||||
Nassar
|
||||
Panos
|
||||
Vagenas
|
||||
Staar
|
||||
Livathinos
|
||||
11
.github/vale.ini
vendored
Normal file
11
.github/vale.ini
vendored
Normal file
@@ -0,0 +1,11 @@
|
||||
StylesPath = styles
|
||||
MinAlertLevel = suggestion
|
||||
; Packages = write-good, proselint
|
||||
|
||||
Vocab = Docling
|
||||
|
||||
[*.md]
|
||||
BasedOnStyles = Vale
|
||||
|
||||
[CHANGELOG.md]
|
||||
BasedOnStyles =
|
||||
@@ -21,6 +21,17 @@ repos:
|
||||
pass_filenames: false
|
||||
language: system
|
||||
files: '\.py$'
|
||||
- repo: https://github.com/errata-ai/vale
|
||||
rev: v3.12.0 # Use latest stable version
|
||||
hooks:
|
||||
- id: vale
|
||||
name: vale sync
|
||||
pass_filenames: false
|
||||
args: [sync, "--config=.github/vale.ini"]
|
||||
- id: vale
|
||||
name: Spell and Style Check with Vale
|
||||
args: ["--config=.github/vale.ini"]
|
||||
files: \.md$
|
||||
- repo: https://github.com/astral-sh/uv-pre-commit
|
||||
# uv version.
|
||||
rev: 0.7.13
|
||||
|
||||
22
CHANGELOG.md
22
CHANGELOG.md
@@ -1,3 +1,25 @@
|
||||
## [v1.0.1](https://github.com/docling-project/docling-serve/releases/tag/v1.0.1) - 2025-07-21
|
||||
|
||||
### Fix
|
||||
|
||||
* Docling update v2.42.0 ([#277](https://github.com/docling-project/docling-serve/issues/277)) ([`8706706`](https://github.com/docling-project/docling-serve/commit/8706706e8797b0a06ec4baa7cf87988311be68b6))
|
||||
|
||||
### Documentation
|
||||
|
||||
* Typo in README ([#276](https://github.com/docling-project/docling-serve/issues/276)) ([`766adb2`](https://github.com/docling-project/docling-serve/commit/766adb248113c7bd5144d14b3c82929a2ad29f8e))
|
||||
|
||||
## [v1.0.0](https://github.com/docling-project/docling-serve/releases/tag/v1.0.0) - 2025-07-14
|
||||
|
||||
### Feature
|
||||
|
||||
* V1 api with list of sources and target ([#249](https://github.com/docling-project/docling-serve/issues/249)) ([`56e328b`](https://github.com/docling-project/docling-serve/commit/56e328baf76b4bb0476fc6ca820b52034e4f97bf))
|
||||
* Use orchestrators from jobkit ([#248](https://github.com/docling-project/docling-serve/issues/248)) ([`daa924a`](https://github.com/docling-project/docling-serve/commit/daa924a77e56d063ef17347dfd8a838872a70529))
|
||||
|
||||
### Breaking
|
||||
|
||||
* v1 api with list of sources and target ([#249](https://github.com/docling-project/docling-serve/issues/249)) ([`56e328b`](https://github.com/docling-project/docling-serve/commit/56e328baf76b4bb0476fc6ca820b52034e4f97bf))
|
||||
* use orchestrators from jobkit ([#248](https://github.com/docling-project/docling-serve/issues/248)) ([`daa924a`](https://github.com/docling-project/docling-serve/commit/daa924a77e56d063ef17347dfd8a838872a70529))
|
||||
|
||||
## [v0.16.1](https://github.com/docling-project/docling-serve/releases/tag/v0.16.1) - 2025-07-07
|
||||
|
||||
### Fix
|
||||
|
||||
@@ -42,7 +42,7 @@ ENV \
|
||||
|
||||
ARG UV_SYNC_EXTRA_ARGS=""
|
||||
|
||||
RUN --mount=from=ghcr.io/astral-sh/uv:0.7.13,source=/uv,target=/bin/uv \
|
||||
RUN --mount=from=ghcr.io/astral-sh/uv:0.7.19,source=/uv,target=/bin/uv \
|
||||
--mount=type=cache,target=/opt/app-root/src/.cache/uv,uid=1001 \
|
||||
--mount=type=bind,source=uv.lock,target=uv.lock \
|
||||
--mount=type=bind,source=pyproject.toml,target=pyproject.toml \
|
||||
@@ -61,7 +61,7 @@ RUN echo "Downloading models..." && \
|
||||
chmod -R g=u ${DOCLING_SERVE_ARTIFACTS_PATH}
|
||||
|
||||
COPY --chown=1001:0 ./docling_serve ./docling_serve
|
||||
RUN --mount=from=ghcr.io/astral-sh/uv:0.7.13,source=/uv,target=/bin/uv \
|
||||
RUN --mount=from=ghcr.io/astral-sh/uv:0.7.19,source=/uv,target=/bin/uv \
|
||||
--mount=type=cache,target=/opt/app-root/src/.cache/uv,uid=1001 \
|
||||
--mount=type=bind,source=uv.lock,target=uv.lock \
|
||||
--mount=type=bind,source=pyproject.toml,target=pyproject.toml \
|
||||
|
||||
@@ -1,11 +1,11 @@
|
||||
# MAINTAINERS
|
||||
|
||||
- Christoph Auer - [@cau-git](https://github.com/cau-git)
|
||||
- Michele Dolfi - [@dolfim-ibm](https://github.com/dolfim-ibm)
|
||||
- Maxim Lysak - [@maxmnemonic](https://github.com/maxmnemonic)
|
||||
- Nikos Livathinos - [@nikos-livathinos](https://github.com/nikos-livathinos)
|
||||
- Ahmed Nassar - [@nassarofficial](https://github.com/nassarofficial)
|
||||
- Panos Vagenas - [@vagenas](https://github.com/vagenas)
|
||||
- Peter Staar - [@PeterStaar-IBM](https://github.com/PeterStaar-IBM)
|
||||
- Christoph Auer - [`@cau-git`](https://github.com/cau-git)
|
||||
- Michele Dolfi - [`@dolfim-ibm`](https://github.com/dolfim-ibm)
|
||||
- Maxim Lysak - [`@maxmnemonic`](https://github.com/maxmnemonic)
|
||||
- Nikos Livathinos - [`@nikos-livathinos`](https://github.com/nikos-livathinos)
|
||||
- Ahmed Nassar - [`@nassarofficial`](https://github.com/nassarofficial)
|
||||
- Panos Vagenas - [`@vagenas`](https://github.com/vagenas)
|
||||
- Peter Staar - [`@PeterStaar-IBM`](https://github.com/PeterStaar-IBM)
|
||||
|
||||
Maintainers can be contacted at [deepsearch-core@zurich.ibm.com](mailto:deepsearch-core@zurich.ibm.com).
|
||||
|
||||
11
README.md
11
README.md
@@ -12,9 +12,12 @@ Running [Docling](https://github.com/docling-project/docling) as an API service.
|
||||
|
||||
- Learning how to [configure the webserver](./docs/configuration.md)
|
||||
- Get to know all [runtime options](./docs/usage.md) of the API
|
||||
- Explore usefule [deployment examples](./docs/deployment.md)
|
||||
- Explore useful [deployment examples](./docs/deployment.md)
|
||||
- And more
|
||||
|
||||
> [!NOTE]
|
||||
> **Migration to the `v1` API.** Docling Serve now has a stable v1 API. Read more on the [migration to v1](./docs/v1_migration.md).
|
||||
|
||||
## Getting started
|
||||
|
||||
Install the `docling-serve` package and run the server.
|
||||
@@ -39,7 +42,7 @@ Try it out with a simple conversion:
|
||||
|
||||
```bash
|
||||
curl -X 'POST' \
|
||||
'http://localhost:5001/v1alpha/convert/source' \
|
||||
'http://localhost:5001/v1/convert/source' \
|
||||
-H 'accept: application/json' \
|
||||
-H 'Content-Type: application/json' \
|
||||
-d '{
|
||||
@@ -65,9 +68,9 @@ Coming soon: `docling-serve-slim` images will reduce the size by skipping the mo
|
||||
|
||||
An easy to use UI is available at the `/ui` endpoint.
|
||||
|
||||

|
||||

|
||||
|
||||

|
||||

|
||||
|
||||
## Get help and support
|
||||
|
||||
|
||||
@@ -30,6 +30,7 @@ logger = logging.getLogger(__name__)
|
||||
def version_callback(value: bool) -> None:
|
||||
if value:
|
||||
docling_serve_version = importlib.metadata.version("docling_serve")
|
||||
docling_jobkit_version = importlib.metadata.version("docling-jobkit")
|
||||
docling_version = importlib.metadata.version("docling")
|
||||
docling_core_version = importlib.metadata.version("docling-core")
|
||||
docling_ibm_models_version = importlib.metadata.version("docling-ibm-models")
|
||||
@@ -38,6 +39,7 @@ def version_callback(value: bool) -> None:
|
||||
py_impl_version = sys.implementation.cache_tag
|
||||
py_lang_version = platform.python_version()
|
||||
console.print(f"Docling Serve version: {docling_serve_version}")
|
||||
console.print(f"Docling Jobkit version: {docling_jobkit_version}")
|
||||
console.print(f"Docling version: {docling_version}")
|
||||
console.print(f"Docling Core version: {docling_core_version}")
|
||||
console.print(f"Docling IBM Models version: {docling_ibm_models_version}")
|
||||
|
||||
@@ -11,6 +11,7 @@ from fastapi import (
|
||||
BackgroundTasks,
|
||||
Depends,
|
||||
FastAPI,
|
||||
Form,
|
||||
HTTPException,
|
||||
Query,
|
||||
UploadFile,
|
||||
@@ -28,16 +29,25 @@ from fastapi.staticfiles import StaticFiles
|
||||
from scalar_fastapi import get_scalar_api_reference
|
||||
|
||||
from docling.datamodel.base_models import DocumentStream
|
||||
|
||||
from docling_serve.datamodel.callback import (
|
||||
from docling_jobkit.datamodel.callback import (
|
||||
ProgressCallbackRequest,
|
||||
ProgressCallbackResponse,
|
||||
)
|
||||
from docling_serve.datamodel.convert import ConvertDocumentsOptions
|
||||
from docling_jobkit.datamodel.http_inputs import FileSource, HttpSource
|
||||
from docling_jobkit.datamodel.task import Task, TaskSource
|
||||
from docling_jobkit.datamodel.task_targets import InBodyTarget, TaskTarget, ZipTarget
|
||||
from docling_jobkit.orchestrators.base_orchestrator import (
|
||||
BaseOrchestrator,
|
||||
ProgressInvalid,
|
||||
TaskNotFoundError,
|
||||
)
|
||||
|
||||
from docling_serve.datamodel.convert import ConvertDocumentsRequestOptions
|
||||
from docling_serve.datamodel.requests import (
|
||||
ConvertDocumentFileSourcesRequest,
|
||||
ConvertDocumentHttpSourcesRequest,
|
||||
ConvertDocumentsRequest,
|
||||
FileSourceRequest,
|
||||
HttpSourceRequest,
|
||||
TargetName,
|
||||
)
|
||||
from docling_serve.datamodel.responses import (
|
||||
ClearResponse,
|
||||
@@ -47,17 +57,12 @@ from docling_serve.datamodel.responses import (
|
||||
TaskStatusResponse,
|
||||
WebsocketMessage,
|
||||
)
|
||||
from docling_serve.datamodel.task import Task, TaskSource
|
||||
from docling_serve.docling_conversion import _get_converter_from_hash
|
||||
from docling_serve.engines.async_orchestrator import (
|
||||
BaseAsyncOrchestrator,
|
||||
ProgressInvalid,
|
||||
)
|
||||
from docling_serve.engines.async_orchestrator_factory import get_async_orchestrator
|
||||
from docling_serve.engines.base_orchestrator import TaskNotFoundError
|
||||
from docling_serve.helper_functions import FormDepends
|
||||
from docling_serve.orchestrator_factory import get_async_orchestrator
|
||||
from docling_serve.response_preparation import prepare_response
|
||||
from docling_serve.settings import docling_serve_settings
|
||||
from docling_serve.storage import get_scratch
|
||||
from docling_serve.websocket_notifier import WebsocketNotifier
|
||||
|
||||
|
||||
# Set up custom logging as we'll be intermixes with FastAPI/Uvicorn's logging
|
||||
@@ -95,9 +100,12 @@ _log = logging.getLogger(__name__)
|
||||
# Context manager to initialize and clean up the lifespan of the FastAPI app
|
||||
@asynccontextmanager
|
||||
async def lifespan(app: FastAPI):
|
||||
orchestrator = get_async_orchestrator()
|
||||
scratch_dir = get_scratch()
|
||||
|
||||
orchestrator = get_async_orchestrator()
|
||||
notifier = WebsocketNotifier(orchestrator)
|
||||
orchestrator.bind_notifier(notifier)
|
||||
|
||||
# Warm up processing cache
|
||||
if docling_serve_settings.load_models_at_boot:
|
||||
await orchestrator.warm_up_caches()
|
||||
@@ -230,23 +238,27 @@ def create_app(): # noqa: C901
|
||||
########################
|
||||
|
||||
async def _enque_source(
|
||||
orchestrator: BaseAsyncOrchestrator, conversion_request: ConvertDocumentsRequest
|
||||
orchestrator: BaseOrchestrator, conversion_request: ConvertDocumentsRequest
|
||||
) -> Task:
|
||||
sources: list[TaskSource] = []
|
||||
if isinstance(conversion_request, ConvertDocumentFileSourcesRequest):
|
||||
sources.extend(conversion_request.file_sources)
|
||||
if isinstance(conversion_request, ConvertDocumentHttpSourcesRequest):
|
||||
sources.extend(conversion_request.http_sources)
|
||||
for s in conversion_request.sources:
|
||||
if isinstance(s, FileSourceRequest):
|
||||
sources.append(FileSource.model_validate(s))
|
||||
elif isinstance(s, HttpSourceRequest):
|
||||
sources.append(HttpSource.model_validate(s))
|
||||
|
||||
task = await orchestrator.enqueue(
|
||||
sources=sources, options=conversion_request.options
|
||||
sources=sources,
|
||||
options=conversion_request.options,
|
||||
target=conversion_request.target,
|
||||
)
|
||||
return task
|
||||
|
||||
async def _enque_file(
|
||||
orchestrator: BaseAsyncOrchestrator,
|
||||
orchestrator: BaseOrchestrator,
|
||||
files: list[UploadFile],
|
||||
options: ConvertDocumentsOptions,
|
||||
options: ConvertDocumentsRequestOptions,
|
||||
target: TaskTarget,
|
||||
) -> Task:
|
||||
_log.info(f"Received {len(files)} files for processing.")
|
||||
|
||||
@@ -258,12 +270,12 @@ def create_app(): # noqa: C901
|
||||
name = file.filename if file.filename else f"file{suffix}.pdf"
|
||||
file_sources.append(DocumentStream(name=name, stream=buf))
|
||||
|
||||
task = await orchestrator.enqueue(sources=file_sources, options=options)
|
||||
task = await orchestrator.enqueue(
|
||||
sources=file_sources, options=options, target=target
|
||||
)
|
||||
return task
|
||||
|
||||
async def _wait_task_complete(
|
||||
orchestrator: BaseAsyncOrchestrator, task_id: str
|
||||
) -> bool:
|
||||
async def _wait_task_complete(orchestrator: BaseOrchestrator, task_id: str) -> bool:
|
||||
start_time = time.monotonic()
|
||||
while True:
|
||||
task = await orchestrator.task_status(task_id=task_id)
|
||||
@@ -298,7 +310,7 @@ def create_app(): # noqa: C901
|
||||
|
||||
# Convert a document from URL(s)
|
||||
@app.post(
|
||||
"/v1alpha/convert/source",
|
||||
"/v1/convert/source",
|
||||
response_model=ConvertDocumentResponse,
|
||||
responses={
|
||||
200: {
|
||||
@@ -309,36 +321,32 @@ def create_app(): # noqa: C901
|
||||
)
|
||||
async def process_url(
|
||||
background_tasks: BackgroundTasks,
|
||||
orchestrator: Annotated[BaseAsyncOrchestrator, Depends(get_async_orchestrator)],
|
||||
orchestrator: Annotated[BaseOrchestrator, Depends(get_async_orchestrator)],
|
||||
conversion_request: ConvertDocumentsRequest,
|
||||
):
|
||||
task = await _enque_source(
|
||||
orchestrator=orchestrator, conversion_request=conversion_request
|
||||
)
|
||||
success = await _wait_task_complete(
|
||||
completed = await _wait_task_complete(
|
||||
orchestrator=orchestrator, task_id=task.task_id
|
||||
)
|
||||
|
||||
if not success:
|
||||
if not completed:
|
||||
# TODO: abort task!
|
||||
return HTTPException(
|
||||
status_code=504,
|
||||
detail=f"Conversion is taking too long. The maximum wait time is configure as DOCLING_SERVE_MAX_SYNC_WAIT={docling_serve_settings.max_sync_wait}.",
|
||||
)
|
||||
|
||||
result = await orchestrator.task_result(
|
||||
task_id=task.task_id, background_tasks=background_tasks
|
||||
task = await orchestrator.get_raw_task(task_id=task.task_id)
|
||||
response = await prepare_response(
|
||||
task=task, orchestrator=orchestrator, background_tasks=background_tasks
|
||||
)
|
||||
if result is None:
|
||||
raise HTTPException(
|
||||
status_code=404,
|
||||
detail="Task result not found. Please wait for a completion status.",
|
||||
)
|
||||
return result
|
||||
return response
|
||||
|
||||
# Convert a document from file(s)
|
||||
@app.post(
|
||||
"/v1alpha/convert/file",
|
||||
"/v1/convert/file",
|
||||
response_model=ConvertDocumentResponse,
|
||||
responses={
|
||||
200: {
|
||||
@@ -348,43 +356,41 @@ def create_app(): # noqa: C901
|
||||
)
|
||||
async def process_file(
|
||||
background_tasks: BackgroundTasks,
|
||||
orchestrator: Annotated[BaseAsyncOrchestrator, Depends(get_async_orchestrator)],
|
||||
orchestrator: Annotated[BaseOrchestrator, Depends(get_async_orchestrator)],
|
||||
files: list[UploadFile],
|
||||
options: Annotated[
|
||||
ConvertDocumentsOptions, FormDepends(ConvertDocumentsOptions)
|
||||
ConvertDocumentsRequestOptions, FormDepends(ConvertDocumentsRequestOptions)
|
||||
],
|
||||
target_type: Annotated[TargetName, Form()] = TargetName.INBODY,
|
||||
):
|
||||
target = InBodyTarget() if target_type == TargetName.INBODY else ZipTarget()
|
||||
task = await _enque_file(
|
||||
orchestrator=orchestrator, files=files, options=options
|
||||
orchestrator=orchestrator, files=files, options=options, target=target
|
||||
)
|
||||
success = await _wait_task_complete(
|
||||
completed = await _wait_task_complete(
|
||||
orchestrator=orchestrator, task_id=task.task_id
|
||||
)
|
||||
|
||||
if not success:
|
||||
if not completed:
|
||||
# TODO: abort task!
|
||||
return HTTPException(
|
||||
status_code=504,
|
||||
detail=f"Conversion is taking too long. The maximum wait time is configure as DOCLING_SERVE_MAX_SYNC_WAIT={docling_serve_settings.max_sync_wait}.",
|
||||
)
|
||||
|
||||
result = await orchestrator.task_result(
|
||||
task_id=task.task_id, background_tasks=background_tasks
|
||||
task = await orchestrator.get_raw_task(task_id=task.task_id)
|
||||
response = await prepare_response(
|
||||
task=task, orchestrator=orchestrator, background_tasks=background_tasks
|
||||
)
|
||||
if result is None:
|
||||
raise HTTPException(
|
||||
status_code=404,
|
||||
detail="Task result not found. Please wait for a completion status.",
|
||||
)
|
||||
return result
|
||||
return response
|
||||
|
||||
# Convert a document from URL(s) using the async api
|
||||
@app.post(
|
||||
"/v1alpha/convert/source/async",
|
||||
"/v1/convert/source/async",
|
||||
response_model=TaskStatusResponse,
|
||||
)
|
||||
async def process_url_async(
|
||||
orchestrator: Annotated[BaseAsyncOrchestrator, Depends(get_async_orchestrator)],
|
||||
orchestrator: Annotated[BaseOrchestrator, Depends(get_async_orchestrator)],
|
||||
conversion_request: ConvertDocumentsRequest,
|
||||
):
|
||||
task = await _enque_source(
|
||||
@@ -402,19 +408,21 @@ def create_app(): # noqa: C901
|
||||
|
||||
# Convert a document from file(s) using the async api
|
||||
@app.post(
|
||||
"/v1alpha/convert/file/async",
|
||||
"/v1/convert/file/async",
|
||||
response_model=TaskStatusResponse,
|
||||
)
|
||||
async def process_file_async(
|
||||
orchestrator: Annotated[BaseAsyncOrchestrator, Depends(get_async_orchestrator)],
|
||||
orchestrator: Annotated[BaseOrchestrator, Depends(get_async_orchestrator)],
|
||||
background_tasks: BackgroundTasks,
|
||||
files: list[UploadFile],
|
||||
options: Annotated[
|
||||
ConvertDocumentsOptions, FormDepends(ConvertDocumentsOptions)
|
||||
ConvertDocumentsRequestOptions, FormDepends(ConvertDocumentsRequestOptions)
|
||||
],
|
||||
target_type: Annotated[TargetName, Form()] = TargetName.INBODY,
|
||||
):
|
||||
target = InBodyTarget() if target_type == TargetName.INBODY else ZipTarget()
|
||||
task = await _enque_file(
|
||||
orchestrator=orchestrator, files=files, options=options
|
||||
orchestrator=orchestrator, files=files, options=options, target=target
|
||||
)
|
||||
task_queue_position = await orchestrator.get_queue_position(
|
||||
task_id=task.task_id
|
||||
@@ -428,11 +436,11 @@ def create_app(): # noqa: C901
|
||||
|
||||
# Task status poll
|
||||
@app.get(
|
||||
"/v1alpha/status/poll/{task_id}",
|
||||
"/v1/status/poll/{task_id}",
|
||||
response_model=TaskStatusResponse,
|
||||
)
|
||||
async def task_status_poll(
|
||||
orchestrator: Annotated[BaseAsyncOrchestrator, Depends(get_async_orchestrator)],
|
||||
orchestrator: Annotated[BaseOrchestrator, Depends(get_async_orchestrator)],
|
||||
task_id: str,
|
||||
wait: Annotated[
|
||||
float, Query(help="Number of seconds to wait for a completed status.")
|
||||
@@ -452,13 +460,14 @@ def create_app(): # noqa: C901
|
||||
|
||||
# Task status websocket
|
||||
@app.websocket(
|
||||
"/v1alpha/status/ws/{task_id}",
|
||||
"/v1/status/ws/{task_id}",
|
||||
)
|
||||
async def task_status_ws(
|
||||
websocket: WebSocket,
|
||||
orchestrator: Annotated[BaseAsyncOrchestrator, Depends(get_async_orchestrator)],
|
||||
orchestrator: Annotated[BaseOrchestrator, Depends(get_async_orchestrator)],
|
||||
task_id: str,
|
||||
):
|
||||
assert isinstance(orchestrator.notifier, WebsocketNotifier)
|
||||
await websocket.accept()
|
||||
|
||||
if task_id not in orchestrator.tasks:
|
||||
@@ -473,7 +482,7 @@ def create_app(): # noqa: C901
|
||||
task = orchestrator.tasks[task_id]
|
||||
|
||||
# Track active WebSocket connections for this job
|
||||
orchestrator.task_subscribers[task_id].add(websocket)
|
||||
orchestrator.notifier.task_subscribers[task_id].add(websocket)
|
||||
|
||||
try:
|
||||
task_queue_position = await orchestrator.get_queue_position(task_id=task_id)
|
||||
@@ -511,11 +520,11 @@ def create_app(): # noqa: C901
|
||||
_log.info(f"WebSocket disconnected for job {task_id}")
|
||||
|
||||
finally:
|
||||
orchestrator.task_subscribers[task_id].remove(websocket)
|
||||
orchestrator.notifier.task_subscribers[task_id].remove(websocket)
|
||||
|
||||
# Task result
|
||||
@app.get(
|
||||
"/v1alpha/result/{task_id}",
|
||||
"/v1/result/{task_id}",
|
||||
response_model=ConvertDocumentResponse,
|
||||
responses={
|
||||
200: {
|
||||
@@ -524,27 +533,26 @@ def create_app(): # noqa: C901
|
||||
},
|
||||
)
|
||||
async def task_result(
|
||||
orchestrator: Annotated[BaseAsyncOrchestrator, Depends(get_async_orchestrator)],
|
||||
orchestrator: Annotated[BaseOrchestrator, Depends(get_async_orchestrator)],
|
||||
background_tasks: BackgroundTasks,
|
||||
task_id: str,
|
||||
):
|
||||
result = await orchestrator.task_result(
|
||||
task_id=task_id, background_tasks=background_tasks
|
||||
)
|
||||
if result is None:
|
||||
raise HTTPException(
|
||||
status_code=404,
|
||||
detail="Task result not found. Please wait for a completion status.",
|
||||
try:
|
||||
task = await orchestrator.get_raw_task(task_id=task_id)
|
||||
response = await prepare_response(
|
||||
task=task, orchestrator=orchestrator, background_tasks=background_tasks
|
||||
)
|
||||
return result
|
||||
return response
|
||||
except TaskNotFoundError:
|
||||
raise HTTPException(status_code=404, detail="Task not found.")
|
||||
|
||||
# Update task progress
|
||||
@app.post(
|
||||
"/v1alpha/callback/task/progress",
|
||||
"/v1/callback/task/progress",
|
||||
response_model=ProgressCallbackResponse,
|
||||
)
|
||||
async def callback_task_progress(
|
||||
orchestrator: Annotated[BaseAsyncOrchestrator, Depends(get_async_orchestrator)],
|
||||
orchestrator: Annotated[BaseOrchestrator, Depends(get_async_orchestrator)],
|
||||
request: ProgressCallbackRequest,
|
||||
):
|
||||
try:
|
||||
@@ -561,20 +569,22 @@ def create_app(): # noqa: C901
|
||||
|
||||
# Offload models
|
||||
@app.get(
|
||||
"/v1alpha/clear/converters",
|
||||
"/v1/clear/converters",
|
||||
response_model=ClearResponse,
|
||||
)
|
||||
async def clear_converters():
|
||||
_get_converter_from_hash.cache_clear()
|
||||
async def clear_converters(
|
||||
orchestrator: Annotated[BaseOrchestrator, Depends(get_async_orchestrator)],
|
||||
):
|
||||
await orchestrator.clear_converters()
|
||||
return ClearResponse()
|
||||
|
||||
# Clean results
|
||||
@app.get(
|
||||
"/v1alpha/clear/results",
|
||||
"/v1/clear/results",
|
||||
response_model=ClearResponse,
|
||||
)
|
||||
async def clear_results(
|
||||
orchestrator: Annotated[BaseAsyncOrchestrator, Depends(get_async_orchestrator)],
|
||||
orchestrator: Annotated[BaseOrchestrator, Depends(get_async_orchestrator)],
|
||||
older_then: float = 3600,
|
||||
):
|
||||
await orchestrator.clear_results(older_than=older_then)
|
||||
|
||||
@@ -1,50 +0,0 @@
|
||||
import enum
|
||||
from typing import Annotated, Literal
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class ProgressKind(str, enum.Enum):
|
||||
SET_NUM_DOCS = "set_num_docs"
|
||||
UPDATE_PROCESSED = "update_processed"
|
||||
|
||||
|
||||
class BaseProgress(BaseModel):
|
||||
kind: ProgressKind
|
||||
|
||||
|
||||
class ProgressSetNumDocs(BaseProgress):
|
||||
kind: Literal[ProgressKind.SET_NUM_DOCS] = ProgressKind.SET_NUM_DOCS
|
||||
|
||||
num_docs: int
|
||||
|
||||
|
||||
class SucceededDocsItem(BaseModel):
|
||||
source: str
|
||||
|
||||
|
||||
class FailedDocsItem(BaseModel):
|
||||
source: str
|
||||
error: str
|
||||
|
||||
|
||||
class ProgressUpdateProcessed(BaseProgress):
|
||||
kind: Literal[ProgressKind.UPDATE_PROCESSED] = ProgressKind.UPDATE_PROCESSED
|
||||
|
||||
num_processed: int
|
||||
num_succeeded: int
|
||||
num_failed: int
|
||||
|
||||
docs_succeeded: list[SucceededDocsItem]
|
||||
docs_failed: list[FailedDocsItem]
|
||||
|
||||
|
||||
class ProgressCallbackRequest(BaseModel):
|
||||
task_id: str
|
||||
progress: Annotated[
|
||||
ProgressSetNumDocs | ProgressUpdateProcessed, Field(discriminator="kind")
|
||||
]
|
||||
|
||||
|
||||
class ProgressCallbackResponse(BaseModel):
|
||||
status: Literal["ack"] = "ack"
|
||||
@@ -1,24 +1,13 @@
|
||||
# Define the input options for the API
|
||||
from typing import Annotated, Any, Optional
|
||||
from typing import Annotated
|
||||
|
||||
from pydantic import AnyUrl, BaseModel, Field, model_validator
|
||||
from typing_extensions import Self
|
||||
from pydantic import Field
|
||||
|
||||
from docling.datamodel.base_models import InputFormat, OutputFormat
|
||||
from docling.datamodel.pipeline_options import (
|
||||
EasyOcrOptions,
|
||||
PdfBackend,
|
||||
PictureDescriptionBaseOptions,
|
||||
ProcessingPipeline,
|
||||
TableFormerMode,
|
||||
TableStructureOptions,
|
||||
)
|
||||
from docling.datamodel.settings import (
|
||||
DEFAULT_PAGE_RANGE,
|
||||
PageRange,
|
||||
)
|
||||
from docling.models.factories import get_ocr_factory
|
||||
from docling_core.types.doc import ImageRefMode
|
||||
from docling_jobkit.datamodel.convert import ConvertDocumentsOptions
|
||||
|
||||
from docling_serve.settings import docling_serve_settings
|
||||
|
||||
@@ -28,154 +17,7 @@ ocr_factory = get_ocr_factory(
|
||||
ocr_engines_enum = ocr_factory.get_enum()
|
||||
|
||||
|
||||
class PictureDescriptionLocal(BaseModel):
|
||||
repo_id: Annotated[
|
||||
str,
|
||||
Field(
|
||||
description="Repository id from the Hugging Face Hub.",
|
||||
examples=[
|
||||
"HuggingFaceTB/SmolVLM-256M-Instruct",
|
||||
"ibm-granite/granite-vision-3.2-2b",
|
||||
],
|
||||
),
|
||||
]
|
||||
prompt: Annotated[
|
||||
str,
|
||||
Field(
|
||||
description="Prompt used when calling the vision-language model.",
|
||||
examples=[
|
||||
"Describe this image in a few sentences.",
|
||||
"This is a figure from a document. Provide a detailed description of it.",
|
||||
],
|
||||
),
|
||||
] = "Describe this image in a few sentences."
|
||||
generation_config: Annotated[
|
||||
dict[str, Any],
|
||||
Field(
|
||||
description="Config from https://huggingface.co/docs/transformers/en/main_classes/text_generation#transformers.GenerationConfig",
|
||||
examples=[{"max_new_tokens": 200, "do_sample": False}],
|
||||
),
|
||||
] = {"max_new_tokens": 200, "do_sample": False}
|
||||
|
||||
|
||||
class PictureDescriptionApi(BaseModel):
|
||||
url: Annotated[
|
||||
AnyUrl,
|
||||
Field(
|
||||
description="Endpoint which accepts openai-api compatible requests.",
|
||||
examples=[
|
||||
AnyUrl(
|
||||
"http://localhost:8000/v1/chat/completions"
|
||||
), # example of a local vllm api
|
||||
AnyUrl(
|
||||
"http://localhost:11434/v1/chat/completions"
|
||||
), # example of ollama
|
||||
],
|
||||
),
|
||||
]
|
||||
headers: Annotated[
|
||||
dict[str, str],
|
||||
Field(
|
||||
description="Headers used for calling the API endpoint. For example, it could include authentication headers."
|
||||
),
|
||||
] = {}
|
||||
params: Annotated[
|
||||
dict[str, Any],
|
||||
Field(
|
||||
description="Model parameters.",
|
||||
examples=[
|
||||
{ # on vllm
|
||||
"model": "HuggingFaceTB/SmolVLM-256M-Instruct",
|
||||
"max_completion_tokens": 200,
|
||||
},
|
||||
{ # on vllm
|
||||
"model": "ibm-granite/granite-vision-3.2-2b",
|
||||
"max_completion_tokens": 200,
|
||||
},
|
||||
{ # on ollama
|
||||
"model": "granite3.2-vision:2b"
|
||||
},
|
||||
],
|
||||
),
|
||||
] = {}
|
||||
timeout: Annotated[float, Field(description="Timeout for the API request.")] = 20
|
||||
prompt: Annotated[
|
||||
str,
|
||||
Field(
|
||||
description="Prompt used when calling the vision-language model.",
|
||||
examples=[
|
||||
"Describe this image in a few sentences.",
|
||||
"This is a figures from a document. Provide a detailed description of it.",
|
||||
],
|
||||
),
|
||||
] = "Describe this image in a few sentences."
|
||||
|
||||
|
||||
class ConvertDocumentsOptions(BaseModel):
|
||||
from_formats: Annotated[
|
||||
list[InputFormat],
|
||||
Field(
|
||||
description=(
|
||||
"Input format(s) to convert from. String or list of strings. "
|
||||
f"Allowed values: {', '.join([v.value for v in InputFormat])}. "
|
||||
"Optional, defaults to all formats."
|
||||
),
|
||||
examples=[[v.value for v in InputFormat]],
|
||||
),
|
||||
] = list(InputFormat)
|
||||
|
||||
to_formats: Annotated[
|
||||
list[OutputFormat],
|
||||
Field(
|
||||
description=(
|
||||
"Output format(s) to convert to. String or list of strings. "
|
||||
f"Allowed values: {', '.join([v.value for v in OutputFormat])}. "
|
||||
"Optional, defaults to Markdown."
|
||||
),
|
||||
examples=[
|
||||
[OutputFormat.MARKDOWN],
|
||||
[OutputFormat.MARKDOWN, OutputFormat.JSON],
|
||||
[v.value for v in OutputFormat],
|
||||
],
|
||||
),
|
||||
] = [OutputFormat.MARKDOWN]
|
||||
|
||||
image_export_mode: Annotated[
|
||||
ImageRefMode,
|
||||
Field(
|
||||
description=(
|
||||
"Image export mode for the document (in case of JSON,"
|
||||
" Markdown or HTML). "
|
||||
f"Allowed values: {', '.join([v.value for v in ImageRefMode])}. "
|
||||
"Optional, defaults to Embedded."
|
||||
),
|
||||
examples=[ImageRefMode.EMBEDDED.value],
|
||||
# pattern="embedded|placeholder|referenced",
|
||||
),
|
||||
] = ImageRefMode.EMBEDDED
|
||||
|
||||
do_ocr: Annotated[
|
||||
bool,
|
||||
Field(
|
||||
description=(
|
||||
"If enabled, the bitmap content will be processed using OCR. "
|
||||
"Boolean. Optional, defaults to true"
|
||||
),
|
||||
# examples=[True],
|
||||
),
|
||||
] = True
|
||||
|
||||
force_ocr: Annotated[
|
||||
bool,
|
||||
Field(
|
||||
description=(
|
||||
"If enabled, replace existing text with OCR-generated "
|
||||
"text over content. Boolean. Optional, defaults to false."
|
||||
),
|
||||
# examples=[False],
|
||||
),
|
||||
] = False
|
||||
|
||||
class ConvertDocumentsRequestOptions(ConvertDocumentsOptions):
|
||||
ocr_engine: Annotated[ # type: ignore
|
||||
ocr_engines_enum,
|
||||
Field(
|
||||
@@ -188,57 +30,6 @@ class ConvertDocumentsOptions(BaseModel):
|
||||
),
|
||||
] = ocr_engines_enum(EasyOcrOptions.kind) # type: ignore
|
||||
|
||||
ocr_lang: Annotated[
|
||||
Optional[list[str]],
|
||||
Field(
|
||||
description=(
|
||||
"List of languages used by the OCR engine. "
|
||||
"Note that each OCR engine has "
|
||||
"different values for the language names. String or list of strings. "
|
||||
"Optional, defaults to empty."
|
||||
),
|
||||
examples=[["fr", "de", "es", "en"]],
|
||||
),
|
||||
] = None
|
||||
|
||||
pdf_backend: Annotated[
|
||||
PdfBackend,
|
||||
Field(
|
||||
description=(
|
||||
"The PDF backend to use. String. "
|
||||
f"Allowed values: {', '.join([v.value for v in PdfBackend])}. "
|
||||
f"Optional, defaults to {PdfBackend.DLPARSE_V4.value}."
|
||||
),
|
||||
examples=[PdfBackend.DLPARSE_V4],
|
||||
),
|
||||
] = PdfBackend.DLPARSE_V4
|
||||
|
||||
table_mode: Annotated[
|
||||
TableFormerMode,
|
||||
Field(
|
||||
description=(
|
||||
"Mode to use for table structure, String. "
|
||||
f"Allowed values: {', '.join([v.value for v in TableFormerMode])}. "
|
||||
"Optional, defaults to fast."
|
||||
),
|
||||
examples=[TableStructureOptions().mode],
|
||||
# pattern="fast|accurate",
|
||||
),
|
||||
] = TableStructureOptions().mode
|
||||
|
||||
pipeline: Annotated[
|
||||
ProcessingPipeline,
|
||||
Field(description="Choose the pipeline to process PDF or image files."),
|
||||
] = ProcessingPipeline.STANDARD
|
||||
|
||||
page_range: Annotated[
|
||||
PageRange,
|
||||
Field(
|
||||
description="Only convert a range of pages. The page number starts at 1.",
|
||||
examples=[DEFAULT_PAGE_RANGE, (1, 4)],
|
||||
),
|
||||
] = DEFAULT_PAGE_RANGE
|
||||
|
||||
document_timeout: Annotated[
|
||||
float,
|
||||
Field(
|
||||
@@ -247,152 +38,3 @@ class ConvertDocumentsOptions(BaseModel):
|
||||
le=docling_serve_settings.max_document_timeout,
|
||||
),
|
||||
] = docling_serve_settings.max_document_timeout
|
||||
|
||||
abort_on_error: Annotated[
|
||||
bool,
|
||||
Field(
|
||||
description=(
|
||||
"Abort on error if enabled. Boolean. Optional, defaults to false."
|
||||
),
|
||||
# examples=[False],
|
||||
),
|
||||
] = False
|
||||
|
||||
return_as_file: Annotated[
|
||||
bool,
|
||||
Field(
|
||||
description=(
|
||||
"Return the output as a zip file "
|
||||
"(will happen anyway if multiple files are generated). "
|
||||
"Boolean. Optional, defaults to false."
|
||||
),
|
||||
examples=[False],
|
||||
),
|
||||
] = False
|
||||
|
||||
do_table_structure: Annotated[
|
||||
bool,
|
||||
Field(
|
||||
description=(
|
||||
"If enabled, the table structure will be extracted. "
|
||||
"Boolean. Optional, defaults to true."
|
||||
),
|
||||
examples=[True],
|
||||
),
|
||||
] = True
|
||||
|
||||
include_images: Annotated[
|
||||
bool,
|
||||
Field(
|
||||
description=(
|
||||
"If enabled, images will be extracted from the document. "
|
||||
"Boolean. Optional, defaults to true."
|
||||
),
|
||||
examples=[True],
|
||||
),
|
||||
] = True
|
||||
|
||||
images_scale: Annotated[
|
||||
float,
|
||||
Field(
|
||||
description="Scale factor for images. Float. Optional, defaults to 2.0.",
|
||||
examples=[2.0],
|
||||
),
|
||||
] = 2.0
|
||||
|
||||
md_page_break_placeholder: Annotated[
|
||||
str,
|
||||
Field(
|
||||
description="Add this placeholder betweek pages in the markdown output.",
|
||||
examples=["<!-- page-break -->", ""],
|
||||
),
|
||||
] = ""
|
||||
|
||||
do_code_enrichment: Annotated[
|
||||
bool,
|
||||
Field(
|
||||
description=(
|
||||
"If enabled, perform OCR code enrichment. "
|
||||
"Boolean. Optional, defaults to false."
|
||||
),
|
||||
examples=[False],
|
||||
),
|
||||
] = False
|
||||
|
||||
do_formula_enrichment: Annotated[
|
||||
bool,
|
||||
Field(
|
||||
description=(
|
||||
"If enabled, perform formula OCR, return LaTeX code. "
|
||||
"Boolean. Optional, defaults to false."
|
||||
),
|
||||
examples=[False],
|
||||
),
|
||||
] = False
|
||||
|
||||
do_picture_classification: Annotated[
|
||||
bool,
|
||||
Field(
|
||||
description=(
|
||||
"If enabled, classify pictures in documents. "
|
||||
"Boolean. Optional, defaults to false."
|
||||
),
|
||||
examples=[False],
|
||||
),
|
||||
] = False
|
||||
|
||||
do_picture_description: Annotated[
|
||||
bool,
|
||||
Field(
|
||||
description=(
|
||||
"If enabled, describe pictures in documents. "
|
||||
"Boolean. Optional, defaults to false."
|
||||
),
|
||||
examples=[False],
|
||||
),
|
||||
] = False
|
||||
|
||||
picture_description_area_threshold: Annotated[
|
||||
float,
|
||||
Field(
|
||||
description="Minimum percentage of the area for a picture to be processed with the models.",
|
||||
examples=[PictureDescriptionBaseOptions().picture_area_threshold],
|
||||
),
|
||||
] = PictureDescriptionBaseOptions().picture_area_threshold
|
||||
|
||||
picture_description_local: Annotated[
|
||||
Optional[PictureDescriptionLocal],
|
||||
Field(
|
||||
description="Options for running a local vision-language model in the picture description. The parameters refer to a model hosted on Hugging Face. This parameter is mutually exclusive with picture_description_api.",
|
||||
examples=[
|
||||
PictureDescriptionLocal(repo_id="ibm-granite/granite-vision-3.2-2b"),
|
||||
PictureDescriptionLocal(repo_id="HuggingFaceTB/SmolVLM-256M-Instruct"),
|
||||
],
|
||||
),
|
||||
] = None
|
||||
|
||||
picture_description_api: Annotated[
|
||||
Optional[PictureDescriptionApi],
|
||||
Field(
|
||||
description="API details for using a vision-language model in the picture description. This parameter is mutually exclusive with picture_description_local.",
|
||||
examples=[
|
||||
PictureDescriptionApi(
|
||||
url="http://localhost:11434/v1/chat/completions",
|
||||
params={"model": "granite3.2-vision:2b"},
|
||||
)
|
||||
],
|
||||
),
|
||||
] = None
|
||||
|
||||
@model_validator(mode="after")
|
||||
def picture_description_exclusivity(self) -> Self:
|
||||
# Validate picture description options
|
||||
if (
|
||||
self.picture_description_local is not None
|
||||
and self.picture_description_api is not None
|
||||
):
|
||||
raise ValueError(
|
||||
"The parameters picture_description_local and picture_description_api are mutually exclusive, only one of them can be set."
|
||||
)
|
||||
|
||||
return self
|
||||
|
||||
@@ -1,13 +0,0 @@
|
||||
import enum
|
||||
|
||||
|
||||
class TaskStatus(str, enum.Enum):
|
||||
SUCCESS = "success"
|
||||
PENDING = "pending"
|
||||
STARTED = "started"
|
||||
FAILURE = "failure"
|
||||
|
||||
|
||||
class AsyncEngine(str, enum.Enum):
|
||||
LOCAL = "local"
|
||||
KFP = "kfp"
|
||||
@@ -1,7 +0,0 @@
|
||||
from pydantic import AnyUrl, BaseModel
|
||||
|
||||
|
||||
class CallbackSpec(BaseModel):
|
||||
url: AnyUrl
|
||||
headers: dict[str, str] = {}
|
||||
ca_cert: str = ""
|
||||
@@ -1,62 +1,38 @@
|
||||
import base64
|
||||
from io import BytesIO
|
||||
from typing import Annotated, Any, Union
|
||||
import enum
|
||||
from typing import Annotated, Literal
|
||||
|
||||
from pydantic import AnyHttpUrl, BaseModel, Field
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from docling.datamodel.base_models import DocumentStream
|
||||
from docling_jobkit.datamodel.http_inputs import FileSource, HttpSource
|
||||
from docling_jobkit.datamodel.task_targets import InBodyTarget, TaskTarget, ZipTarget
|
||||
|
||||
from docling_serve.datamodel.convert import ConvertDocumentsOptions
|
||||
from docling_serve.datamodel.convert import ConvertDocumentsRequestOptions
|
||||
|
||||
## Sources
|
||||
|
||||
|
||||
class DocumentsConvertBase(BaseModel):
|
||||
options: ConvertDocumentsOptions = ConvertDocumentsOptions()
|
||||
class FileSourceRequest(FileSource):
|
||||
kind: Literal["file"] = "file"
|
||||
|
||||
|
||||
class HttpSource(BaseModel):
|
||||
url: Annotated[
|
||||
AnyHttpUrl,
|
||||
Field(
|
||||
description="HTTP url to process",
|
||||
examples=["https://arxiv.org/pdf/2206.01062"],
|
||||
),
|
||||
]
|
||||
headers: Annotated[
|
||||
dict[str, Any],
|
||||
Field(
|
||||
description="Additional headers used to fetch the urls, "
|
||||
"e.g. authorization, agent, etc"
|
||||
),
|
||||
] = {}
|
||||
class HttpSourceRequest(HttpSource):
|
||||
kind: Literal["http"] = "http"
|
||||
|
||||
|
||||
class FileSource(BaseModel):
|
||||
base64_string: Annotated[
|
||||
str,
|
||||
Field(
|
||||
description="Content of the file serialized in base64. "
|
||||
"For example it can be obtained via "
|
||||
"`base64 -w 0 /path/to/file/pdf-to-convert.pdf`."
|
||||
),
|
||||
]
|
||||
filename: Annotated[
|
||||
str,
|
||||
Field(description="Filename of the uploaded document", examples=["file.pdf"]),
|
||||
]
|
||||
|
||||
def to_document_stream(self) -> DocumentStream:
|
||||
buf = BytesIO(base64.b64decode(self.base64_string))
|
||||
return DocumentStream(stream=buf, name=self.filename)
|
||||
## Multipart targets
|
||||
class TargetName(str, enum.Enum):
|
||||
INBODY = InBodyTarget().kind
|
||||
ZIP = ZipTarget().kind
|
||||
|
||||
|
||||
class ConvertDocumentHttpSourcesRequest(DocumentsConvertBase):
|
||||
http_sources: list[HttpSource]
|
||||
|
||||
|
||||
class ConvertDocumentFileSourcesRequest(DocumentsConvertBase):
|
||||
file_sources: list[FileSource]
|
||||
|
||||
|
||||
ConvertDocumentsRequest = Union[
|
||||
ConvertDocumentFileSourcesRequest, ConvertDocumentHttpSourcesRequest
|
||||
## Aliases
|
||||
SourceRequestItem = Annotated[
|
||||
FileSourceRequest | HttpSourceRequest, Field(discriminator="kind")
|
||||
]
|
||||
|
||||
|
||||
## Complete Source request
|
||||
class ConvertDocumentsRequest(BaseModel):
|
||||
options: ConvertDocumentsRequestOptions = ConvertDocumentsRequestOptions()
|
||||
sources: list[SourceRequestItem]
|
||||
target: TaskTarget = InBodyTarget()
|
||||
|
||||
@@ -6,8 +6,7 @@ from pydantic import BaseModel
|
||||
from docling.datamodel.document import ConversionStatus, ErrorItem
|
||||
from docling.utils.profiling import ProfilingItem
|
||||
from docling_core.types.doc import DoclingDocument
|
||||
|
||||
from docling_serve.datamodel.task_meta import TaskProcessingMeta
|
||||
from docling_jobkit.datamodel.task_meta import TaskProcessingMeta
|
||||
|
||||
|
||||
# Status
|
||||
|
||||
@@ -1,55 +0,0 @@
|
||||
import datetime
|
||||
from functools import partial
|
||||
from pathlib import Path
|
||||
from typing import Optional, Union
|
||||
|
||||
from fastapi.responses import FileResponse
|
||||
from pydantic import BaseModel, ConfigDict, Field
|
||||
|
||||
from docling.datamodel.base_models import DocumentStream
|
||||
|
||||
from docling_serve.datamodel.convert import ConvertDocumentsOptions
|
||||
from docling_serve.datamodel.engines import TaskStatus
|
||||
from docling_serve.datamodel.requests import FileSource, HttpSource
|
||||
from docling_serve.datamodel.responses import ConvertDocumentResponse
|
||||
from docling_serve.datamodel.task_meta import TaskProcessingMeta
|
||||
|
||||
TaskSource = Union[HttpSource, FileSource, DocumentStream]
|
||||
|
||||
|
||||
class Task(BaseModel):
|
||||
model_config = ConfigDict(arbitrary_types_allowed=True)
|
||||
|
||||
task_id: str
|
||||
task_status: TaskStatus = TaskStatus.PENDING
|
||||
sources: list[TaskSource] = []
|
||||
options: Optional[ConvertDocumentsOptions]
|
||||
result: Optional[Union[ConvertDocumentResponse, FileResponse]] = None
|
||||
scratch_dir: Optional[Path] = None
|
||||
processing_meta: Optional[TaskProcessingMeta] = None
|
||||
created_at: datetime.datetime = Field(
|
||||
default_factory=partial(datetime.datetime.now, datetime.timezone.utc)
|
||||
)
|
||||
started_at: Optional[datetime.datetime] = None
|
||||
finished_at: Optional[datetime.datetime] = None
|
||||
last_update_at: datetime.datetime = Field(
|
||||
default_factory=partial(datetime.datetime.now, datetime.timezone.utc)
|
||||
)
|
||||
|
||||
def set_status(self, status: TaskStatus):
|
||||
now = datetime.datetime.now(datetime.timezone.utc)
|
||||
if status == TaskStatus.STARTED and self.started_at is None:
|
||||
self.started_at = now
|
||||
if (
|
||||
status in [TaskStatus.SUCCESS, TaskStatus.FAILURE]
|
||||
and self.finished_at is None
|
||||
):
|
||||
self.finished_at = now
|
||||
|
||||
self.last_update_at = now
|
||||
self.task_status = status
|
||||
|
||||
def is_completed(self) -> bool:
|
||||
if self.task_status in [TaskStatus.SUCCESS, TaskStatus.FAILURE]:
|
||||
return True
|
||||
return False
|
||||
@@ -1,8 +0,0 @@
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class TaskProcessingMeta(BaseModel):
|
||||
num_docs: int
|
||||
num_processed: int = 0
|
||||
num_succeeded: int = 0
|
||||
num_failed: int = 0
|
||||
@@ -1,256 +0,0 @@
|
||||
import hashlib
|
||||
import json
|
||||
import logging
|
||||
import sys
|
||||
from collections.abc import Iterable, Iterator
|
||||
from functools import lru_cache
|
||||
from pathlib import Path
|
||||
from typing import Any, Optional, Union
|
||||
|
||||
from fastapi import HTTPException
|
||||
|
||||
from docling.backend.docling_parse_backend import DoclingParseDocumentBackend
|
||||
from docling.backend.docling_parse_v2_backend import DoclingParseV2DocumentBackend
|
||||
from docling.backend.docling_parse_v4_backend import DoclingParseV4DocumentBackend
|
||||
from docling.backend.pdf_backend import PdfDocumentBackend
|
||||
from docling.backend.pypdfium2_backend import PyPdfiumDocumentBackend
|
||||
from docling.datamodel.base_models import DocumentStream, InputFormat
|
||||
from docling.datamodel.document import ConversionResult
|
||||
from docling.datamodel.pipeline_options import (
|
||||
OcrOptions,
|
||||
PdfBackend,
|
||||
PdfPipelineOptions,
|
||||
PictureDescriptionApiOptions,
|
||||
PictureDescriptionVlmOptions,
|
||||
ProcessingPipeline,
|
||||
TableFormerMode,
|
||||
VlmPipelineOptions,
|
||||
smoldocling_vlm_conversion_options,
|
||||
smoldocling_vlm_mlx_conversion_options,
|
||||
)
|
||||
from docling.document_converter import DocumentConverter, FormatOption, PdfFormatOption
|
||||
from docling.pipeline.vlm_pipeline import VlmPipeline
|
||||
from docling_core.types.doc import ImageRefMode
|
||||
|
||||
from docling_serve.datamodel.convert import ConvertDocumentsOptions, ocr_factory
|
||||
from docling_serve.helper_functions import _to_list_of_strings
|
||||
from docling_serve.settings import docling_serve_settings
|
||||
|
||||
_log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
# Custom serializer for PdfFormatOption
|
||||
# (model_dump_json does not work with some classes)
|
||||
def _hash_pdf_format_option(pdf_format_option: PdfFormatOption) -> bytes:
|
||||
data = pdf_format_option.model_dump(serialize_as_any=True)
|
||||
|
||||
# pipeline_options are not fully serialized by model_dump, dedicated pass
|
||||
if pdf_format_option.pipeline_options:
|
||||
data["pipeline_options"] = pdf_format_option.pipeline_options.model_dump(
|
||||
serialize_as_any=True, mode="json"
|
||||
)
|
||||
|
||||
# Replace `pipeline_cls` with a string representation
|
||||
data["pipeline_cls"] = repr(data["pipeline_cls"])
|
||||
|
||||
# Replace `backend` with a string representation
|
||||
data["backend"] = repr(data["backend"])
|
||||
|
||||
# Serialize the dictionary to JSON with sorted keys to have consistent hashes
|
||||
serialized_data = json.dumps(data, sort_keys=True)
|
||||
options_hash = hashlib.sha1(
|
||||
serialized_data.encode(), usedforsecurity=False
|
||||
).digest()
|
||||
return options_hash
|
||||
|
||||
|
||||
# Cache of DocumentConverter objects
|
||||
_options_map: dict[bytes, PdfFormatOption] = {}
|
||||
|
||||
|
||||
@lru_cache(maxsize=docling_serve_settings.options_cache_size)
|
||||
def _get_converter_from_hash(options_hash: bytes) -> DocumentConverter:
|
||||
pdf_format_option = _options_map[options_hash]
|
||||
format_options: dict[InputFormat, FormatOption] = {
|
||||
InputFormat.PDF: pdf_format_option,
|
||||
InputFormat.IMAGE: pdf_format_option,
|
||||
}
|
||||
|
||||
return DocumentConverter(format_options=format_options)
|
||||
|
||||
|
||||
def get_converter(pdf_format_option: PdfFormatOption) -> DocumentConverter:
|
||||
options_hash = _hash_pdf_format_option(pdf_format_option)
|
||||
_options_map[options_hash] = pdf_format_option
|
||||
return _get_converter_from_hash(options_hash)
|
||||
|
||||
|
||||
def _parse_standard_pdf_opts(
|
||||
request: ConvertDocumentsOptions, artifacts_path: Optional[Path]
|
||||
) -> PdfPipelineOptions:
|
||||
try:
|
||||
ocr_options: OcrOptions = ocr_factory.create_options(
|
||||
kind=request.ocr_engine.value, # type: ignore
|
||||
force_full_page_ocr=request.force_ocr,
|
||||
)
|
||||
except ImportError as err:
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail="The requested OCR engine"
|
||||
f" (ocr_engine={request.ocr_engine.value})" # type: ignore
|
||||
" is not available on this system. Please choose another OCR engine "
|
||||
"or contact your system administrator.\n"
|
||||
f"{err}",
|
||||
)
|
||||
|
||||
if request.ocr_lang is not None:
|
||||
if isinstance(request.ocr_lang, str):
|
||||
ocr_options.lang = _to_list_of_strings(request.ocr_lang)
|
||||
else:
|
||||
ocr_options.lang = request.ocr_lang
|
||||
|
||||
pipeline_options = PdfPipelineOptions(
|
||||
artifacts_path=artifacts_path,
|
||||
enable_remote_services=docling_serve_settings.enable_remote_services,
|
||||
document_timeout=request.document_timeout,
|
||||
do_ocr=request.do_ocr,
|
||||
ocr_options=ocr_options,
|
||||
do_table_structure=request.do_table_structure,
|
||||
do_code_enrichment=request.do_code_enrichment,
|
||||
do_formula_enrichment=request.do_formula_enrichment,
|
||||
do_picture_classification=request.do_picture_classification,
|
||||
do_picture_description=request.do_picture_description,
|
||||
)
|
||||
pipeline_options.table_structure_options.mode = TableFormerMode(request.table_mode)
|
||||
|
||||
if request.image_export_mode != ImageRefMode.PLACEHOLDER:
|
||||
pipeline_options.generate_page_images = True
|
||||
if request.image_export_mode == ImageRefMode.REFERENCED:
|
||||
pipeline_options.generate_picture_images = True
|
||||
if request.images_scale:
|
||||
pipeline_options.images_scale = request.images_scale
|
||||
|
||||
if request.picture_description_local is not None:
|
||||
pipeline_options.picture_description_options = (
|
||||
PictureDescriptionVlmOptions.model_validate(
|
||||
request.picture_description_local.model_dump()
|
||||
)
|
||||
)
|
||||
|
||||
if request.picture_description_api is not None:
|
||||
pipeline_options.picture_description_options = (
|
||||
PictureDescriptionApiOptions.model_validate(
|
||||
request.picture_description_api.model_dump()
|
||||
)
|
||||
)
|
||||
pipeline_options.picture_description_options.picture_area_threshold = (
|
||||
request.picture_description_area_threshold
|
||||
)
|
||||
|
||||
return pipeline_options
|
||||
|
||||
|
||||
def _parse_backend(request: ConvertDocumentsOptions) -> type[PdfDocumentBackend]:
|
||||
if request.pdf_backend == PdfBackend.DLPARSE_V1:
|
||||
backend: type[PdfDocumentBackend] = DoclingParseDocumentBackend
|
||||
elif request.pdf_backend == PdfBackend.DLPARSE_V2:
|
||||
backend = DoclingParseV2DocumentBackend
|
||||
elif request.pdf_backend == PdfBackend.DLPARSE_V4:
|
||||
backend = DoclingParseV4DocumentBackend
|
||||
elif request.pdf_backend == PdfBackend.PYPDFIUM2:
|
||||
backend = PyPdfiumDocumentBackend
|
||||
else:
|
||||
raise RuntimeError(f"Unexpected PDF backend type {request.pdf_backend}")
|
||||
|
||||
return backend
|
||||
|
||||
|
||||
def _parse_vlm_pdf_opts(
|
||||
request: ConvertDocumentsOptions, artifacts_path: Optional[Path]
|
||||
) -> VlmPipelineOptions:
|
||||
pipeline_options = VlmPipelineOptions(
|
||||
artifacts_path=artifacts_path,
|
||||
document_timeout=request.document_timeout,
|
||||
)
|
||||
pipeline_options.vlm_options = smoldocling_vlm_conversion_options
|
||||
if sys.platform == "darwin":
|
||||
try:
|
||||
import mlx_vlm # noqa: F401
|
||||
|
||||
pipeline_options.vlm_options = smoldocling_vlm_mlx_conversion_options
|
||||
except ImportError:
|
||||
_log.warning(
|
||||
"To run SmolDocling faster, please install mlx-vlm:\n"
|
||||
"pip install mlx-vlm"
|
||||
)
|
||||
return pipeline_options
|
||||
|
||||
|
||||
# Computes the PDF pipeline options and returns the PdfFormatOption and its hash
|
||||
def get_pdf_pipeline_opts(
|
||||
request: ConvertDocumentsOptions,
|
||||
) -> PdfFormatOption:
|
||||
artifacts_path: Optional[Path] = None
|
||||
if docling_serve_settings.artifacts_path is not None:
|
||||
if str(docling_serve_settings.artifacts_path.absolute()) == "":
|
||||
_log.info(
|
||||
"artifacts_path is an empty path, model weights will be downloaded "
|
||||
"at runtime."
|
||||
)
|
||||
artifacts_path = None
|
||||
elif docling_serve_settings.artifacts_path.is_dir():
|
||||
_log.info(
|
||||
"artifacts_path is set to a valid directory. "
|
||||
"No model weights will be downloaded at runtime."
|
||||
)
|
||||
artifacts_path = docling_serve_settings.artifacts_path
|
||||
else:
|
||||
_log.warning(
|
||||
"artifacts_path is set to an invalid directory. "
|
||||
"The system will download the model weights at runtime."
|
||||
)
|
||||
artifacts_path = None
|
||||
else:
|
||||
_log.info(
|
||||
"artifacts_path is unset. "
|
||||
"The system will download the model weights at runtime."
|
||||
)
|
||||
|
||||
pipeline_options: Union[PdfPipelineOptions, VlmPipelineOptions]
|
||||
if request.pipeline == ProcessingPipeline.STANDARD:
|
||||
pipeline_options = _parse_standard_pdf_opts(request, artifacts_path)
|
||||
backend = _parse_backend(request)
|
||||
pdf_format_option = PdfFormatOption(
|
||||
pipeline_options=pipeline_options,
|
||||
backend=backend,
|
||||
)
|
||||
|
||||
elif request.pipeline == ProcessingPipeline.VLM:
|
||||
pipeline_options = _parse_vlm_pdf_opts(request, artifacts_path)
|
||||
pdf_format_option = PdfFormatOption(
|
||||
pipeline_cls=VlmPipeline, pipeline_options=pipeline_options
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
f"The pipeline {request.pipeline} is not implemented."
|
||||
)
|
||||
|
||||
return pdf_format_option
|
||||
|
||||
|
||||
def convert_documents(
|
||||
sources: Iterable[Union[Path, str, DocumentStream]],
|
||||
options: ConvertDocumentsOptions,
|
||||
headers: Optional[dict[str, Any]] = None,
|
||||
):
|
||||
pdf_format_option = get_pdf_pipeline_opts(options)
|
||||
converter = get_converter(pdf_format_option)
|
||||
results: Iterator[ConversionResult] = converter.convert_all(
|
||||
sources,
|
||||
headers=headers,
|
||||
page_range=options.page_range,
|
||||
max_file_size=docling_serve_settings.max_file_size,
|
||||
max_num_pages=docling_serve_settings.max_num_pages,
|
||||
)
|
||||
|
||||
return results
|
||||
@@ -1,137 +0,0 @@
|
||||
# ruff: noqa: E402, UP006, UP035
|
||||
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from kfp import dsl
|
||||
|
||||
PYTHON_BASE_IMAGE = "python:3.12"
|
||||
|
||||
|
||||
@dsl.component(
|
||||
base_image=PYTHON_BASE_IMAGE,
|
||||
packages_to_install=[
|
||||
"pydantic",
|
||||
"docling-serve @ git+https://github.com/docling-project/docling-serve@feat-kfp-engine",
|
||||
],
|
||||
pip_index_urls=["https://download.pytorch.org/whl/cpu", "https://pypi.org/simple"],
|
||||
)
|
||||
def generate_chunks(
|
||||
run_name: str,
|
||||
request: Dict[str, Any],
|
||||
batch_size: int,
|
||||
callbacks: List[Dict[str, Any]],
|
||||
) -> List[List[Dict[str, Any]]]:
|
||||
from pydantic import TypeAdapter
|
||||
|
||||
from docling_serve.datamodel.callback import (
|
||||
ProgressCallbackRequest,
|
||||
ProgressSetNumDocs,
|
||||
)
|
||||
from docling_serve.datamodel.kfp import CallbackSpec
|
||||
from docling_serve.engines.async_kfp.notify import notify_callbacks
|
||||
|
||||
CallbacksListType = TypeAdapter(list[CallbackSpec])
|
||||
|
||||
sources = request["http_sources"]
|
||||
splits = [sources[i : i + batch_size] for i in range(0, len(sources), batch_size)]
|
||||
|
||||
total = sum(len(chunk) for chunk in splits)
|
||||
payload = ProgressCallbackRequest(
|
||||
task_id=run_name, progress=ProgressSetNumDocs(num_docs=total)
|
||||
)
|
||||
notify_callbacks(
|
||||
payload=payload,
|
||||
callbacks=CallbacksListType.validate_python(callbacks),
|
||||
)
|
||||
|
||||
return splits
|
||||
|
||||
|
||||
@dsl.component(
|
||||
base_image=PYTHON_BASE_IMAGE,
|
||||
packages_to_install=[
|
||||
"pydantic",
|
||||
"docling-serve @ git+https://github.com/docling-project/docling-serve@feat-kfp-engine",
|
||||
],
|
||||
pip_index_urls=["https://download.pytorch.org/whl/cpu", "https://pypi.org/simple"],
|
||||
)
|
||||
def convert_batch(
|
||||
run_name: str,
|
||||
data_splits: List[Dict[str, Any]],
|
||||
request: Dict[str, Any],
|
||||
callbacks: List[Dict[str, Any]],
|
||||
output_path: dsl.OutputPath("Directory"), # type: ignore
|
||||
):
|
||||
from pathlib import Path
|
||||
|
||||
from pydantic import AnyUrl, TypeAdapter
|
||||
|
||||
from docling_serve.datamodel.callback import (
|
||||
FailedDocsItem,
|
||||
ProgressCallbackRequest,
|
||||
ProgressUpdateProcessed,
|
||||
SucceededDocsItem,
|
||||
)
|
||||
from docling_serve.datamodel.convert import ConvertDocumentsOptions
|
||||
from docling_serve.datamodel.kfp import CallbackSpec
|
||||
from docling_serve.datamodel.requests import HttpSource
|
||||
from docling_serve.engines.async_kfp.notify import notify_callbacks
|
||||
|
||||
CallbacksListType = TypeAdapter(list[CallbackSpec])
|
||||
|
||||
convert_options = ConvertDocumentsOptions.model_validate(request["options"])
|
||||
print(convert_options)
|
||||
|
||||
output_dir = Path(output_path)
|
||||
output_dir.mkdir(exist_ok=True, parents=True)
|
||||
docs_succeeded: list[SucceededDocsItem] = []
|
||||
docs_failed: list[FailedDocsItem] = []
|
||||
for source_dict in data_splits:
|
||||
source = HttpSource.model_validate(source_dict)
|
||||
filename = Path(str(AnyUrl(source.url).path)).name
|
||||
output_filename = output_dir / filename
|
||||
print(f"Writing {output_filename}")
|
||||
with output_filename.open("w") as f:
|
||||
f.write(source.model_dump_json())
|
||||
docs_succeeded.append(SucceededDocsItem(source=source.url))
|
||||
|
||||
payload = ProgressCallbackRequest(
|
||||
task_id=run_name,
|
||||
progress=ProgressUpdateProcessed(
|
||||
num_failed=len(docs_failed),
|
||||
num_processed=len(docs_succeeded) + len(docs_failed),
|
||||
num_succeeded=len(docs_succeeded),
|
||||
docs_succeeded=docs_succeeded,
|
||||
docs_failed=docs_failed,
|
||||
),
|
||||
)
|
||||
|
||||
print(payload)
|
||||
notify_callbacks(
|
||||
payload=payload,
|
||||
callbacks=CallbacksListType.validate_python(callbacks),
|
||||
)
|
||||
|
||||
|
||||
@dsl.pipeline()
|
||||
def process(
|
||||
batch_size: int,
|
||||
request: Dict[str, Any],
|
||||
callbacks: List[Dict[str, Any]] = [],
|
||||
run_name: str = "",
|
||||
):
|
||||
chunks_task = generate_chunks(
|
||||
run_name=run_name,
|
||||
request=request,
|
||||
batch_size=batch_size,
|
||||
callbacks=callbacks,
|
||||
)
|
||||
chunks_task.set_caching_options(False)
|
||||
|
||||
with dsl.ParallelFor(chunks_task.output, parallelism=4) as data_splits:
|
||||
convert_batch(
|
||||
run_name=run_name,
|
||||
data_splits=data_splits,
|
||||
request=request,
|
||||
callbacks=callbacks,
|
||||
)
|
||||
@@ -1,32 +0,0 @@
|
||||
import ssl
|
||||
|
||||
import certifi
|
||||
import httpx
|
||||
|
||||
from docling_serve.datamodel.callback import ProgressCallbackRequest
|
||||
from docling_serve.datamodel.kfp import CallbackSpec
|
||||
|
||||
|
||||
def notify_callbacks(
|
||||
payload: ProgressCallbackRequest,
|
||||
callbacks: list[CallbackSpec],
|
||||
):
|
||||
if len(callbacks) == 0:
|
||||
return
|
||||
|
||||
for callback in callbacks:
|
||||
# https://www.python-httpx.org/advanced/ssl/#configuring-client-instances
|
||||
if callback.ca_cert:
|
||||
ctx = ssl.create_default_context(cadata=callback.ca_cert)
|
||||
else:
|
||||
ctx = ssl.create_default_context(cafile=certifi.where())
|
||||
|
||||
try:
|
||||
httpx.post(
|
||||
str(callback.url),
|
||||
headers=callback.headers,
|
||||
json=payload.model_dump(mode="json"),
|
||||
verify=ctx,
|
||||
)
|
||||
except httpx.HTTPError as err:
|
||||
print(f"Error notifying callback {callback.url}: {err}")
|
||||
@@ -1,235 +0,0 @@
|
||||
import datetime
|
||||
import json
|
||||
import logging
|
||||
import uuid
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
from kfp_server_api.models import V2beta1RuntimeState
|
||||
from pydantic import BaseModel, TypeAdapter
|
||||
from pydantic_settings import SettingsConfigDict
|
||||
|
||||
from docling_serve.datamodel.callback import (
|
||||
ProgressCallbackRequest,
|
||||
ProgressSetNumDocs,
|
||||
ProgressUpdateProcessed,
|
||||
)
|
||||
from docling_serve.datamodel.convert import ConvertDocumentsOptions
|
||||
from docling_serve.datamodel.engines import TaskStatus
|
||||
from docling_serve.datamodel.kfp import CallbackSpec
|
||||
from docling_serve.datamodel.requests import HttpSource
|
||||
from docling_serve.datamodel.task import Task, TaskSource
|
||||
from docling_serve.datamodel.task_meta import TaskProcessingMeta
|
||||
from docling_serve.engines.async_kfp.kfp_pipeline import process
|
||||
from docling_serve.engines.async_orchestrator import (
|
||||
BaseAsyncOrchestrator,
|
||||
ProgressInvalid,
|
||||
)
|
||||
from docling_serve.settings import docling_serve_settings
|
||||
|
||||
_log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class _RunItem(BaseModel):
|
||||
model_config = SettingsConfigDict(arbitrary_types_allowed=True)
|
||||
|
||||
run_id: str
|
||||
state: str
|
||||
created_at: datetime.datetime
|
||||
scheduled_at: datetime.datetime
|
||||
finished_at: datetime.datetime
|
||||
|
||||
|
||||
class AsyncKfpOrchestrator(BaseAsyncOrchestrator):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
import kfp
|
||||
|
||||
kfp_endpoint = docling_serve_settings.eng_kfp_endpoint
|
||||
if kfp_endpoint is None:
|
||||
raise ValueError("KFP endpoint is required when using the KFP engine.")
|
||||
|
||||
kube_sa_token_path = Path("/run/secrets/kubernetes.io/serviceaccount/token")
|
||||
kube_sa_ca_cert_path = Path(
|
||||
"/run/secrets/kubernetes.io/serviceaccount/service-ca.crt"
|
||||
)
|
||||
|
||||
ssl_ca_cert = docling_serve_settings.eng_kfp_ca_cert_path
|
||||
token = docling_serve_settings.eng_kfp_token
|
||||
if (
|
||||
ssl_ca_cert is None
|
||||
and ".svc" in kfp_endpoint.host
|
||||
and kube_sa_ca_cert_path.exists()
|
||||
):
|
||||
ssl_ca_cert = str(kube_sa_ca_cert_path)
|
||||
if token is None and kube_sa_token_path.exists():
|
||||
token = kube_sa_token_path.read_text()
|
||||
|
||||
self._client = kfp.Client(
|
||||
host=str(kfp_endpoint),
|
||||
existing_token=token,
|
||||
ssl_ca_cert=ssl_ca_cert,
|
||||
# verify_ssl=False,
|
||||
)
|
||||
|
||||
async def enqueue(
|
||||
self, sources: list[TaskSource], options: ConvertDocumentsOptions
|
||||
) -> Task:
|
||||
callbacks = []
|
||||
if docling_serve_settings.eng_kfp_self_callback_endpoint is not None:
|
||||
headers = {}
|
||||
if docling_serve_settings.eng_kfp_self_callback_token_path is not None:
|
||||
token = (
|
||||
docling_serve_settings.eng_kfp_self_callback_token_path.read_text()
|
||||
)
|
||||
headers["Authorization"] = f"Bearer {token}"
|
||||
ca_cert = ""
|
||||
if docling_serve_settings.eng_kfp_self_callback_ca_cert_path is not None:
|
||||
ca_cert = docling_serve_settings.eng_kfp_self_callback_ca_cert_path.read_text()
|
||||
callbacks.append(
|
||||
CallbackSpec(
|
||||
url=docling_serve_settings.eng_kfp_self_callback_endpoint,
|
||||
headers=headers,
|
||||
ca_cert=ca_cert,
|
||||
)
|
||||
)
|
||||
|
||||
CallbacksType = TypeAdapter(list[CallbackSpec])
|
||||
SourcesListType = TypeAdapter(list[HttpSource])
|
||||
http_sources = [s for s in sources if isinstance(s, HttpSource)]
|
||||
# hack: since the current kfp backend is not resolving the job_id placeholder,
|
||||
# we set the run_name and pass it as argument to the job itself.
|
||||
run_name = f"docling-job-{uuid.uuid4()}"
|
||||
kfp_run = self._client.create_run_from_pipeline_func(
|
||||
process,
|
||||
arguments={
|
||||
"batch_size": 10,
|
||||
"sources": SourcesListType.dump_python(http_sources, mode="json"),
|
||||
"options": options.model_dump(mode="json"),
|
||||
"callbacks": CallbacksType.dump_python(callbacks, mode="json"),
|
||||
"run_name": run_name,
|
||||
},
|
||||
run_name=run_name,
|
||||
)
|
||||
task_id = kfp_run.run_id
|
||||
|
||||
task = Task(task_id=task_id, sources=sources, options=options)
|
||||
await self.init_task_tracking(task)
|
||||
return task
|
||||
|
||||
async def _update_task_from_run(self, task_id: str, wait: float = 0.0):
|
||||
run_info = self._client.get_run(run_id=task_id)
|
||||
task = await self.get_raw_task(task_id=task_id)
|
||||
# RUNTIME_STATE_UNSPECIFIED = "RUNTIME_STATE_UNSPECIFIED"
|
||||
# PENDING = "PENDING"
|
||||
# RUNNING = "RUNNING"
|
||||
# SUCCEEDED = "SUCCEEDED"
|
||||
# SKIPPED = "SKIPPED"
|
||||
# FAILED = "FAILED"
|
||||
# CANCELING = "CANCELING"
|
||||
# CANCELED = "CANCELED"
|
||||
# PAUSED = "PAUSED"
|
||||
if run_info.state == V2beta1RuntimeState.SUCCEEDED:
|
||||
task.set_status(TaskStatus.SUCCESS)
|
||||
elif run_info.state == V2beta1RuntimeState.PENDING:
|
||||
task.set_status(TaskStatus.PENDING)
|
||||
elif run_info.state == V2beta1RuntimeState.RUNNING:
|
||||
task.set_status(TaskStatus.STARTED)
|
||||
else:
|
||||
task.set_status(TaskStatus.FAILURE)
|
||||
|
||||
async def task_status(self, task_id: str, wait: float = 0.0) -> Task:
|
||||
await self._update_task_from_run(task_id=task_id, wait=wait)
|
||||
return await self.get_raw_task(task_id=task_id)
|
||||
|
||||
async def _get_pending(self) -> list[_RunItem]:
|
||||
runs: list[_RunItem] = []
|
||||
next_page: Optional[str] = None
|
||||
while True:
|
||||
res = self._client.list_runs(
|
||||
page_token=next_page,
|
||||
page_size=20,
|
||||
filter=json.dumps(
|
||||
{
|
||||
"predicates": [
|
||||
{
|
||||
"operation": "EQUALS",
|
||||
"key": "state",
|
||||
"stringValue": "PENDING",
|
||||
}
|
||||
]
|
||||
}
|
||||
),
|
||||
)
|
||||
if res.runs is not None:
|
||||
for run in res.runs:
|
||||
runs.append(
|
||||
_RunItem(
|
||||
run_id=run.run_id,
|
||||
state=run.state,
|
||||
created_at=run.created_at,
|
||||
scheduled_at=run.scheduled_at,
|
||||
finished_at=run.finished_at,
|
||||
)
|
||||
)
|
||||
if res.next_page_token is None:
|
||||
break
|
||||
next_page = res.next_page_token
|
||||
return runs
|
||||
|
||||
async def queue_size(self) -> int:
|
||||
runs = await self._get_pending()
|
||||
return len(runs)
|
||||
|
||||
async def get_queue_position(self, task_id: str) -> Optional[int]:
|
||||
runs = await self._get_pending()
|
||||
for pos, run in enumerate(runs, start=1):
|
||||
if run.run_id == task_id:
|
||||
return pos
|
||||
return None
|
||||
|
||||
async def process_queue(self):
|
||||
return
|
||||
|
||||
async def warm_up_caches(self):
|
||||
return
|
||||
|
||||
async def _get_run_id(self, run_name: str) -> str:
|
||||
res = self._client.list_runs(
|
||||
filter=json.dumps(
|
||||
{
|
||||
"predicates": [
|
||||
{
|
||||
"operation": "EQUALS",
|
||||
"key": "name",
|
||||
"stringValue": run_name,
|
||||
}
|
||||
]
|
||||
}
|
||||
),
|
||||
)
|
||||
if res.runs is not None and len(res.runs) > 0:
|
||||
return res.runs[0].run_id
|
||||
raise RuntimeError(f"Run with {run_name=} not found.")
|
||||
|
||||
async def receive_task_progress(self, request: ProgressCallbackRequest):
|
||||
task_id = await self._get_run_id(run_name=request.task_id)
|
||||
progress = request.progress
|
||||
task = await self.get_raw_task(task_id=task_id)
|
||||
|
||||
if isinstance(progress, ProgressSetNumDocs):
|
||||
task.processing_meta = TaskProcessingMeta(num_docs=progress.num_docs)
|
||||
task.task_status = TaskStatus.STARTED
|
||||
|
||||
elif isinstance(progress, ProgressUpdateProcessed):
|
||||
if task.processing_meta is None:
|
||||
raise ProgressInvalid(
|
||||
"UpdateProcessed was called before setting the expected number of documents."
|
||||
)
|
||||
task.processing_meta.num_processed += progress.num_processed
|
||||
task.processing_meta.num_succeeded += progress.num_succeeded
|
||||
task.processing_meta.num_failed += progress.num_failed
|
||||
task.task_status = TaskStatus.STARTED
|
||||
|
||||
# TODO: could be moved to BackgroundTask
|
||||
await self.notify_task_subscribers(task_id=task_id)
|
||||
@@ -1,60 +0,0 @@
|
||||
import asyncio
|
||||
import logging
|
||||
import uuid
|
||||
from typing import Optional
|
||||
|
||||
from docling.datamodel.base_models import InputFormat
|
||||
|
||||
from docling_serve.datamodel.convert import ConvertDocumentsOptions
|
||||
from docling_serve.datamodel.task import Task, TaskSource
|
||||
from docling_serve.docling_conversion import get_converter, get_pdf_pipeline_opts
|
||||
from docling_serve.engines.async_local.worker import AsyncLocalWorker
|
||||
from docling_serve.engines.async_orchestrator import BaseAsyncOrchestrator
|
||||
from docling_serve.settings import docling_serve_settings
|
||||
|
||||
_log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class AsyncLocalOrchestrator(BaseAsyncOrchestrator):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.task_queue = asyncio.Queue()
|
||||
self.queue_list: list[str] = []
|
||||
|
||||
async def enqueue(
|
||||
self, sources: list[TaskSource], options: ConvertDocumentsOptions
|
||||
) -> Task:
|
||||
task_id = str(uuid.uuid4())
|
||||
task = Task(task_id=task_id, sources=sources, options=options)
|
||||
await self.init_task_tracking(task)
|
||||
|
||||
self.queue_list.append(task_id)
|
||||
await self.task_queue.put(task_id)
|
||||
return task
|
||||
|
||||
async def queue_size(self) -> int:
|
||||
return self.task_queue.qsize()
|
||||
|
||||
async def get_queue_position(self, task_id: str) -> Optional[int]:
|
||||
return (
|
||||
self.queue_list.index(task_id) + 1 if task_id in self.queue_list else None
|
||||
)
|
||||
|
||||
async def process_queue(self):
|
||||
# Create a pool of workers
|
||||
workers = []
|
||||
for i in range(docling_serve_settings.eng_loc_num_workers):
|
||||
_log.debug(f"Starting worker {i}")
|
||||
w = AsyncLocalWorker(i, self)
|
||||
worker_task = asyncio.create_task(w.loop())
|
||||
workers.append(worker_task)
|
||||
|
||||
# Wait for all workers to complete (they won't, as they run indefinitely)
|
||||
await asyncio.gather(*workers)
|
||||
_log.debug("All workers completed.")
|
||||
|
||||
async def warm_up_caches(self):
|
||||
# Converter with default options
|
||||
pdf_format_option = get_pdf_pipeline_opts(ConvertDocumentsOptions())
|
||||
converter = get_converter(pdf_format_option)
|
||||
converter.initialize_pipeline(InputFormat.PDF)
|
||||
@@ -1,124 +0,0 @@
|
||||
import asyncio
|
||||
import logging
|
||||
import shutil
|
||||
import time
|
||||
from typing import TYPE_CHECKING, Any, Optional, Union
|
||||
|
||||
from fastapi.responses import FileResponse
|
||||
|
||||
from docling.datamodel.base_models import DocumentStream
|
||||
|
||||
from docling_serve.datamodel.engines import TaskStatus
|
||||
from docling_serve.datamodel.requests import FileSource, HttpSource
|
||||
from docling_serve.docling_conversion import convert_documents
|
||||
from docling_serve.response_preparation import process_results
|
||||
from docling_serve.storage import get_scratch
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from docling_serve.engines.async_local.orchestrator import AsyncLocalOrchestrator
|
||||
|
||||
_log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class AsyncLocalWorker:
|
||||
def __init__(self, worker_id: int, orchestrator: "AsyncLocalOrchestrator"):
|
||||
self.worker_id = worker_id
|
||||
self.orchestrator = orchestrator
|
||||
|
||||
async def loop(self):
|
||||
_log.debug(f"Starting loop for worker {self.worker_id}")
|
||||
while True:
|
||||
task_id: str = await self.orchestrator.task_queue.get()
|
||||
self.orchestrator.queue_list.remove(task_id)
|
||||
|
||||
if task_id not in self.orchestrator.tasks:
|
||||
raise RuntimeError(f"Task {task_id} not found.")
|
||||
task = self.orchestrator.tasks[task_id]
|
||||
|
||||
try:
|
||||
task.set_status(TaskStatus.STARTED)
|
||||
_log.info(f"Worker {self.worker_id} processing task {task_id}")
|
||||
|
||||
# Notify clients about task updates
|
||||
await self.orchestrator.notify_task_subscribers(task_id)
|
||||
|
||||
# Notify clients about queue updates
|
||||
await self.orchestrator.notify_queue_positions()
|
||||
|
||||
# Define a callback function to send progress updates to the client.
|
||||
# TODO: send partial updates, e.g. when a document in the batch is done
|
||||
def run_conversion():
|
||||
convert_sources: list[Union[str, DocumentStream]] = []
|
||||
headers: Optional[dict[str, Any]] = None
|
||||
for source in task.sources:
|
||||
if isinstance(source, DocumentStream):
|
||||
convert_sources.append(source)
|
||||
elif isinstance(source, FileSource):
|
||||
convert_sources.append(source.to_document_stream())
|
||||
elif isinstance(source, HttpSource):
|
||||
convert_sources.append(str(source.url))
|
||||
if headers is None and source.headers:
|
||||
headers = source.headers
|
||||
|
||||
# Note: results are only an iterator->lazy evaluation
|
||||
results = convert_documents(
|
||||
sources=convert_sources,
|
||||
options=task.options,
|
||||
headers=headers,
|
||||
)
|
||||
|
||||
# The real processing will happen here
|
||||
work_dir = get_scratch() / task_id
|
||||
response = process_results(
|
||||
conversion_options=task.options,
|
||||
conv_results=results,
|
||||
work_dir=work_dir,
|
||||
)
|
||||
|
||||
if work_dir.exists():
|
||||
task.scratch_dir = work_dir
|
||||
if not isinstance(response, FileResponse):
|
||||
_log.warning(
|
||||
f"Task {task_id=} produced content in {work_dir=} but the response is not a file."
|
||||
)
|
||||
shutil.rmtree(work_dir, ignore_errors=True)
|
||||
|
||||
return response
|
||||
|
||||
start_time = time.monotonic()
|
||||
|
||||
# Run the prediction in a thread to avoid blocking the event loop.
|
||||
# Get the current event loop
|
||||
# loop = asyncio.get_event_loop()
|
||||
# future = asyncio.run_coroutine_threadsafe(
|
||||
# run_conversion(),
|
||||
# loop=loop
|
||||
# )
|
||||
# response = future.result()
|
||||
|
||||
# Run in a thread
|
||||
response = await asyncio.to_thread(
|
||||
run_conversion,
|
||||
)
|
||||
processing_time = time.monotonic() - start_time
|
||||
|
||||
task.result = response
|
||||
task.sources = []
|
||||
task.options = None
|
||||
|
||||
task.set_status(TaskStatus.SUCCESS)
|
||||
_log.info(
|
||||
f"Worker {self.worker_id} completed job {task_id} "
|
||||
f"in {processing_time:.2f} seconds"
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
_log.error(
|
||||
f"Worker {self.worker_id} failed to process job {task_id}: {e}"
|
||||
)
|
||||
task.set_status(TaskStatus.FAILURE)
|
||||
|
||||
finally:
|
||||
await self.orchestrator.notify_task_subscribers(task_id)
|
||||
self.orchestrator.task_queue.task_done()
|
||||
_log.debug(f"Worker {self.worker_id} completely done with {task_id}")
|
||||
@@ -1,127 +0,0 @@
|
||||
import asyncio
|
||||
import datetime
|
||||
import logging
|
||||
import shutil
|
||||
from typing import Union
|
||||
|
||||
from fastapi import BackgroundTasks, WebSocket
|
||||
from fastapi.responses import FileResponse
|
||||
|
||||
from docling_serve.datamodel.callback import ProgressCallbackRequest
|
||||
from docling_serve.datamodel.engines import TaskStatus
|
||||
from docling_serve.datamodel.responses import (
|
||||
ConvertDocumentResponse,
|
||||
MessageKind,
|
||||
TaskStatusResponse,
|
||||
WebsocketMessage,
|
||||
)
|
||||
from docling_serve.datamodel.task import Task
|
||||
from docling_serve.engines.base_orchestrator import (
|
||||
BaseOrchestrator,
|
||||
OrchestratorError,
|
||||
TaskNotFoundError,
|
||||
)
|
||||
from docling_serve.settings import docling_serve_settings
|
||||
|
||||
_log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class ProgressInvalid(OrchestratorError):
|
||||
pass
|
||||
|
||||
|
||||
class BaseAsyncOrchestrator(BaseOrchestrator):
|
||||
def __init__(self):
|
||||
self.tasks: dict[str, Task] = {}
|
||||
self.task_subscribers: dict[str, set[WebSocket]] = {}
|
||||
|
||||
async def init_task_tracking(self, task: Task):
|
||||
task_id = task.task_id
|
||||
self.tasks[task.task_id] = task
|
||||
self.task_subscribers[task_id] = set()
|
||||
|
||||
async def get_raw_task(self, task_id: str) -> Task:
|
||||
if task_id not in self.tasks:
|
||||
raise TaskNotFoundError()
|
||||
return self.tasks[task_id]
|
||||
|
||||
async def task_status(self, task_id: str, wait: float = 0.0) -> Task:
|
||||
return await self.get_raw_task(task_id=task_id)
|
||||
|
||||
async def task_result(
|
||||
self, task_id: str, background_tasks: BackgroundTasks
|
||||
) -> Union[ConvertDocumentResponse, FileResponse, None]:
|
||||
try:
|
||||
task = await self.get_raw_task(task_id=task_id)
|
||||
if task.is_completed() and docling_serve_settings.single_use_results:
|
||||
if task.scratch_dir is not None:
|
||||
background_tasks.add_task(
|
||||
shutil.rmtree, task.scratch_dir, ignore_errors=True
|
||||
)
|
||||
|
||||
async def _remove_task_impl():
|
||||
await asyncio.sleep(docling_serve_settings.result_removal_delay)
|
||||
await self.delete_task(task_id=task.task_id)
|
||||
|
||||
async def _remove_task():
|
||||
asyncio.create_task(_remove_task_impl()) # noqa: RUF006
|
||||
|
||||
background_tasks.add_task(_remove_task)
|
||||
|
||||
return task.result
|
||||
except TaskNotFoundError:
|
||||
return None
|
||||
|
||||
async def delete_task(self, task_id: str):
|
||||
_log.info(f"Deleting {task_id=}")
|
||||
if task_id in self.task_subscribers:
|
||||
for websocket in self.task_subscribers[task_id]:
|
||||
await websocket.close()
|
||||
|
||||
del self.task_subscribers[task_id]
|
||||
|
||||
if task_id in self.tasks:
|
||||
del self.tasks[task_id]
|
||||
|
||||
async def clear_results(self, older_than: float = 0.0):
|
||||
cutoff_time = datetime.datetime.now(datetime.timezone.utc) - datetime.timedelta(
|
||||
seconds=older_than
|
||||
)
|
||||
|
||||
tasks_to_delete = [
|
||||
task_id
|
||||
for task_id, task in self.tasks.items()
|
||||
if task.finished_at is not None and task.finished_at < cutoff_time
|
||||
]
|
||||
for task_id in tasks_to_delete:
|
||||
await self.delete_task(task_id=task_id)
|
||||
|
||||
async def notify_task_subscribers(self, task_id: str):
|
||||
if task_id not in self.task_subscribers:
|
||||
raise RuntimeError(f"Task {task_id} does not have a subscribers list.")
|
||||
|
||||
task = await self.get_raw_task(task_id=task_id)
|
||||
task_queue_position = await self.get_queue_position(task_id)
|
||||
msg = TaskStatusResponse(
|
||||
task_id=task.task_id,
|
||||
task_status=task.task_status,
|
||||
task_position=task_queue_position,
|
||||
task_meta=task.processing_meta,
|
||||
)
|
||||
for websocket in self.task_subscribers[task_id]:
|
||||
await websocket.send_text(
|
||||
WebsocketMessage(message=MessageKind.UPDATE, task=msg).model_dump_json()
|
||||
)
|
||||
if task.is_completed():
|
||||
await websocket.close()
|
||||
|
||||
async def notify_queue_positions(self):
|
||||
for task_id in self.task_subscribers.keys():
|
||||
# notify only pending tasks
|
||||
if self.tasks[task_id].task_status != TaskStatus.PENDING:
|
||||
continue
|
||||
|
||||
await self.notify_task_subscribers(task_id)
|
||||
|
||||
async def receive_task_progress(self, request: ProgressCallbackRequest):
|
||||
raise NotImplementedError()
|
||||
@@ -1,21 +0,0 @@
|
||||
from functools import lru_cache
|
||||
|
||||
from docling_serve.datamodel.engines import AsyncEngine
|
||||
from docling_serve.engines.async_orchestrator import BaseAsyncOrchestrator
|
||||
from docling_serve.settings import docling_serve_settings
|
||||
|
||||
|
||||
@lru_cache
|
||||
def get_async_orchestrator() -> BaseAsyncOrchestrator:
|
||||
if docling_serve_settings.eng_kind == AsyncEngine.LOCAL:
|
||||
from docling_serve.engines.async_local.orchestrator import (
|
||||
AsyncLocalOrchestrator,
|
||||
)
|
||||
|
||||
return AsyncLocalOrchestrator()
|
||||
elif docling_serve_settings.eng_kind == AsyncEngine.KFP:
|
||||
from docling_serve.engines.async_kfp.orchestrator import AsyncKfpOrchestrator
|
||||
|
||||
return AsyncKfpOrchestrator()
|
||||
|
||||
raise RuntimeError(f"Engine {docling_serve_settings.eng_kind} not recognized.")
|
||||
@@ -1,55 +0,0 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Optional, Union
|
||||
|
||||
from fastapi import BackgroundTasks
|
||||
from fastapi.responses import FileResponse
|
||||
|
||||
from docling_serve.datamodel.convert import ConvertDocumentsOptions
|
||||
from docling_serve.datamodel.responses import ConvertDocumentResponse
|
||||
from docling_serve.datamodel.task import Task, TaskSource
|
||||
|
||||
|
||||
class OrchestratorError(Exception):
|
||||
pass
|
||||
|
||||
|
||||
class TaskNotFoundError(OrchestratorError):
|
||||
pass
|
||||
|
||||
|
||||
class BaseOrchestrator(ABC):
|
||||
@abstractmethod
|
||||
async def enqueue(
|
||||
self, sources: list[TaskSource], options: ConvertDocumentsOptions
|
||||
) -> Task:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
async def queue_size(self) -> int:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
async def get_queue_position(self, task_id: str) -> Optional[int]:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
async def task_status(self, task_id: str, wait: float = 0.0) -> Task:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
async def task_result(
|
||||
self, task_id: str, background_tasks: BackgroundTasks
|
||||
) -> Union[ConvertDocumentResponse, FileResponse, None]:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
async def clear_results(self, older_than: float = 0.0):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
async def process_queue(self):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
async def warm_up_caches(self):
|
||||
pass
|
||||
@@ -241,7 +241,7 @@ def wait_task_finish(task_id: str, return_as_file: bool):
|
||||
while not task_finished:
|
||||
try:
|
||||
response = httpx.get(
|
||||
f"{get_api_endpoint()}/v1alpha/status/poll/{task_id}?wait=5",
|
||||
f"{get_api_endpoint()}/v1/status/poll/{task_id}?wait=5",
|
||||
verify=ssl_ctx,
|
||||
timeout=15,
|
||||
)
|
||||
@@ -264,7 +264,7 @@ def wait_task_finish(task_id: str, return_as_file: bool):
|
||||
if conversion_sucess:
|
||||
try:
|
||||
response = httpx.get(
|
||||
f"{get_api_endpoint()}/v1alpha/result/{task_id}",
|
||||
f"{get_api_endpoint()}/v1/result/{task_id}",
|
||||
timeout=15,
|
||||
verify=ssl_ctx,
|
||||
)
|
||||
@@ -296,8 +296,11 @@ def process_url(
|
||||
do_picture_classification,
|
||||
do_picture_description,
|
||||
):
|
||||
target = {"kind": "zip" if return_as_file else "inbody"}
|
||||
parameters = {
|
||||
"http_sources": [{"url": source} for source in input_sources.split(",")],
|
||||
"sources": [
|
||||
{"kind": "http", "url": source} for source in input_sources.split(",")
|
||||
],
|
||||
"options": {
|
||||
"to_formats": to_formats,
|
||||
"image_export_mode": image_export_mode,
|
||||
@@ -309,24 +312,24 @@ def process_url(
|
||||
"pdf_backend": pdf_backend,
|
||||
"table_mode": table_mode,
|
||||
"abort_on_error": abort_on_error,
|
||||
"return_as_file": return_as_file,
|
||||
"do_code_enrichment": do_code_enrichment,
|
||||
"do_formula_enrichment": do_formula_enrichment,
|
||||
"do_picture_classification": do_picture_classification,
|
||||
"do_picture_description": do_picture_description,
|
||||
},
|
||||
"target": target,
|
||||
}
|
||||
if (
|
||||
not parameters["http_sources"]
|
||||
or len(parameters["http_sources"]) == 0
|
||||
or parameters["http_sources"][0]["url"] == ""
|
||||
not parameters["sources"]
|
||||
or len(parameters["sources"]) == 0
|
||||
or parameters["sources"][0]["url"] == ""
|
||||
):
|
||||
logger.error("No input sources provided.")
|
||||
raise gr.Error("No input sources provided.", print_exception=False)
|
||||
try:
|
||||
ssl_ctx = get_ssl_context()
|
||||
response = httpx.post(
|
||||
f"{get_api_endpoint()}/v1alpha/convert/source/async",
|
||||
f"{get_api_endpoint()}/v1/convert/source/async",
|
||||
json=parameters,
|
||||
verify=ssl_ctx,
|
||||
timeout=60,
|
||||
@@ -372,11 +375,13 @@ def process_file(
|
||||
logger.error("No files provided.")
|
||||
raise gr.Error("No files provided.", print_exception=False)
|
||||
files_data = [
|
||||
{"base64_string": file_to_base64(file), "filename": file.name} for file in files
|
||||
{"kind": "file", "base64_string": file_to_base64(file), "filename": file.name}
|
||||
for file in files
|
||||
]
|
||||
target = {"kind": "zip" if return_as_file else "inbody"}
|
||||
|
||||
parameters = {
|
||||
"file_sources": files_data,
|
||||
"sources": files_data,
|
||||
"options": {
|
||||
"to_formats": to_formats,
|
||||
"image_export_mode": image_export_mode,
|
||||
@@ -394,12 +399,13 @@ def process_file(
|
||||
"do_picture_classification": do_picture_classification,
|
||||
"do_picture_description": do_picture_description,
|
||||
},
|
||||
"target": target,
|
||||
}
|
||||
|
||||
try:
|
||||
ssl_ctx = get_ssl_context()
|
||||
response = httpx.post(
|
||||
f"{get_api_endpoint()}/v1alpha/convert/source/async",
|
||||
f"{get_api_endpoint()}/v1/convert/source/async",
|
||||
json=parameters,
|
||||
verify=ssl_ctx,
|
||||
timeout=60,
|
||||
|
||||
52
docling_serve/orchestrator_factory.py
Normal file
52
docling_serve/orchestrator_factory.py
Normal file
@@ -0,0 +1,52 @@
|
||||
from functools import lru_cache
|
||||
|
||||
from docling_jobkit.orchestrators.base_orchestrator import BaseOrchestrator
|
||||
|
||||
from docling_serve.settings import AsyncEngine, docling_serve_settings
|
||||
|
||||
|
||||
@lru_cache
|
||||
def get_async_orchestrator() -> BaseOrchestrator:
|
||||
if docling_serve_settings.eng_kind == AsyncEngine.LOCAL:
|
||||
from docling_jobkit.convert.manager import (
|
||||
DoclingConverterManager,
|
||||
DoclingConverterManagerConfig,
|
||||
)
|
||||
from docling_jobkit.orchestrators.local.orchestrator import (
|
||||
LocalOrchestrator,
|
||||
LocalOrchestratorConfig,
|
||||
)
|
||||
|
||||
local_config = LocalOrchestratorConfig(
|
||||
num_workers=docling_serve_settings.eng_loc_num_workers,
|
||||
)
|
||||
|
||||
cm_config = DoclingConverterManagerConfig(
|
||||
artifacts_path=docling_serve_settings.artifacts_path,
|
||||
options_cache_size=docling_serve_settings.options_cache_size,
|
||||
enable_remote_services=docling_serve_settings.enable_remote_services,
|
||||
allow_external_plugins=docling_serve_settings.allow_external_plugins,
|
||||
max_num_pages=docling_serve_settings.max_num_pages,
|
||||
max_file_size=docling_serve_settings.max_file_size,
|
||||
)
|
||||
cm = DoclingConverterManager(config=cm_config)
|
||||
|
||||
return LocalOrchestrator(config=local_config, converter_manager=cm)
|
||||
elif docling_serve_settings.eng_kind == AsyncEngine.KFP:
|
||||
from docling_jobkit.orchestrators.kfp.orchestrator import (
|
||||
KfpOrchestrator,
|
||||
KfpOrchestratorConfig,
|
||||
)
|
||||
|
||||
kfp_config = KfpOrchestratorConfig(
|
||||
endpoint=docling_serve_settings.eng_kfp_endpoint,
|
||||
token=docling_serve_settings.eng_kfp_token,
|
||||
ca_cert_path=docling_serve_settings.eng_kfp_ca_cert_path,
|
||||
self_callback_endpoint=docling_serve_settings.eng_kfp_self_callback_endpoint,
|
||||
self_callback_token_path=docling_serve_settings.eng_kfp_self_callback_token_path,
|
||||
self_callback_ca_cert_path=docling_serve_settings.eng_kfp_self_callback_ca_cert_path,
|
||||
)
|
||||
|
||||
return KfpOrchestrator(config=kfp_config)
|
||||
|
||||
raise RuntimeError(f"Engine {docling_serve_settings.eng_kind} not recognized.")
|
||||
@@ -1,3 +1,4 @@
|
||||
import asyncio
|
||||
import logging
|
||||
import os
|
||||
import shutil
|
||||
@@ -6,15 +7,22 @@ from collections.abc import Iterable
|
||||
from pathlib import Path
|
||||
from typing import Union
|
||||
|
||||
from fastapi import HTTPException
|
||||
from fastapi import BackgroundTasks, HTTPException
|
||||
from fastapi.responses import FileResponse
|
||||
|
||||
from docling.datamodel.base_models import OutputFormat
|
||||
from docling.datamodel.document import ConversionResult, ConversionStatus
|
||||
from docling_core.types.doc import ImageRefMode
|
||||
from docling_jobkit.datamodel.convert import ConvertDocumentsOptions
|
||||
from docling_jobkit.datamodel.task import Task
|
||||
from docling_jobkit.datamodel.task_targets import InBodyTarget, TaskTarget
|
||||
from docling_jobkit.orchestrators.base_orchestrator import (
|
||||
BaseOrchestrator,
|
||||
)
|
||||
|
||||
from docling_serve.datamodel.convert import ConvertDocumentsOptions
|
||||
from docling_serve.datamodel.responses import ConvertDocumentResponse, DocumentResponse
|
||||
from docling_serve.settings import docling_serve_settings
|
||||
from docling_serve.storage import get_scratch
|
||||
|
||||
_log = logging.getLogger(__name__)
|
||||
|
||||
@@ -32,7 +40,9 @@ def _export_document_as_content(
|
||||
document = DocumentResponse(filename=conv_res.input.file.name)
|
||||
|
||||
if conv_res.status == ConversionStatus.SUCCESS:
|
||||
new_doc = conv_res.document._make_copy_with_refmode(Path(), image_mode)
|
||||
new_doc = conv_res.document._make_copy_with_refmode(
|
||||
Path(), image_mode, page_no=None
|
||||
)
|
||||
|
||||
# Create the different formats
|
||||
if export_json:
|
||||
@@ -118,7 +128,7 @@ def _export_documents_as_files(
|
||||
if export_doctags:
|
||||
fname = output_dir / f"{doc_filename}.doctags"
|
||||
_log.info(f"writing Doc Tags output to {fname}")
|
||||
conv_res.document.save_as_document_tokens(filename=fname)
|
||||
conv_res.document.save_as_doctags(filename=fname)
|
||||
|
||||
else:
|
||||
_log.warning(f"Document {conv_res.input.file} failed to convert.")
|
||||
@@ -132,6 +142,7 @@ def _export_documents_as_files(
|
||||
|
||||
def process_results(
|
||||
conversion_options: ConvertDocumentsOptions,
|
||||
target: TaskTarget,
|
||||
conv_results: Iterable[ConversionResult],
|
||||
work_dir: Path,
|
||||
) -> Union[ConvertDocumentResponse, FileResponse]:
|
||||
@@ -168,7 +179,7 @@ def process_results(
|
||||
export_doctags = OutputFormat.DOCTAGS in conversion_options.to_formats
|
||||
|
||||
# Only 1 document was processed, and we are not returning it as a file
|
||||
if len(conv_results) == 1 and not conversion_options.return_as_file:
|
||||
if len(conv_results) == 1 and isinstance(target, InBodyTarget):
|
||||
conv_res = conv_results[0]
|
||||
document = _export_document_as_content(
|
||||
conv_res,
|
||||
@@ -230,3 +241,47 @@ def process_results(
|
||||
)
|
||||
|
||||
return response
|
||||
|
||||
|
||||
async def prepare_response(
|
||||
task: Task, orchestrator: BaseOrchestrator, background_tasks: BackgroundTasks
|
||||
):
|
||||
if task.results is None:
|
||||
raise HTTPException(
|
||||
status_code=404,
|
||||
detail="Task result not found. Please wait for a completion status.",
|
||||
)
|
||||
assert task.options is not None
|
||||
|
||||
work_dir = get_scratch() / task.task_id
|
||||
response = process_results(
|
||||
conversion_options=task.options,
|
||||
target=task.target,
|
||||
conv_results=task.results,
|
||||
work_dir=work_dir,
|
||||
)
|
||||
|
||||
if work_dir.exists():
|
||||
task.scratch_dir = work_dir
|
||||
if not isinstance(response, FileResponse):
|
||||
_log.warning(
|
||||
f"Task {task.task_id=} produced content in {work_dir=} but the response is not a file."
|
||||
)
|
||||
shutil.rmtree(work_dir, ignore_errors=True)
|
||||
|
||||
if docling_serve_settings.single_use_results:
|
||||
if task.scratch_dir is not None:
|
||||
background_tasks.add_task(
|
||||
shutil.rmtree, task.scratch_dir, ignore_errors=True
|
||||
)
|
||||
|
||||
async def _remove_task_impl():
|
||||
await asyncio.sleep(docling_serve_settings.result_removal_delay)
|
||||
await orchestrator.delete_task(task_id=task.task_id)
|
||||
|
||||
async def _remove_task():
|
||||
asyncio.create_task(_remove_task_impl()) # noqa: RUF006
|
||||
|
||||
background_tasks.add_task(_remove_task)
|
||||
|
||||
return response
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
import enum
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Optional, Union
|
||||
@@ -6,8 +7,6 @@ from pydantic import AnyUrl, model_validator
|
||||
from pydantic_settings import BaseSettings, SettingsConfigDict
|
||||
from typing_extensions import Self
|
||||
|
||||
from docling_serve.datamodel.engines import AsyncEngine
|
||||
|
||||
|
||||
class UvicornSettings(BaseSettings):
|
||||
model_config = SettingsConfigDict(
|
||||
@@ -26,6 +25,11 @@ class UvicornSettings(BaseSettings):
|
||||
workers: Union[int, None] = None
|
||||
|
||||
|
||||
class AsyncEngine(str, enum.Enum):
|
||||
LOCAL = "local"
|
||||
KFP = "kfp"
|
||||
|
||||
|
||||
class DoclingServeSettings(BaseSettings):
|
||||
model_config = SettingsConfigDict(
|
||||
env_prefix="DOCLING_SERVE_",
|
||||
|
||||
54
docling_serve/websocket_notifier.py
Normal file
54
docling_serve/websocket_notifier.py
Normal file
@@ -0,0 +1,54 @@
|
||||
from fastapi import WebSocket
|
||||
|
||||
from docling_jobkit.datamodel.task_meta import TaskStatus
|
||||
from docling_jobkit.orchestrators.base_notifier import BaseNotifier
|
||||
from docling_jobkit.orchestrators.base_orchestrator import BaseOrchestrator
|
||||
|
||||
from docling_serve.datamodel.responses import (
|
||||
MessageKind,
|
||||
TaskStatusResponse,
|
||||
WebsocketMessage,
|
||||
)
|
||||
|
||||
|
||||
class WebsocketNotifier(BaseNotifier):
|
||||
def __init__(self, orchestrator: BaseOrchestrator):
|
||||
super().__init__(orchestrator)
|
||||
self.task_subscribers: dict[str, set[WebSocket]] = {}
|
||||
|
||||
async def add_task(self, task_id: str):
|
||||
self.task_subscribers[task_id] = set()
|
||||
|
||||
async def remove_task(self, task_id: str):
|
||||
if task_id in self.task_subscribers:
|
||||
for websocket in self.task_subscribers[task_id]:
|
||||
await websocket.close()
|
||||
|
||||
del self.task_subscribers[task_id]
|
||||
|
||||
async def notify_task_subscribers(self, task_id: str):
|
||||
if task_id not in self.task_subscribers:
|
||||
raise RuntimeError(f"Task {task_id} does not have a subscribers list.")
|
||||
|
||||
task = await self.orchestrator.get_raw_task(task_id=task_id)
|
||||
task_queue_position = await self.orchestrator.get_queue_position(task_id)
|
||||
msg = TaskStatusResponse(
|
||||
task_id=task.task_id,
|
||||
task_status=task.task_status,
|
||||
task_position=task_queue_position,
|
||||
task_meta=task.processing_meta,
|
||||
)
|
||||
for websocket in self.task_subscribers[task_id]:
|
||||
await websocket.send_text(
|
||||
WebsocketMessage(message=MessageKind.UPDATE, task=msg).model_dump_json()
|
||||
)
|
||||
if task.is_completed():
|
||||
await websocket.close()
|
||||
|
||||
async def notify_queue_positions(self):
|
||||
for task_id in self.task_subscribers.keys():
|
||||
# notify only pending tasks
|
||||
if self.orchestrator.tasks[task_id].task_status != TaskStatus.PENDING:
|
||||
continue
|
||||
|
||||
await self.notify_task_subscribers(task_id)
|
||||
@@ -6,3 +6,4 @@ This documentation pages explore the webserver configurations, runtime options,
|
||||
- [Advance usage](./usage.md)
|
||||
- [Deployment](./deployment.md)
|
||||
- [Development](./development.md)
|
||||
- [`v1` migration](./v1_migration.md)
|
||||
|
||||
@@ -7,7 +7,7 @@ server and the actual app-specific configurations.
|
||||
|
||||
> [!WARNING]
|
||||
> When the server is running with `reload` or with multiple `workers`, uvicorn
|
||||
> will spawn multiple subprocessed. This invalidates all the values configured
|
||||
> will spawn multiple subprocesses. This invalidates all the values configured
|
||||
> via the CLI command line options. Please use environment variables in this
|
||||
> type of deployments.
|
||||
|
||||
@@ -36,7 +36,7 @@ THe following table describes the options to configure the Docling Serve app.
|
||||
| CLI option | ENV | Default | Description |
|
||||
| -----------|-----|---------|-------------|
|
||||
| `--artifacts-path` | `DOCLING_SERVE_ARTIFACTS_PATH` | unset | If set to a valid directory, the model weights will be loaded from this path |
|
||||
| | `DOCLING_SERVE_STATIC_PATH` | unset | If set to a valid directory, the static assets for the docs and ui will be loaded from this path |
|
||||
| | `DOCLING_SERVE_STATIC_PATH` | unset | If set to a valid directory, the static assets for the docs and UI will be loaded from this path |
|
||||
| | `DOCLING_SERVE_SCRATCH_PATH` | | If set, this directory will be used as scratch workspace, e.g. storing the results before they get requested. If unset, a temporary created is created for this purpose. |
|
||||
| `--enable-ui` | `DOCLING_SERVE_ENABLE_UI` | `false` | Enable the demonstrator UI. |
|
||||
| | `DOCLING_SERVE_ENABLE_REMOTE_SERVICES` | `false` | Allow pipeline components making remote connections. For example, this is needed when using a vision-language model via APIs. |
|
||||
@@ -76,6 +76,6 @@ The following table describes the options to configure the Docling Serve KFP eng
|
||||
| `DOCLING_SERVE_ENG_KFP_ENDPOINT` | | Must be set to the Kubeflow Pipeline endpoint. When using the in-cluster deployment, make sure to use the cluster endpoint, e.g. `https://NAME.NAMESPACE.svc.cluster.local:8888` |
|
||||
| `DOCLING_SERVE_ENG_KFP_TOKEN` | | The authentication token for KFP. For in-cluster deployment, the app will load automatically the token of the ServiceAccount. |
|
||||
| `DOCLING_SERVE_ENG_KFP_CA_CERT_PATH` | | Path to the CA certificates for the KFP endpoint. For in-cluster deployment, the app will load automatically the internal CA. |
|
||||
| `DOCLING_SERVE_ENG_KFP_SELF_CALLBACK_ENDPOINT` | | If set, it enables internal callbacks providing status update of the KFP job. Usually something like `https://NAME.NAMESPACE.svc.cluster.local:5001/v1alpha/callback/task/progress`. |
|
||||
| `DOCLING_SERVE_ENG_KFP_SELF_CALLBACK_ENDPOINT` | | If set, it enables internal callbacks providing status update of the KFP job. Usually something like `https://NAME.NAMESPACE.svc.cluster.local:5001/v1/callback/task/progress`. |
|
||||
| `DOCLING_SERVE_ENG_KFP_SELF_CALLBACK_TOKEN_PATH` | | The token used for authenticating the progress callback. For cluster-internal workloads, use `/run/secrets/kubernetes.io/serviceaccount/token`. |
|
||||
| `DOCLING_SERVE_ENG_KFP_SELF_CALLBACK_CA_CERT_PATH` | | The CA certificate for the progress callback. For cluster-inetrnal workloads, use `/var/run/secrets/kubernetes.io/serviceaccount/service-ca.crt`. |
|
||||
|
||||
@@ -30,7 +30,7 @@ For using the API:
|
||||
```sh
|
||||
# Make a test query
|
||||
curl -X 'POST' \
|
||||
"localhost:5001/v1alpha/convert/source/async" \
|
||||
"localhost:5001/v1/convert/source/async" \
|
||||
-H "accept: application/json" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
@@ -148,7 +148,7 @@ oc port-forward svc/docling-serve 5001:5001
|
||||
|
||||
# Make a test query
|
||||
curl -X 'POST' \
|
||||
"localhost:5001/v1alpha/convert/source/async" \
|
||||
"localhost:5001/v1/convert/source/async" \
|
||||
-H "accept: application/json" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
@@ -184,7 +184,7 @@ OCP_AUTH_TOKEN=$(oc whoami --show-token)
|
||||
|
||||
# Make a test query
|
||||
curl -X 'POST' \
|
||||
"${DOCLING_ROUTE}/v1alpha/convert/source/async" \
|
||||
"${DOCLING_ROUTE}/v1/convert/source/async" \
|
||||
-H "Authorization: Bearer ${OCP_AUTH_TOKEN}" \
|
||||
-H "accept: application/json" \
|
||||
-H "Content-Type: application/json" \
|
||||
@@ -218,7 +218,7 @@ DOCLING_ROUTE="https://$(oc get routes $DOCLING_NAME --template={{.spec.host}})"
|
||||
|
||||
# Make a test query, store the cookie and taskid
|
||||
task_id=$(curl -s -X 'POST' \
|
||||
"${DOCLING_ROUTE}/v1alpha/convert/source/async" \
|
||||
"${DOCLING_ROUTE}/v1/convert/source/async" \
|
||||
-H "accept: application/json" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
@@ -230,7 +230,7 @@ task_id=$(curl -s -X 'POST' \
|
||||
```sh
|
||||
# Grab the taskid and cookie to check the task status
|
||||
curl -v -X 'GET' \
|
||||
"${DOCLING_ROUTE}/v1alpha/status/poll/$task_id?wait=0" \
|
||||
"${DOCLING_ROUTE}/v1/status/poll/$task_id?wait=0" \
|
||||
-H "accept: application/json" \
|
||||
-b "cookies.txt"
|
||||
```
|
||||
|
||||
@@ -74,7 +74,7 @@ This document provides examples for pre-loading docling models to a persistent v
|
||||
Manifest example: [docling-model-cache-job.yaml](./deploy-examples/docling-model-cache-job.yaml)
|
||||
|
||||
3. Now we can mount volume in the docling-serve deployment and set env `DOCLING_SERVE_ARTIFACTS_PATH` to point to it.
|
||||
Following additions to deploymeny should be made:
|
||||
Following additions to deployment should be made:
|
||||
|
||||
```yaml
|
||||
spec:
|
||||
@@ -98,6 +98,6 @@ This document provides examples for pre-loading docling models to a persistent v
|
||||
|
||||
Make sure that value of `DOCLING_SERVE_ARTIFACTS_PATH` is the same as where models were downloaded and where volume is mounted.
|
||||
|
||||
Now when docling-serve is executing tasks, the underlying docling installation will load model weights from mouted volume.
|
||||
Now when docling-serve is executing tasks, the underlying docling installation will load model weights from mounted volume.
|
||||
|
||||
Manifest example: [docling-model-cache-deployment.yaml](./deploy-examples/docling-model-cache-deployment.yaml)
|
||||
|
||||
@@ -9,7 +9,7 @@ On top of the source of file (see below), both endpoints support the same parame
|
||||
- `from_formats` (List[str]): Input format(s) to convert from. Allowed values: `docx`, `pptx`, `html`, `image`, `pdf`, `asciidoc`, `md`. Defaults to all formats.
|
||||
- `to_formats` (List[str]): Output format(s) to convert to. Allowed values: `md`, `json`, `html`, `text`, `doctags`. Defaults to `md`.
|
||||
- `pipeline` (str). The choice of which pipeline to use. Allowed values are `standard` and `vlm`. Defaults to `standard`.
|
||||
- `page_range` (tuple). If speficied, only convert a range of pages. The page number starts at 1.
|
||||
- `page_range` (tuple). If specified, only convert a range of pages. The page number starts at 1.
|
||||
- `do_ocr` (bool): If enabled, the bitmap content will be processed using OCR. Defaults to `True`.
|
||||
- `image_export_mode`: Image export mode for the document (only in case of JSON, Markdown or HTML). Allowed values: embedded, placeholder, referenced. Optional, defaults to `embedded`.
|
||||
- `force_ocr` (bool): If enabled, replace any existing text with OCR-generated text over the full content. Defaults to `False`.
|
||||
@@ -18,7 +18,6 @@ On top of the source of file (see below), both endpoints support the same parame
|
||||
- `pdf_backend` (str): PDF backend to use. Allowed values: `pypdfium2`, `dlparse_v1`, `dlparse_v2`, `dlparse_v4`. Defaults to `dlparse_v4`.
|
||||
- `table_mode` (str): Table mode to use. Allowed values: `fast`, `accurate`. Defaults to `fast`.
|
||||
- `abort_on_error` (bool): If enabled, abort on error. Defaults to false.
|
||||
- `return_as_file` (boo): If enabled, return the output as a file. Defaults to false.
|
||||
- `md_page_break_placeholder` (str): Add this placeholder between pages in the markdown output.
|
||||
- `do_table_structure` (bool): If enabled, the table structure will be extracted. Defaults to true.
|
||||
- `do_code_enrichment` (bool): If enabled, perform OCR code enrichment. Defaults to false.
|
||||
@@ -26,8 +25,8 @@ On top of the source of file (see below), both endpoints support the same parame
|
||||
- `do_picture_classification` (bool): If enabled, classify pictures in documents. Defaults to false.
|
||||
- `do_picture_description` (bool): If enabled, describe pictures in documents. Defaults to false.
|
||||
- `picture_description_area_threshold` (float): Minimum percentage of the area for a picture to be processed with the models. Defaults to 0.05.
|
||||
- `picture_description_local` (dict): Options for running a local vision-language model in the picture description. The parameters refer to a model hosted on Hugging Face. This parameter is mutually exclusive with picture_description_api.
|
||||
- `picture_description_api` (dict): API details for using a vision-language model in the picture description. This parameter is mutually exclusive with picture_description_local.
|
||||
- `picture_description_local` (dict): Options for running a local vision-language model in the picture description. The parameters refer to a model hosted on Hugging Face. This parameter is mutually exclusive with `picture_description_api`.
|
||||
- `picture_description_api` (dict): API details for using a vision-language model in the picture description. This parameter is mutually exclusive with `picture_description_local`.
|
||||
- `include_images` (bool): If enabled, images will be extracted from the document. Defaults to false.
|
||||
- `images_scale` (float): Scale factor for images. Defaults to 2.0.
|
||||
|
||||
@@ -35,7 +34,7 @@ On top of the source of file (see below), both endpoints support the same parame
|
||||
|
||||
### Source endpoint
|
||||
|
||||
The endpoint is `/v1alpha/convert/source`, listening for POST requests of JSON payloads.
|
||||
The endpoint is `/v1/convert/source`, listening for POST requests of JSON payloads.
|
||||
|
||||
On top of the above parameters, you must send the URL(s) of the document you want process with either the `http_sources` or `file_sources` fields.
|
||||
The first is fetching URL(s) (optionally using with extra headers), the second allows to provide documents as base64-encoded strings.
|
||||
@@ -66,7 +65,6 @@ Simple payload example:
|
||||
"pdf_backend": "dlparse_v2",
|
||||
"table_mode": "fast",
|
||||
"abort_on_error": false,
|
||||
"return_as_file": false,
|
||||
},
|
||||
"http_sources": [{"url": "https://arxiv.org/pdf/2206.01062"}]
|
||||
}
|
||||
@@ -80,7 +78,7 @@ Simple payload example:
|
||||
|
||||
```sh
|
||||
curl -X 'POST' \
|
||||
'http://localhost:5001/v1alpha/convert/source' \
|
||||
'http://localhost:5001/v1/convert/source' \
|
||||
-H 'accept: application/json' \
|
||||
-H 'Content-Type: application/json' \
|
||||
-d '{
|
||||
@@ -109,7 +107,6 @@ curl -X 'POST' \
|
||||
"pdf_backend": "dlparse_v2",
|
||||
"table_mode": "fast",
|
||||
"abort_on_error": false,
|
||||
"return_as_file": false,
|
||||
"do_table_structure": true,
|
||||
"include_images": true,
|
||||
"images_scale": 2
|
||||
@@ -127,7 +124,7 @@ curl -X 'POST' \
|
||||
import httpx
|
||||
|
||||
async_client = httpx.AsyncClient(timeout=60.0)
|
||||
url = "http://localhost:5001/v1alpha/convert/source"
|
||||
url = "http://localhost:5001/v1/convert/source"
|
||||
payload = {
|
||||
"options": {
|
||||
"from_formats": ["docx", "pptx", "html", "image", "pdf", "asciidoc", "md", "xlsx"],
|
||||
@@ -140,7 +137,6 @@ payload = {
|
||||
"pdf_backend": "dlparse_v2",
|
||||
"table_mode": "fast",
|
||||
"abort_on_error": False,
|
||||
"return_as_file": False,
|
||||
},
|
||||
"http_sources": [{"url": "https://arxiv.org/pdf/2206.01062"}]
|
||||
}
|
||||
@@ -179,7 +175,7 @@ cat <<EOF > /tmp/request_body.json
|
||||
EOF
|
||||
|
||||
# 3. POST the request to the docling service
|
||||
curl -X POST "localhost:5001/v1alpha/convert/source" \
|
||||
curl -X POST "localhost:5001/v1/convert/source" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d @/tmp/request_body.json
|
||||
```
|
||||
@@ -188,14 +184,14 @@ curl -X POST "localhost:5001/v1alpha/convert/source" \
|
||||
|
||||
### File endpoint
|
||||
|
||||
The endpoint is: `/v1alpha/convert/file`, listening for POST requests of Form payloads (necessary as the files are sent as multipart/form data). You can send one or multiple files.
|
||||
The endpoint is: `/v1/convert/file`, listening for POST requests of Form payloads (necessary as the files are sent as multipart/form data). You can send one or multiple files.
|
||||
|
||||
<details>
|
||||
<summary>CURL example:</summary>
|
||||
|
||||
```sh
|
||||
curl -X 'POST' \
|
||||
'http://127.0.0.1:5001/v1alpha/convert/file' \
|
||||
'http://127.0.0.1:5001/v1/convert/file' \
|
||||
-H 'accept: application/json' \
|
||||
-H 'Content-Type: multipart/form-data' \
|
||||
-F 'ocr_engine=easyocr' \
|
||||
@@ -211,7 +207,6 @@ curl -X 'POST' \
|
||||
-F 'abort_on_error=false' \
|
||||
-F 'to_formats=md' \
|
||||
-F 'to_formats=text' \
|
||||
-F 'return_as_file=false' \
|
||||
-F 'do_ocr=true'
|
||||
```
|
||||
|
||||
@@ -224,7 +219,7 @@ curl -X 'POST' \
|
||||
import httpx
|
||||
|
||||
async_client = httpx.AsyncClient(timeout=60.0)
|
||||
url = "http://localhost:5001/v1alpha/convert/file"
|
||||
url = "http://localhost:5001/v1/convert/file"
|
||||
parameters = {
|
||||
"from_formats": ["docx", "pptx", "html", "image", "pdf", "asciidoc", "md", "xlsx"],
|
||||
"to_formats": ["md", "json", "html", "text", "doctags"],
|
||||
@@ -236,7 +231,6 @@ parameters = {
|
||||
"pdf_backend": "dlparse_v2",
|
||||
"table_mode": "fast",
|
||||
"abort_on_error": False,
|
||||
"return_as_file": False
|
||||
}
|
||||
|
||||
current_dir = os.path.dirname(__file__)
|
||||
@@ -313,7 +307,7 @@ Example URLs are:
|
||||
}
|
||||
```
|
||||
|
||||
- `http://localhost:11434/v1/chat/completions` for the local ollama api, with example `picture_description_api`:
|
||||
- `http://localhost:11434/v1/chat/completions` for the local Ollama api, with example `picture_description_api`:
|
||||
- the `granite3.2-vision:2b` model
|
||||
|
||||
```json
|
||||
@@ -354,19 +348,19 @@ The response can be a JSON Document or a File.
|
||||
`processing_time` is the Docling processing time in seconds, and `timings` (when enabled in the backend) provides the detailed
|
||||
timing of all the internal Docling components.
|
||||
|
||||
- If you set the parameter `return_as_file` to True, the response will be a zip file.
|
||||
- If multiple files are generated (multiple inputs, or one input but multiple outputs with `return_as_file` True), the response will be a zip file.
|
||||
- If you set the parameter `target` to the zip mode, the response will be a zip file.
|
||||
- If multiple files are generated (multiple inputs, or one input but multiple outputs with the zip target mode), the response will be a zip file.
|
||||
|
||||
## Asynchronous API
|
||||
|
||||
Both `/v1alpha/convert/source` and `/v1alpha/convert/file` endpoints are available as asynchronous variants.
|
||||
Both `/v1/convert/source` and `/v1/convert/file` endpoints are available as asynchronous variants.
|
||||
The advantage of the asynchronous endpoints is the possible to interrupt the connection, check for the progress update and fetch the result.
|
||||
This approach is more resilient against network stabilities and allows the client application logic to easily interleave conversion with other tasks.
|
||||
This approach is more resilient against network instabilities and allows the client application logic to easily interleave conversion with other tasks.
|
||||
|
||||
Launch an asynchronous conversion with:
|
||||
|
||||
- `POST /v1alpha/convert/source/async` when providing the input as sources.
|
||||
- `POST /v1alpha/convert/file/async` when providing the input as multipart-form files.
|
||||
- `POST /v1/convert/source/async` when providing the input as sources.
|
||||
- `POST /v1/convert/file/async` when providing the input as multipart-form files.
|
||||
|
||||
The response format is a task detail:
|
||||
|
||||
@@ -383,7 +377,7 @@ The response format is a task detail:
|
||||
|
||||
For checking the progress of the conversion task and wait for its completion, use the endpoint:
|
||||
|
||||
- `GET /v1alpha/status/poll/{task_id}`
|
||||
- `GET /v1/status/poll/{task_id}`
|
||||
|
||||
<details>
|
||||
<summary>Example waiting loop:</summary>
|
||||
@@ -408,9 +402,9 @@ while task["task_status"] not in ("success", "failure"):
|
||||
### Subscribe with websockets
|
||||
|
||||
Using websocket you can get the client application being notified about updates of the conversion task.
|
||||
To start the websocker connection, use the endpoint:
|
||||
To start the websocket connection, use the endpoint:
|
||||
|
||||
- `/v1alpha/status/ws/{task_id}`
|
||||
- `/v1/status/ws/{task_id}`
|
||||
|
||||
Websocket messages are JSON object with the following structure:
|
||||
|
||||
@@ -423,12 +417,12 @@ Websocket messages are JSON object with the following structure:
|
||||
```
|
||||
|
||||
<details>
|
||||
<summary>Example websocker usage:</summary>
|
||||
<summary>Example websocket usage:</summary>
|
||||
|
||||
```python
|
||||
from websockets.sync.client import connect
|
||||
|
||||
uri = f"ws://{base_url}/v1alpha/status/ws/{task['task_id']}"
|
||||
uri = f"ws://{base_url}/v1/status/ws/{task['task_id']}"
|
||||
with connect(uri) as websocket:
|
||||
for message in websocket:
|
||||
try:
|
||||
@@ -447,4 +441,4 @@ with connect(uri) as websocket:
|
||||
|
||||
When the task is completed, the result can be fetched with the endpoint:
|
||||
|
||||
- `GET /v1alpha/result/{task_id}`
|
||||
- `GET /v1/result/{task_id}`
|
||||
|
||||
80
docs/v1_migration.md
Normal file
80
docs/v1_migration.md
Normal file
@@ -0,0 +1,80 @@
|
||||
# Migration to the `v1` API
|
||||
|
||||
Docling Serve from the initial prototype `v1alpha` API to the stable `v1` API.
|
||||
This page provides simple instructions to upgrade your application to the new API.
|
||||
|
||||
## API changes
|
||||
|
||||
The breaking changes introduced in the `v1` release of Docling Serve are designed to provide a stable schema which
|
||||
allows the project to provide new capabilities as new type of input sources, targets and also the definition of callback for event-driven applications.
|
||||
|
||||
### Endpoint names
|
||||
|
||||
All endpoints are renamed from `/v1alpha/` to `/v1/`.
|
||||
|
||||
### Sources
|
||||
|
||||
When using the `/v1/convert/source` endpoint, input documents have to be specified with the `sources: []` argument, which is replacing the usage of `file_sources` and `http_sources`.
|
||||
|
||||
Old version:
|
||||
|
||||
```jsonc
|
||||
{
|
||||
"options": {}, // conversion options
|
||||
"file_sources": [ // input documents provided as base64-encoded strings
|
||||
{"base64_string": "abc123...", "filename": "file.pdf"}
|
||||
],
|
||||
"http_sources": [ // input documents provided as http urls
|
||||
{"url": "https://..."}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
New version:
|
||||
|
||||
```jsonc
|
||||
{
|
||||
"options": {}, // conversion options
|
||||
"sources": [
|
||||
// input document provided as base64-encoded string
|
||||
{"kind": "kind", "base64_string": "abc123...", "filename": "file.pdf"},
|
||||
// input document provided as http urls
|
||||
{"kind": "http", "url": "https://..."},
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
### Targets
|
||||
|
||||
Switching between output formats, i.e. from the JSON inbody response to the zip archive response, users have to specify the `target` argument, which is replacing the usage of `options.return_as_file`.
|
||||
|
||||
Old version:
|
||||
|
||||
```jsonc
|
||||
{
|
||||
"options": {
|
||||
"return_as_file": true // <-- to be removed
|
||||
},
|
||||
// ...
|
||||
}
|
||||
```
|
||||
|
||||
New version:
|
||||
|
||||
```jsonc
|
||||
{
|
||||
"options": {},
|
||||
"target": {"kind": "zip"}, // <-- add this
|
||||
// ...
|
||||
}
|
||||
```
|
||||
|
||||
## Continue with the old API
|
||||
|
||||
If you are not able to apply the changes above to your application, please consider pinning of the previous `v0.x` container images, e.g.
|
||||
|
||||
```sh
|
||||
podman run -p 5001:5001 -e DOCLING_SERVE_ENABLE_UI=1 quay.io/docling-project/docling-serve:v0.16.1
|
||||
```
|
||||
|
||||
_Note that the old prototype API will not be supported in new `v1.x` versions._
|
||||
@@ -1,6 +1,6 @@
|
||||
[project]
|
||||
name = "docling-serve"
|
||||
version = "0.16.1" # DO NOT EDIT, updated automatically
|
||||
version = "1.0.1" # DO NOT EDIT, updated automatically
|
||||
description = "Running Docling as a service"
|
||||
license = {text = "MIT"}
|
||||
authors = [
|
||||
@@ -23,7 +23,7 @@ readme = "README.md"
|
||||
classifiers = [
|
||||
"License :: OSI Approved :: MIT License",
|
||||
"Operating System :: OS Independent",
|
||||
# "Development Status :: 5 - Production/Stable",
|
||||
"Development Status :: 5 - Production/Stable",
|
||||
"Intended Audience :: Developers",
|
||||
"Typing :: Typed",
|
||||
"Programming Language :: Python :: 3",
|
||||
@@ -34,12 +34,11 @@ classifiers = [
|
||||
]
|
||||
requires-python = ">=3.10"
|
||||
dependencies = [
|
||||
"docling[vlm]~=2.38",
|
||||
"docling~=2.38",
|
||||
"docling-core>=2.32.0",
|
||||
"mlx-vlm~=0.1.12; sys_platform == 'darwin' and platform_machine == 'arm64'",
|
||||
"docling-jobkit[kfp,vlm]~=1.1",
|
||||
"fastapi[standard]~=0.115",
|
||||
"httpx~=0.28",
|
||||
"kfp[kubernetes]>=2.10.0",
|
||||
"pydantic~=2.10",
|
||||
"pydantic-settings~=2.4",
|
||||
"python-multipart>=0.0.14,<0.1.0",
|
||||
@@ -129,6 +128,8 @@ torchvision = [
|
||||
{ index = "pytorch-cu126", group = "cu126" },
|
||||
{ index = "pytorch-cu128", group = "cu128" },
|
||||
]
|
||||
# docling-jobkit = { git = "https://github.com/docling-project/docling-jobkit/", rev = "refactor" }
|
||||
# docling-jobkit = { path = "../docling-jobkit", editable = true }
|
||||
|
||||
[[tool.uv.index]]
|
||||
name = "pytorch-pypi"
|
||||
@@ -223,7 +224,7 @@ ignore = [
|
||||
max-complexity = 15
|
||||
|
||||
[tool.ruff.lint.isort.sections]
|
||||
"docling" = ["docling", "docling_core"]
|
||||
"docling" = ["docling", "docling_core", "docling_jobkit"]
|
||||
|
||||
[tool.ruff.lint.isort]
|
||||
combine-as-imports = true
|
||||
|
||||
@@ -16,7 +16,7 @@ async def async_client():
|
||||
@pytest.mark.asyncio
|
||||
async def test_convert_file(async_client):
|
||||
"""Test convert single file to all outputs"""
|
||||
url = "http://localhost:5001/v1alpha/convert/file"
|
||||
url = "http://localhost:5001/v1/convert/file"
|
||||
options = {
|
||||
"from_formats": [
|
||||
"docx",
|
||||
@@ -37,7 +37,6 @@ async def test_convert_file(async_client):
|
||||
"pdf_backend": "dlparse_v2",
|
||||
"table_mode": "fast",
|
||||
"abort_on_error": False,
|
||||
"return_as_file": False,
|
||||
}
|
||||
|
||||
current_dir = os.path.dirname(__file__)
|
||||
|
||||
@@ -17,13 +17,12 @@ async def async_client():
|
||||
async def test_convert_url(async_client):
|
||||
"""Test convert URL to all outputs"""
|
||||
|
||||
base_url = "http://localhost:5001/v1alpha"
|
||||
base_url = "http://localhost:5001/v1"
|
||||
payload = {
|
||||
"to_formats": ["md", "json", "html"],
|
||||
"image_export_mode": "placeholder",
|
||||
"ocr": False,
|
||||
"abort_on_error": False,
|
||||
"return_as_file": False,
|
||||
}
|
||||
|
||||
file_path = Path(__file__).parent / "2206.01062v1.pdf"
|
||||
|
||||
@@ -15,7 +15,7 @@ async def async_client():
|
||||
@pytest.mark.asyncio
|
||||
async def test_convert_url(async_client):
|
||||
"""Test convert URL to all outputs"""
|
||||
url = "http://localhost:5001/v1alpha/convert/source"
|
||||
url = "http://localhost:5001/v1/convert/source"
|
||||
payload = {
|
||||
"options": {
|
||||
"from_formats": [
|
||||
@@ -37,9 +37,8 @@ async def test_convert_url(async_client):
|
||||
"pdf_backend": "dlparse_v2",
|
||||
"table_mode": "fast",
|
||||
"abort_on_error": False,
|
||||
"return_as_file": False,
|
||||
},
|
||||
"http_sources": [{"url": "https://arxiv.org/pdf/2206.01062"}],
|
||||
"sources": [{"kind": "http", "url": "https://arxiv.org/pdf/2206.01062"}],
|
||||
}
|
||||
print(json.dumps(payload, indent=2))
|
||||
|
||||
|
||||
@@ -20,14 +20,13 @@ async def test_convert_url(async_client: httpx.AsyncClient):
|
||||
doc_filename = Path("tests/2408.09869v5.pdf")
|
||||
encoded_doc = base64.b64encode(doc_filename.read_bytes()).decode()
|
||||
|
||||
base_url = "http://localhost:5001/v1alpha"
|
||||
base_url = "http://localhost:5001/v1"
|
||||
payload = {
|
||||
"options": {
|
||||
"to_formats": ["md", "json"],
|
||||
"image_export_mode": "placeholder",
|
||||
"ocr": True,
|
||||
"abort_on_error": False,
|
||||
"return_as_file": False,
|
||||
# "do_picture_description": True,
|
||||
# "picture_description_api": {
|
||||
# "url": "http://localhost:11434/v1/chat/completions",
|
||||
@@ -39,8 +38,14 @@ async def test_convert_url(async_client: httpx.AsyncClient):
|
||||
# "repo_id": "HuggingFaceTB/SmolVLM-256M-Instruct",
|
||||
# },
|
||||
},
|
||||
# "http_sources": [{"url": "https://arxiv.org/pdf/2501.17887"}],
|
||||
"file_sources": [{"base64_string": encoded_doc, "filename": doc_filename.name}],
|
||||
# "sources": [{"kind": "http", "url": "https://arxiv.org/pdf/2501.17887"}],
|
||||
"sources": [
|
||||
{
|
||||
"kind": "file",
|
||||
"base64_string": encoded_doc,
|
||||
"filename": doc_filename.name,
|
||||
}
|
||||
],
|
||||
}
|
||||
# print(json.dumps(payload, indent=2))
|
||||
|
||||
@@ -52,7 +57,7 @@ async def test_convert_url(async_client: httpx.AsyncClient):
|
||||
|
||||
task = response.json()
|
||||
|
||||
uri = f"ws://localhost:5001/v1alpha/status/ws/{task['task_id']}"
|
||||
uri = f"ws://localhost:5001/v1/status/ws/{task['task_id']}"
|
||||
with connect(uri) as websocket:
|
||||
for message in websocket:
|
||||
print(message)
|
||||
|
||||
@@ -25,16 +25,15 @@ async def test_convert_url(async_client):
|
||||
"https://arxiv.org/pdf/2311.18481",
|
||||
]
|
||||
|
||||
base_url = "http://localhost:5001/v1alpha"
|
||||
base_url = "http://localhost:5001/v1"
|
||||
payload = {
|
||||
"options": {
|
||||
"to_formats": ["md", "json"],
|
||||
"image_export_mode": "placeholder",
|
||||
"ocr": True,
|
||||
"abort_on_error": False,
|
||||
"return_as_file": False,
|
||||
},
|
||||
"http_sources": [{"url": random.choice(example_docs)}],
|
||||
"sources": [{"kind": "http", "url": random.choice(example_docs)}],
|
||||
}
|
||||
print(json.dumps(payload, indent=2))
|
||||
|
||||
|
||||
@@ -15,7 +15,7 @@ async def async_client():
|
||||
@pytest.mark.asyncio
|
||||
async def test_convert_file(async_client):
|
||||
"""Test convert single file to all outputs"""
|
||||
url = "http://localhost:5001/v1alpha/convert/file"
|
||||
url = "http://localhost:5001/v1/convert/file"
|
||||
options = {
|
||||
"from_formats": [
|
||||
"docx",
|
||||
@@ -36,7 +36,6 @@ async def test_convert_file(async_client):
|
||||
"pdf_backend": "dlparse_v2",
|
||||
"table_mode": "fast",
|
||||
"abort_on_error": False,
|
||||
"return_as_file": False,
|
||||
}
|
||||
|
||||
current_dir = os.path.dirname(__file__)
|
||||
|
||||
@@ -13,7 +13,7 @@ async def async_client():
|
||||
@pytest.mark.asyncio
|
||||
async def test_convert_url(async_client):
|
||||
"""Test convert URL to all outputs"""
|
||||
url = "http://localhost:5001/v1alpha/convert/source"
|
||||
url = "http://localhost:5001/v1/convert/source"
|
||||
payload = {
|
||||
"options": {
|
||||
"from_formats": [
|
||||
@@ -35,12 +35,12 @@ async def test_convert_url(async_client):
|
||||
"pdf_backend": "dlparse_v2",
|
||||
"table_mode": "fast",
|
||||
"abort_on_error": False,
|
||||
"return_as_file": False,
|
||||
},
|
||||
"http_sources": [
|
||||
{"url": "https://arxiv.org/pdf/2206.01062"},
|
||||
{"url": "https://arxiv.org/pdf/2408.09869"},
|
||||
"sources": [
|
||||
{"kind": "http", "url": "https://arxiv.org/pdf/2206.01062"},
|
||||
{"kind": "http", "url": "https://arxiv.org/pdf/2408.09869"},
|
||||
],
|
||||
"target": {"kind": "zip"},
|
||||
}
|
||||
|
||||
response = await async_client.post(url, json=payload)
|
||||
|
||||
@@ -16,7 +16,7 @@ async def async_client():
|
||||
@pytest.mark.asyncio
|
||||
async def test_convert_url(async_client):
|
||||
"""Test convert URL to all outputs"""
|
||||
base_url = "http://localhost:5001/v1alpha"
|
||||
base_url = "http://localhost:5001/v1"
|
||||
payload = {
|
||||
"options": {
|
||||
"from_formats": [
|
||||
@@ -38,12 +38,12 @@ async def test_convert_url(async_client):
|
||||
"pdf_backend": "dlparse_v2",
|
||||
"table_mode": "fast",
|
||||
"abort_on_error": False,
|
||||
"return_as_file": False,
|
||||
},
|
||||
"http_sources": [
|
||||
{"url": "https://arxiv.org/pdf/2206.01062"},
|
||||
{"url": "https://arxiv.org/pdf/2408.09869"},
|
||||
"sources": [
|
||||
{"kind": "http", "url": "https://arxiv.org/pdf/2206.01062"},
|
||||
{"kind": "http", "url": "https://arxiv.org/pdf/2408.09869"},
|
||||
],
|
||||
"target": {"kind": "zip"},
|
||||
}
|
||||
|
||||
response = await async_client.post(f"{base_url}/convert/source/async", json=payload)
|
||||
|
||||
@@ -45,7 +45,7 @@ async def test_health(client: AsyncClient):
|
||||
async def test_convert_file(client: AsyncClient):
|
||||
"""Test convert single file to all outputs"""
|
||||
|
||||
endpoint = "/v1alpha/convert/file"
|
||||
endpoint = "/v1/convert/file"
|
||||
options = {
|
||||
"from_formats": [
|
||||
"docx",
|
||||
@@ -66,7 +66,6 @@ async def test_convert_file(client: AsyncClient):
|
||||
"pdf_backend": "dlparse_v2",
|
||||
"table_mode": "fast",
|
||||
"abort_on_error": False,
|
||||
"return_as_file": False,
|
||||
}
|
||||
|
||||
current_dir = os.path.dirname(__file__)
|
||||
|
||||
@@ -40,7 +40,7 @@ async def client(app):
|
||||
async def test_convert_file(client: AsyncClient):
|
||||
"""Test convert single file to all outputs"""
|
||||
|
||||
endpoint = "/v1alpha/convert/file"
|
||||
endpoint = "/v1/convert/file"
|
||||
options = {
|
||||
"to_formats": ["md", "json"],
|
||||
"image_export_mode": "placeholder",
|
||||
|
||||
@@ -1,54 +0,0 @@
|
||||
from docling_serve.datamodel.convert import (
|
||||
ConvertDocumentsOptions,
|
||||
PictureDescriptionApi,
|
||||
)
|
||||
from docling_serve.docling_conversion import (
|
||||
_hash_pdf_format_option,
|
||||
get_pdf_pipeline_opts,
|
||||
)
|
||||
|
||||
|
||||
def test_options_cache_key():
|
||||
hashes = set()
|
||||
|
||||
opts = ConvertDocumentsOptions()
|
||||
pipeline_opts = get_pdf_pipeline_opts(opts)
|
||||
hash = _hash_pdf_format_option(pipeline_opts)
|
||||
assert hash not in hashes
|
||||
hashes.add(hash)
|
||||
|
||||
opts.do_picture_description = True
|
||||
pipeline_opts = get_pdf_pipeline_opts(opts)
|
||||
hash = _hash_pdf_format_option(pipeline_opts)
|
||||
# pprint(pipeline_opts.pipeline_options.model_dump(serialize_as_any=True))
|
||||
assert hash not in hashes
|
||||
hashes.add(hash)
|
||||
|
||||
opts.picture_description_api = PictureDescriptionApi(
|
||||
url="http://localhost",
|
||||
params={"model": "mymodel"},
|
||||
prompt="Hello 1",
|
||||
)
|
||||
pipeline_opts = get_pdf_pipeline_opts(opts)
|
||||
hash = _hash_pdf_format_option(pipeline_opts)
|
||||
# pprint(pipeline_opts.pipeline_options.model_dump(serialize_as_any=True))
|
||||
assert hash not in hashes
|
||||
hashes.add(hash)
|
||||
|
||||
opts.picture_description_api = PictureDescriptionApi(
|
||||
url="http://localhost",
|
||||
params={"model": "your-model"},
|
||||
prompt="Hello 1",
|
||||
)
|
||||
pipeline_opts = get_pdf_pipeline_opts(opts)
|
||||
hash = _hash_pdf_format_option(pipeline_opts)
|
||||
# pprint(pipeline_opts.pipeline_options.model_dump(serialize_as_any=True))
|
||||
assert hash not in hashes
|
||||
hashes.add(hash)
|
||||
|
||||
opts.picture_description_api.prompt = "World"
|
||||
pipeline_opts = get_pdf_pipeline_opts(opts)
|
||||
hash = _hash_pdf_format_option(pipeline_opts)
|
||||
# pprint(pipeline_opts.pipeline_options.model_dump(serialize_as_any=True))
|
||||
assert hash not in hashes
|
||||
hashes.add(hash)
|
||||
@@ -43,10 +43,16 @@ async def convert_file(client: AsyncClient):
|
||||
"options": {
|
||||
"to_formats": ["json"],
|
||||
},
|
||||
"file_sources": [{"base64_string": encoded_doc, "filename": doc_filename.name}],
|
||||
"sources": [
|
||||
{
|
||||
"kind": "file",
|
||||
"base64_string": encoded_doc,
|
||||
"filename": doc_filename.name,
|
||||
}
|
||||
],
|
||||
}
|
||||
|
||||
response = await client.post("/v1alpha/convert/source/async", json=payload)
|
||||
response = await client.post("/v1/convert/source/async", json=payload)
|
||||
assert response.status_code == 200, "Response should be 200 OK"
|
||||
|
||||
task = response.json()
|
||||
@@ -54,7 +60,7 @@ async def convert_file(client: AsyncClient):
|
||||
print(json.dumps(task, indent=2))
|
||||
|
||||
while task["task_status"] not in ("success", "failure"):
|
||||
response = await client.get(f"/v1alpha/status/poll/{task['task_id']}")
|
||||
response = await client.get(f"/v1/status/poll/{task['task_id']}")
|
||||
assert response.status_code == 200, "Response should be 200 OK"
|
||||
task = response.json()
|
||||
print(f"{task['task_status']=}")
|
||||
@@ -78,26 +84,26 @@ async def test_clear_results(client: AsyncClient):
|
||||
task = await convert_file(client)
|
||||
|
||||
# Get result once
|
||||
result_response = await client.get(f"/v1alpha/result/{task['task_id']}")
|
||||
result_response = await client.get(f"/v1/result/{task['task_id']}")
|
||||
assert result_response.status_code == 200, "Response should be 200 OK"
|
||||
print("Result 1 ok.")
|
||||
result = result_response.json()
|
||||
assert result["document"]["json_content"]["schema_name"] == "DoclingDocument"
|
||||
|
||||
# Get result twice
|
||||
result_response = await client.get(f"/v1alpha/result/{task['task_id']}")
|
||||
result_response = await client.get(f"/v1/result/{task['task_id']}")
|
||||
assert result_response.status_code == 200, "Response should be 200 OK"
|
||||
print("Result 2 ok.")
|
||||
result = result_response.json()
|
||||
assert result["document"]["json_content"]["schema_name"] == "DoclingDocument"
|
||||
|
||||
# Clear
|
||||
clear_response = await client.get("/v1alpha/clear/results?older_then=0")
|
||||
clear_response = await client.get("/v1/clear/results?older_then=0")
|
||||
assert clear_response.status_code == 200, "Response should be 200 OK"
|
||||
print("Clear ok.")
|
||||
|
||||
# Get deleted result
|
||||
result_response = await client.get(f"/v1alpha/result/{task['task_id']}")
|
||||
result_response = await client.get(f"/v1/result/{task['task_id']}")
|
||||
assert result_response.status_code == 404, "Response should be removed"
|
||||
print("Result was no longer found.")
|
||||
|
||||
@@ -113,7 +119,7 @@ async def test_delay_remove(client: AsyncClient):
|
||||
task = await convert_file(client)
|
||||
|
||||
# Get result once
|
||||
result_response = await client.get(f"/v1alpha/result/{task['task_id']}")
|
||||
result_response = await client.get(f"/v1/result/{task['task_id']}")
|
||||
assert result_response.status_code == 200, "Response should be 200 OK"
|
||||
print("Result ok.")
|
||||
result = result_response.json()
|
||||
@@ -123,5 +129,5 @@ async def test_delay_remove(client: AsyncClient):
|
||||
await asyncio.sleep(10)
|
||||
|
||||
# Get deleted result
|
||||
result_response = await client.get(f"/v1alpha/result/{task['task_id']}")
|
||||
result_response = await client.get(f"/v1/result/{task['task_id']}")
|
||||
assert result_response.status_code == 404, "Response should be removed"
|
||||
|
||||
Reference in New Issue
Block a user