82 Commits

Author SHA1 Message Date
github-actions[bot]
5edc624fbf chore: bump version to 1.6.0 [skip ci] 2025-10-03 13:39:59 +00:00
Michele Dolfi
45f0f3c8f9 fix: update locked dependencies (#392)
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
2025-10-03 15:33:45 +02:00
Michele Dolfi
0595d31d5b feat: pin new version of jobkit with granite-docling and connectors (#391)
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
2025-10-03 14:24:51 +02:00
Michele Dolfi
f6b5f0e063 docs: fix docs for websocket breaking condition (#390)
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
2025-10-02 10:55:00 +02:00
Michele Dolfi
8b22a39141 fix(UI): allow both lowercase and uppercase extensions (#386)
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
2025-09-29 09:40:49 +02:00
erikmargaronis
d4eac053f9 fix: Correctly raise HTTPException for Gateway Timeout (#382)
Signed-off-by: Erik Margaronis <erik.margaronis@gmail.com>
2025-09-29 08:06:21 +02:00
Rui Dias Gomes
fa1c5f04f3 ci: improve caching steps (#371)
Signed-off-by: rmdg88 <rmdg88@gmail.com>
2025-09-23 18:15:12 +02:00
Viktor Kuropiatnyk
ba61af2359 fix: Pinning of higher version of dependencies to fix potential security issues (#363)
Signed-off-by: Viktor Kuropiatnyk <vku@zurich.ibm.com>
2025-09-18 08:57:41 +02:00
github-actions[bot]
6b6dd8a0d0 chore: bump version to 1.5.1 [skip ci] 2025-09-17 13:45:40 +00:00
Michele Dolfi
513ae0c119 fix: remove old dependencies, fixes in docling-parse and more minor dependencies upgrade (#362)
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
2025-09-17 15:36:23 +02:00
Rui Dias Gomes
bde040661f fix: updates rapidocr deps (#361)
Signed-off-by: rmdg88 <rmdg88@gmail.com>
2025-09-16 14:00:21 +02:00
github-actions[bot]
496f7ec26b chore: bump version to 1.5.0 [skip ci] 2025-09-09 08:46:36 +00:00
Michele Dolfi
9d6def0ec8 feat: add chunking endpoints (#353)
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
2025-09-09 08:38:54 +02:00
github-actions[bot]
a4fed2d965 chore: bump version to 1.4.1 [skip ci] 2025-09-08 10:28:12 +00:00
Michele Dolfi
b0360d723b fix: trigger fix after ci fixes (#355)
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
2025-09-08 12:23:07 +02:00
Michele Dolfi
4adc0dfa79 ci: fix use simple tag for testing (#354)
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
2025-09-08 11:29:55 +02:00
github-actions[bot]
40c7f1bcd3 chore: bump version to 1.4.0 [skip ci] 2025-09-05 17:57:08 +00:00
Michele Dolfi
d64a2a974a feat(docling): perfomance improvements in parsing, new layout model, fixes in html processing (#352)
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
2025-09-05 16:21:29 +02:00
Tiago Santana
0d4545a65a docs: add split processing example (#303)
Signed-off-by: Tiago Santana <54704492+SantanaTiago@users.noreply.github.com>
Co-authored-by: Michele Dolfi <dol@zurich.ibm.com>
2025-09-04 10:42:11 +02:00
Rui Dias Gomes
fe98338239 ci: fix runner disk space issue (#350)
Signed-off-by: Rui Dias Gomes <66125272+rmdg88@users.noreply.github.com>
2025-09-04 09:17:19 +02:00
Michele Dolfi
b844ce737e ci: remove mdlint (#348)
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
2025-09-03 15:42:55 +02:00
Antonio Pisano
27fdd7b85a docs: document DOCLING_NUM_THREADS environment variable (#341)
Signed-off-by: Antonio Pisano <antonio.pisano@wu.ac.at>
Co-authored-by: Antonio Pisano <antonio.pisano@wu.ac.at>
2025-09-03 11:00:28 +02:00
Rui Dias Gomes
1df62adf01 ci: workflow improvements (#310)
Signed-off-by: rmdg88 <rmdg88@gmail.com>
Signed-off-by: Rui Dias Gomes <66125272+rmdg88@users.noreply.github.com>
2025-09-03 10:06:30 +02:00
Michele Dolfi
e5449472b2 fix: upgrade to latest docling version with fixes (#335)
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
2025-08-25 10:55:43 +02:00
Michele Dolfi
81f0a8ddf8 docs: fix parameters typo (#333)
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
2025-08-22 14:59:12 +02:00
Michele Dolfi
a69cc867f5 docs: Describe how to use Docling MCP (#332)
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
2025-08-22 14:56:08 +02:00
github-actions[bot]
624f65d41b chore: bump version to 1.3.1 [skip ci] 2025-08-21 07:01:51 +00:00
Michele Dolfi
f02dbc0144 fix: configuration and performance fixes via upgrade of packages (#328)
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
2025-08-20 20:40:52 +02:00
Michele Dolfi
37fe02277b docs: fix parameter in api key docs (#323)
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
2025-08-15 11:00:05 +02:00
github-actions[bot]
783ada0580 chore: bump version to 1.3.0 [skip ci] 2025-08-14 14:26:57 +00:00
VIktor Kuropiantnyk
71edf41849 docs: example of docling-serve deployment in the RQ engine mode (#321)
Signed-off-by: Viktor Kuropiatnyk <vku@zurich.ibm.com>
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
Co-authored-by: Michele Dolfi <dol@zurich.ibm.com>
2025-08-14 16:10:39 +02:00
Michele Dolfi
9a64410552 feat: Add configuration option for apikey security (#322)
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
2025-08-14 15:25:53 +02:00
Michele Dolfi
6e9aa8c759 docs: handling models in docling-serve (#319)
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
2025-08-14 09:12:04 +02:00
Michele Dolfi
885f319d3a feat: Add RQ engine (#315)
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
2025-08-14 08:48:31 +02:00
Tiago Santana
d584895e11 docs: add Gradio cache usage (#312)
Signed-off-by: Tiago Santana <54704492+SantanaTiago@users.noreply.github.com>
2025-08-13 16:49:54 +02:00
github-actions[bot]
d26e6637d8 chore: bump version to 1.2.2 [skip ci] 2025-08-13 14:48:17 +00:00
VIktor Kuropiantnyk
7692eb2600 fix: update of transformers module to 4.55.1 (#316)
Signed-off-by: Viktor Kuropiatnyk <vku@zurich.ibm.com>
2025-08-13 16:07:52 +02:00
github-actions[bot]
3bd7828570 chore: bump version to 1.2.1 [skip ci] 2025-08-13 07:37:55 +00:00
Michele Dolfi
8b470cba8e fix: handling of vlm model options and update deps (#314)
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
2025-08-13 09:32:21 +02:00
Tiago Santana
8048f4589a fix: add missing response type in sync endpoints (#309)
Signed-off-by: Tiago Santana <54704492+SantanaTiago@users.noreply.github.com>
2025-08-08 12:32:19 +02:00
Thomas Vitale
b3058e91e0 docs: Update readme to use v1 (#306)
Signed-off-by: Thomas Vitale <ThomasVitale@users.noreply.github.com>
2025-08-08 09:02:29 +02:00
Thomas Vitale
63da9eedeb docs: Update deployment examples to use v1 API (#308)
Signed-off-by: Thomas Vitale <ThomasVitale@users.noreply.github.com>
2025-08-08 08:47:59 +02:00
Thomas Vitale
b15dc2529f docs: Fix typo in v1 migration instructions (#307)
Signed-off-by: Thomas Vitale <ThomasVitale@users.noreply.github.com>
2025-08-08 08:44:09 +02:00
github-actions[bot]
4c7207be00 chore: bump version to 1.2.0 [skip ci] 2025-08-07 09:20:10 +00:00
Michele Dolfi
db3fdb5bc1 feat: workers without shared models and convert params (#304)
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
2025-08-07 11:16:06 +02:00
Rui Dias Gomes
fd1b987e8d feat: add rocm image build support and fix cuda (#292)
Signed-off-by: rmdg88 <rmdg88@gmail.com>
Signed-off-by: Rui-Dias-Gomes <rui.dias.gomes@ibm.com>
Co-authored-by: Rui-Dias-Gomes <rui.dias.gomes@ibm.com>
2025-07-31 14:22:42 +02:00
github-actions[bot]
ce15e0302b chore: bump version to 1.1.0 [skip ci] 2025-07-30 15:53:01 +00:00
Michele Dolfi
ecb1874a50 feat: Add docling-mcp in the distribution (#290)
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
2025-07-30 15:39:11 +02:00
Michele Dolfi
1333f71c9c fix: referenced paths relative to zip root (#289)
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
2025-07-30 14:49:26 +02:00
Tiago Santana
ec594d84fe feat: add 3.0 openapi endpoint (#287)
Signed-off-by: Tiago Santana <54704492+SantanaTiago@users.noreply.github.com>
2025-07-30 14:08:59 +02:00
Tiago Santana
3771c1b554 feat: add new source and target (#270)
Signed-off-by: Tiago Santana <54704492+SantanaTiago@users.noreply.github.com>
2025-07-29 14:44:49 +02:00
github-actions[bot]
24db461b14 chore: bump version to 1.0.1 [skip ci] 2025-07-21 07:34:14 +00:00
Michele Dolfi
8706706e87 fix: docling update v2.42.0 (#277)
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
2025-07-21 08:47:40 +02:00
Michele Dolfi
766adb2481 docs: typo in README (#276)
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
2025-07-18 14:37:54 +02:00
Michele Dolfi
8222cf8955 ci: add spellchecker with custom vocabulary and fix typos (#268)
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
2025-07-15 14:17:35 +02:00
github-actions[bot]
b922824e5b chore: bump version to 1.0.0 [skip ci] 2025-07-14 11:25:06 +00:00
Michele Dolfi
56e328baf7 feat!: v1 api with list of sources and target (#249)
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
2025-07-14 13:19:49 +02:00
Michele Dolfi
daa924a77e feat!: use orchestrators from jobkit (#248)
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
2025-07-10 15:47:22 +02:00
Eugene
e63197e89e chore: bump uv to 0.7.19 in container (#266)
Signed-off-by: Eugene <fogaprod@gmail.com>
2025-07-10 15:10:21 +02:00
github-actions[bot]
767ce0982b chore: bump version to 0.16.1 [skip ci] 2025-07-07 16:17:50 +00:00
Michele Dolfi
bfde1a0991 fix: upgrade deps including, docling v2.40.0 with locks in models init (#264)
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
2025-07-07 17:13:45 +02:00
VIktor Kuropiantnyk
eb3892ee14 fix: missing tesseract osd (#263)
Signed-off-by: Viktor Kuropiatnyk <vku@zurich.ibm.com>
2025-07-07 16:36:43 +02:00
tassadarliu
93b84712b2 docs: fix typo (#259)
Signed-off-by: tassadarliu <rhapsodyn@gmail.com>
2025-07-07 08:47:34 +02:00
Yishen Miao
c45b937064 docs: change the doc example (#258)
Signed-off-by: Yishen Miao <mys721tx@gmail.com>
2025-07-07 08:47:21 +02:00
Francisco Arceo
50e431f30f docs: Update typo (#247)
Signed-off-by: Francisco Arceo <arceofrancisco@gmail.com>
2025-06-27 16:58:37 +02:00
Michele Dolfi
149a8cb1c0 fix: properly load models at boot (#244)
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
2025-06-27 12:20:38 +02:00
github-actions[bot]
5f9c20a985 chore: bump version to 0.16.0 [skip ci] 2025-06-25 09:52:08 +00:00
Michele Dolfi
80755a7d59 docs: Update example resources and improve README (#231)
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
2025-06-25 07:56:14 +02:00
Michele Dolfi
30aca92298 feat: package updates and more cuda images (#229)
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
2025-06-24 16:59:05 +02:00
github-actions[bot]
717fb3a8d8 chore: bump version to 0.15.0 [skip ci] 2025-06-17 15:00:38 +00:00
Michele Dolfi
873d05aefe feat: use redocs and scalar as api docs (#228)
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
2025-06-17 16:54:00 +02:00
Ryan Fernandes
196c5ce42a fix: "tesserocr" instead of "tesseract_cli" in usage docs (#223)
Signed-off-by: Ryan Fernandes <ryan@fernandes.us>
2025-06-17 16:53:51 +02:00
github-actions[bot]
b5c5f47892 chore: bump version to 0.14.0 [skip ci] 2025-06-17 13:10:27 +00:00
23Ro
d5455b7f66 fix: Typo in Headline (#220)
Signed-off-by: 23Ro <m.n@23ro.de>
2025-06-17 14:55:27 +02:00
Michele Dolfi
7a682494d6 chore: dco advisor (#224)
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
2025-06-17 09:38:56 +02:00
Eugene
524f6a8997 feat: Read supported file extensions from docling (#214)
Signed-off-by: Eugene <fogaprod@gmail.com>
2025-06-05 09:38:28 +02:00
github-actions[bot]
9ccf8e3b5e chore: bump version to 0.13.0 [skip ci] 2025-06-04 12:24:40 +00:00
Michele Dolfi
ffea34732b feat: upgrade docling to 2.36 (#212)
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
2025-06-04 14:20:34 +02:00
github-actions[bot]
b299af002b chore: bump version to 0.12.0 [skip ci] 2025-06-03 16:30:28 +00:00
Michele Dolfi
c4c41f16df feat: Export annotations in markdown and html (Docling upgrade) (#202)
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
2025-06-03 18:24:27 +02:00
Michele Dolfi
7066f3520a fix: processing complex params in multipart-form (#210)
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
2025-06-03 18:24:05 +02:00
Rui Dias Gomes
6a8190c315 docs: add openshift replicasets examples (#209)
Signed-off-by: Rui-Dias-Gomes <rui.dias.gomes@ibm.com>
Co-authored-by: Rui-Dias-Gomes <rui.dias.gomes@ibm.com>
2025-06-03 17:43:41 +02:00
84 changed files with 9483 additions and 5231 deletions

2
.github/dco.yml vendored Normal file
View File

@@ -0,0 +1,2 @@
allowRemediationCommits:
individual: true

View File

@@ -3,32 +3,68 @@
set -e # trigger failure on error - do not remove!
set -x # display command on output
## debug
# TARGET_VERSION="1.2.x"
if [ -z "${TARGET_VERSION}" ]; then
>&2 echo "No TARGET_VERSION specified"
exit 1
fi
CHGLOG_FILE="${CHGLOG_FILE:-CHANGELOG.md}"
# update package version
# Update package version
uvx --from=toml-cli toml set --toml-path=pyproject.toml project.version "${TARGET_VERSION}"
uv lock --upgrade-package docling-serve
# collect release notes
# Extract all docling packages and versions from uv.lock
DOCVERSIONS=$(uvx --with toml python3 - <<'PY'
import toml
data = toml.load("uv.lock")
for pkg in data.get("package", []):
if pkg["name"].startswith("docling"):
print(f"{pkg['name']} {pkg['version']}")
PY
)
# Format docling versions list without trailing newline
DOCLING_VERSIONS="### Docling libraries included in this release:"
while IFS= read -r line; do
DOCLING_VERSIONS+="
- $line"
done <<< "$DOCVERSIONS"
# Collect release notes
REL_NOTES=$(mktemp)
uv run --no-sync semantic-release changelog --unreleased >> "${REL_NOTES}"
# update changelog
# Strip trailing blank lines from release notes and append docling versions
{
sed -e :a -e '/^\n*$/{$d;N;};/\n$/ba' "${REL_NOTES}"
printf "\n"
printf "%s" "${DOCLING_VERSIONS}"
printf "\n"
} > "${REL_NOTES}.tmp" && mv "${REL_NOTES}.tmp" "${REL_NOTES}"
# Update changelog
TMP_CHGLOG=$(mktemp)
TARGET_TAG_NAME="v${TARGET_VERSION}"
RELEASE_URL="$(gh repo view --json url -q ".url")/releases/tag/${TARGET_TAG_NAME}"
printf "## [${TARGET_TAG_NAME}](${RELEASE_URL}) - $(date -Idate)\n\n" >> "${TMP_CHGLOG}"
cat "${REL_NOTES}" >> "${TMP_CHGLOG}"
if [ -f "${CHGLOG_FILE}" ]; then
printf "\n" | cat - "${CHGLOG_FILE}" >> "${TMP_CHGLOG}"
fi
## debug
#RELEASE_URL="myrepo/releases/tag/${TARGET_TAG_NAME}"
# Strip leading blank lines from existing changelog to avoid multiple blank lines when appending
EXISTING_CL=$(sed -e :a -e '/^\n*$/{$d;N;};/\n$/ba' "${CHGLOG_FILE}")
{
printf "## [${TARGET_TAG_NAME}](${RELEASE_URL}) - $(date -Idate)\n\n"
cat "${REL_NOTES}"
printf "\n"
printf "%s\n" "${EXISTING_CL}"
} >> "${TMP_CHGLOG}"
mv "${TMP_CHGLOG}" "${CHGLOG_FILE}"
# push changes
# Push changes
git config --global user.name 'github-actions[bot]'
git config --global user.email 'github-actions[bot]@users.noreply.github.com'
git add pyproject.toml uv.lock "${CHGLOG_FILE}"
@@ -36,5 +72,5 @@ COMMIT_MSG="chore: bump version to ${TARGET_VERSION} [skip ci]"
git commit -m "${COMMIT_MSG}"
git push origin main
# create GitHub release (incl. Git tag)
# Create GitHub release (incl. Git tag)
gh release create "${TARGET_TAG_NAME}" -F "${REL_NOTES}"

View File

@@ -0,0 +1,39 @@
[Dd]ocling
precommit
asgi
async
(?i)urls
uvicorn
[Ww]ebserver
RQ
(?i)url
keyfile
[Ww]ebsocket(s?)
[Kk]ubernetes
UI
(?i)vllm
APIs
[Ss]ubprocesses
(?i)api
Kubeflow
(?i)Jobkit
(?i)cpu
(?i)PyTorch
(?i)CUDA
(?i)NVIDIA
(?i)ROCm
(?i)env
Gradio
Podman
bool
Ollama
inbody
LGTMs
Dolfi
Lysak
Nikos
Nassar
Panos
Vagenas
Staar
Livathinos

11
.github/vale.ini vendored Normal file
View File

@@ -0,0 +1,11 @@
StylesPath = styles
MinAlertLevel = suggestion
; Packages = write-good, proselint
Vocab = Docling
[*.md]
BasedOnStyles = Vale
[CHANGELOG.md]
BasedOnStyles =

View File

@@ -13,7 +13,7 @@ jobs:
actionlint:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v5
- name: Download actionlint
id: get_actionlint
run: bash <(curl https://raw.githubusercontent.com/rhysd/actionlint/main/scripts/download-actionlint.bash)

View File

@@ -11,11 +11,11 @@ jobs:
outputs:
TARGET_TAG_V: ${{ steps.version_check.outputs.TRGT_VERSION }}
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v5
with:
fetch-depth: 0 # for fetching tags, required for semantic-release
- name: Install uv and set the python version
uses: astral-sh/setup-uv@v5
uses: astral-sh/setup-uv@v6
with:
enable-cache: true
- name: Install dependencies
@@ -40,12 +40,12 @@ jobs:
with:
app-id: ${{ vars.CI_APP_ID }}
private-key: ${{ secrets.CI_PRIVATE_KEY }}
- uses: actions/checkout@v4
- uses: actions/checkout@v5
with:
token: ${{ steps.app-token.outputs.token }}
fetch-depth: 0 # for fetching tags, required for semantic-release
- name: Install uv and set the python version
uses: astral-sh/setup-uv@v5
uses: astral-sh/setup-uv@v6
with:
enable-cache: true
- name: Install dependencies

View File

@@ -15,16 +15,28 @@ jobs:
spec:
- name: docling-project/docling-serve
build_args: |
UV_SYNC_EXTRA_ARGS=--no-extra cu124 --no-extra cpu
UV_SYNC_EXTRA_ARGS=--no-extra flash-attn
platforms: linux/amd64, linux/arm64
- name: docling-project/docling-serve-cpu
build_args: |
UV_SYNC_EXTRA_ARGS=--no-extra cu124 --no-extra flash-attn
UV_SYNC_EXTRA_ARGS=--no-group pypi --group cpu --no-extra flash-attn
platforms: linux/amd64, linux/arm64
- name: docling-project/docling-serve-cu124
# - name: docling-project/docling-serve-cu124
# build_args: |
# UV_SYNC_EXTRA_ARGS=--no-group pypi --group cu124
# platforms: linux/amd64
- name: docling-project/docling-serve-cu126
build_args: |
UV_SYNC_EXTRA_ARGS=--no-extra cpu
UV_SYNC_EXTRA_ARGS=--no-group pypi --group cu126
platforms: linux/amd64
- name: docling-project/docling-serve-cu128
build_args: |
UV_SYNC_EXTRA_ARGS=--no-group pypi --group cu128
platforms: linux/amd64
# - name: docling-project/docling-serve-rocm
# build_args: |
# UV_SYNC_EXTRA_ARGS=--no-group pypi --group rocm --no-extra flash-attn
# platforms: linux/amd64
permissions:
packages: write

192
.github/workflows/dco-advisor.yml vendored Normal file
View File

@@ -0,0 +1,192 @@
name: DCO Advisor Bot
on:
pull_request_target:
types: [opened, reopened, synchronize]
permissions:
pull-requests: write
issues: write
jobs:
dco_advisor:
runs-on: ubuntu-latest
steps:
- name: Handle DCO check result
uses: actions/github-script@v7
with:
github-token: ${{ secrets.GITHUB_TOKEN }}
script: |
const pr = context.payload.pull_request || context.payload.check_run?.pull_requests?.[0];
if (!pr) return;
const prNumber = pr.number;
const baseRef = pr.base.ref;
const headSha =
context.payload.check_run?.head_sha ||
pr.head?.sha;
const username = pr.user.login;
console.log("HEAD SHA:", headSha);
const sleep = ms => new Promise(resolve => setTimeout(resolve, ms));
// Poll until DCO check has a conclusion (max 6 attempts, 30s)
let dcoCheck = null;
for (let attempt = 0; attempt < 6; attempt++) {
const { data: checks } = await github.rest.checks.listForRef({
owner: context.repo.owner,
repo: context.repo.repo,
ref: headSha
});
console.log("All check runs:");
checks.check_runs.forEach(run => {
console.log(`- ${run.name} (${run.status}/${run.conclusion}) @ ${run.head_sha}`);
});
dcoCheck = checks.check_runs.find(run =>
run.name.toLowerCase().includes("dco") &&
!run.name.toLowerCase().includes("dco_advisor") &&
run.head_sha === headSha
);
if (dcoCheck?.conclusion) break;
console.log(`Waiting for DCO check... (${attempt + 1})`);
await sleep(5000); // wait 5 seconds
}
if (!dcoCheck || !dcoCheck.conclusion) {
console.log("DCO check did not complete in time.");
return;
}
const isFailure = ["failure", "action_required"].includes(dcoCheck.conclusion);
console.log(`DCO check conclusion for ${headSha}: ${dcoCheck.conclusion} (treated as ${isFailure ? "failure" : "success"})`);
// Parse DCO output for commit SHAs and author
let badCommits = [];
let authorName = "";
let authorEmail = "";
let moreInfo = `More info: [DCO check report](${dcoCheck?.html_url})`;
if (isFailure) {
const { data: commits } = await github.rest.pulls.listCommits({
owner: context.repo.owner,
repo: context.repo.repo,
pull_number: prNumber,
});
for (const commit of commits) {
const commitMessage = commit.commit.message;
const signoffMatch = commitMessage.match(/^Signed-off-by:\s+.+<.+>$/m);
if (!signoffMatch) {
console.log(`Bad commit found ${commit.sha}`)
badCommits.push({
sha: commit.sha,
authorName: commit.commit.author.name,
authorEmail: commit.commit.author.email,
});
}
}
}
// If multiple authors are present, you could adapt the message accordingly
// For now, we'll just use the first one
if (badCommits.length > 0) {
authorName = badCommits[0].authorName;
authorEmail = badCommits[0].authorEmail;
}
// Generate remediation commit message if needed
let remediationSnippet = "";
if (badCommits.length && authorEmail) {
remediationSnippet = `git commit --allow-empty -s -m "DCO Remediation Commit for ${authorName} <${authorEmail}>\n\n` +
badCommits.map(c => `I, ${c.authorName} <${c.authorEmail}>, hereby add my Signed-off-by to this commit: ${c.sha}`).join('\n') +
`"`;
} else {
remediationSnippet = "# Unable to auto-generate remediation message. Please check the DCO check details.";
}
// Build comment
const commentHeader = '<!-- dco-advice-bot -->';
let body = "";
if (isFailure) {
body = [
commentHeader,
'❌ **DCO Check Failed**',
'',
`Hi @${username}, your pull request has failed the Developer Certificate of Origin (DCO) check.`,
'',
'This repository supports **remediation commits**, so you can fix this without rewriting history — but you must follow the required message format.',
'',
'---',
'',
'### 🛠 Quick Fix: Add a remediation commit',
'Run this command:',
'',
'```bash',
remediationSnippet,
'git push',
'```',
'',
'---',
'',
'<details>',
'<summary>🔧 Advanced: Sign off each commit directly</summary>',
'',
'**For the latest commit:**',
'```bash',
'git commit --amend --signoff',
'git push --force-with-lease',
'```',
'',
'**For multiple commits:**',
'```bash',
`git rebase --signoff origin/${baseRef}`,
'git push --force-with-lease',
'```',
'',
'</details>',
'',
moreInfo
].join('\n');
} else {
body = [
commentHeader,
'✅ **DCO Check Passed**',
'',
`Thanks @${username}, all your commits are properly signed off. 🎉`
].join('\n');
}
// Get existing comments on the PR
const { data: comments } = await github.rest.issues.listComments({
owner: context.repo.owner,
repo: context.repo.repo,
issue_number: prNumber
});
// Look for a previous bot comment
const existingComment = comments.find(c =>
c.body.includes("<!-- dco-advice-bot -->")
);
if (existingComment) {
await github.rest.issues.updateComment({
owner: context.repo.owner,
repo: context.repo.repo,
comment_id: existingComment.id,
body: body
});
} else {
await github.rest.issues.createComment({
owner: context.repo.owner,
repo: context.repo.repo,
issue_number: prNumber,
body: body
});
}

View File

@@ -19,17 +19,28 @@ jobs:
spec:
- name: docling-project/docling-serve
build_args: |
UV_SYNC_EXTRA_ARGS=--no-extra cu124 --no-extra cpu
UV_SYNC_EXTRA_ARGS=--no-extra flash-attn
platforms: linux/amd64, linux/arm64
- name: docling-project/docling-serve-cpu
build_args: |
UV_SYNC_EXTRA_ARGS=--no-extra cu124 --no-extra flash-attn
UV_SYNC_EXTRA_ARGS=--no-group pypi --group cpu --no-extra flash-attn
platforms: linux/amd64, linux/arm64
- name: docling-project/docling-serve-cu124
# - name: docling-project/docling-serve-cu124
# build_args: |
# UV_SYNC_EXTRA_ARGS=--no-group pypi --group cu124
# platforms: linux/amd64
- name: docling-project/docling-serve-cu126
build_args: |
UV_SYNC_EXTRA_ARGS=--no-extra cpu
UV_SYNC_EXTRA_ARGS=--no-group pypi --group cu126
platforms: linux/amd64
- name: docling-project/docling-serve-cu128
build_args: |
UV_SYNC_EXTRA_ARGS=--no-group pypi --group cu128
platforms: linux/amd64
# - name: docling-project/docling-serve-rocm
# build_args: |
# UV_SYNC_EXTRA_ARGS=--no-group pypi --group rocm --no-extra flash-attn
# platforms: linux/amd64
permissions:
packages: write
contents: read

View File

@@ -10,14 +10,14 @@ jobs:
matrix:
python-version: ['3.12']
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v5
- name: Install uv and set the python version
uses: astral-sh/setup-uv@v5
uses: astral-sh/setup-uv@v6
with:
python-version: ${{ matrix.python-version }}
enable-cache: true
- name: Install dependencies
run: uv sync --all-extras --no-extra cu124 --no-extra flash-attn
run: uv sync --all-extras --no-extra flash-attn
- name: Build package
run: uv build
- name: Check content of wheel

View File

@@ -10,9 +10,9 @@ jobs:
matrix:
python-version: ['3.12']
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v5
- name: Install uv and set the python version
uses: astral-sh/setup-uv@v5
uses: astral-sh/setup-uv@v6
with:
python-version: ${{ matrix.python-version }}
enable-cache: true
@@ -25,10 +25,10 @@ jobs:
key: pre-commit|${{ env.PY }}|${{ hashFiles('.pre-commit-config.yaml') }}
- name: Install dependencies
run: uv sync --frozen --all-extras --no-extra cu124 --no-extra flash-attn
run: uv sync --frozen --all-extras --no-extra flash-attn
- name: Run styling check
run: pre-commit run --all-files
run: uv run pre-commit run --all-files
build-package:
uses: ./.github/workflows/job-build.yml
@@ -47,21 +47,22 @@ jobs:
name: python-package-distributions
path: dist/
- name: Install uv and set the python version
uses: astral-sh/setup-uv@v5
uses: astral-sh/setup-uv@v6
with:
python-version: ${{ matrix.python-version }}
enable-cache: true
- name: Create virtual environment
run: uv venv
- name: Install package
run: uv pip install dist/*.whl
- name: Create the server
run: python -c 'from docling_serve.app import create_app; create_app()'
markdown-lint:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: markdownlint-cli2-action
uses: DavidAnson/markdownlint-cli2-action@v16
with:
globs: "**/*.md"
run: .venv/bin/python -c 'from docling_serve.app import create_app; create_app()'
# markdown-lint:
# runs-on: ubuntu-latest
# steps:
# - uses: actions/checkout@v5
# - name: markdownlint-cli2-action
# uses: DavidAnson/markdownlint-cli2-action@v16
# with:
# globs: "**/*.md"

View File

@@ -53,7 +53,7 @@ jobs:
df -h
- name: Check out the repo
uses: actions/checkout@v4
uses: actions/checkout@v5
- name: Log in to the GHCR container image registry
if: ${{ inputs.publish }}
@@ -88,19 +88,115 @@ jobs:
with:
images: ${{ env.GHCR_REGISTRY }}/${{ inputs.ghcr_image_name }}
# # Local test
# - name: Set metadata outputs for local testing ## comment out Free up space, Log in to cr, Cache Docker, Extract metadata, and quay blocks and run act
# id: ghcr_meta
# run: |
# echo "tags=ghcr.io/docling-project/docling-serve:pr-123" >> $GITHUB_OUTPUT
# echo "labels=org.opencontainers.image.source=https://github.com/docling-project/docling-serve" >> $GITHUB_OUTPUT
- name: Build and push image to ghcr.io
id: ghcr_push
uses: docker/build-push-action@v5
uses: docker/build-push-action@v6
with:
context: .
push: ${{ inputs.publish }}
push: ${{ inputs.publish }} # set 'false' for local test
tags: ${{ steps.ghcr_meta.outputs.tags }}
labels: ${{ steps.ghcr_meta.outputs.labels }}
platforms: ${{ inputs.platforms}}
platforms: ${{ inputs.platforms }}
cache-from: type=gha
cache-to: type=gha,mode=max
file: Containerfile
build-args: ${{ inputs.build_args }}
pull: true
##
## This stage runs after the build, so it leverages all build cache
##
- name: Export built image for testing
id: ghcr_export_built_image
uses: docker/build-push-action@v6
with:
context: .
push: false
load: true
tags: ${{ env.GHCR_REGISTRY }}/${{ inputs.ghcr_image_name }}:${{ github.sha }}-test
labels: |
org.opencontainers.image.title=docling-serve
org.opencontainers.image.test=true
platforms: linux/amd64 # when 'load' is true, we can't use a list ${{ inputs.platforms }}
cache-from: type=gha
cache-to: type=gha,mode=max
file: Containerfile
build-args: ${{ inputs.build_args }}
- name: Test image
if: steps.ghcr_export_built_image.outcome == 'success'
run: |
set -e
IMAGE_TAG="${{ env.GHCR_REGISTRY }}/${{ inputs.ghcr_image_name }}:${{ github.sha }}-test"
echo "Testing local image: $IMAGE_TAG"
# Remove existing container if any
docker rm -f docling-serve-test-container 2>/dev/null || true
echo "Starting container..."
docker run -d -p 5001:5001 --name docling-serve-test-container "$IMAGE_TAG"
echo "Waiting 15s for container to boot..."
sleep 15
# Health check
echo "Checking service health..."
for i in {1..20}; do
HEALTH_RESPONSE=$(curl -s http://localhost:5001/health || true)
echo "Health check response [$i]: $HEALTH_RESPONSE"
if echo "$HEALTH_RESPONSE" | grep -q '"status":"ok"'; then
echo "Service is healthy!"
# Install pytest and dependencies
echo "Installing pytest and dependencies..."
pip install uv
uv venv --allow-existing
source .venv/bin/activate
uv sync --all-extras --no-extra flash-attn
# Run pytest tests
echo "Running tests..."
# Test import
python -c 'from docling_serve.app import create_app; create_app()'
# Run pytest and check result directly
if ! pytest -sv -k "test_convert_url" tests/test_1-url-async.py \
--disable-warnings; then
echo "Tests failed!"
docker logs docling-serve-test-container
docker rm -f docling-serve-test-container
exit 1
fi
echo "Tests passed successfully!"
break
else
echo "Waiting for service... [$i/20]"
sleep 3
fi
done
# Final health check if service didn't pass earlier
if ! echo "$HEALTH_RESPONSE" | grep -q '"status":"ok"'; then
echo "Service did not become healthy in time."
docker logs docling-serve-test-container
docker rm -f docling-serve-test-container
exit 1
fi
# Cleanup
echo "Cleaning up test container..."
docker rm -f docling-serve-test-container
echo "Cleaning up test image..."
docker rmi "$IMAGE_TAG"
- name: Generate artifact attestation
if: ${{ inputs.publish }}
@@ -120,7 +216,7 @@ jobs:
- name: Build and push image to quay.io
if: ${{ inputs.publish }}
# id: push-serve-cpu-quay
uses: docker/build-push-action@v5
uses: docker/build-push-action@v6
with:
context: .
push: ${{ inputs.publish }}
@@ -131,11 +227,8 @@ jobs:
cache-to: type=gha,mode=max
file: Containerfile
build-args: ${{ inputs.build_args }}
# - name: Inspect the image details
# run: |
# echo "${{ steps.ghcr_push.outputs.metadata }}"
pull: true
- name: Remove Local Docker Images
- name: Remove local Docker images
run: |
docker image prune -af

5
.gitignore vendored
View File

@@ -444,3 +444,8 @@ pip-selfcheck.json
# Makefile
.action-lint
.markdown-lint
cookies.txt
# Examples
/examples/splitted_pdf/*

View File

@@ -7,12 +7,12 @@ repos:
- id: ruff-format
name: "Ruff formatter"
args: [--config=pyproject.toml]
files: '^(docling_serve|tests).*\.(py|ipynb)$'
files: '^(docling_serve|tests|examples).*\.(py|ipynb)$'
# Run the Ruff linter.
- id: ruff
name: "Ruff linter"
args: [--exit-non-zero-on-fix, --fix, --config=pyproject.toml]
files: '^(docling_serve|tests).*\.(py|ipynb)$'
files: '^(docling_serve|tests|examples).*\.(py|ipynb)$'
- repo: local
hooks:
- id: system
@@ -21,8 +21,19 @@ repos:
pass_filenames: false
language: system
files: '\.py$'
- repo: https://github.com/errata-ai/vale
rev: v3.12.0 # Use latest stable version
hooks:
- id: vale
name: vale sync
pass_filenames: false
args: [sync, "--config=.github/vale.ini"]
- id: vale
name: Spell and Style Check with Vale
args: ["--config=.github/vale.ini"]
files: \.md$
- repo: https://github.com/astral-sh/uv-pre-commit
# uv version.
rev: 0.6.1
# uv version, https://github.com/astral-sh/uv-pre-commit/releases
rev: 0.8.19
hooks:
- id: uv-lock

View File

@@ -1,3 +1,251 @@
## [v1.6.0](https://github.com/docling-project/docling-serve/releases/tag/v1.6.0) - 2025-10-03
### Feature
* Pin new version of jobkit with granite-docling and connectors ([#391](https://github.com/docling-project/docling-serve/issues/391)) ([`0595d31`](https://github.com/docling-project/docling-serve/commit/0595d31d5b357553426215ca6771796a47e41324))
### Fix
* Update locked dependencies ([#392](https://github.com/docling-project/docling-serve/issues/392)) ([`45f0f3c`](https://github.com/docling-project/docling-serve/commit/45f0f3c8f95d418ac30e3744d27d02a63f9e4490))
* **UI:** Allow both lowercase and uppercase extensions ([#386](https://github.com/docling-project/docling-serve/issues/386)) ([`8b22a39`](https://github.com/docling-project/docling-serve/commit/8b22a391418d22c1a4d706f880341f28702057b5))
* Correctly raise HTTPException for Gateway Timeout ([#382](https://github.com/docling-project/docling-serve/issues/382)) ([`d4eac05`](https://github.com/docling-project/docling-serve/commit/d4eac053f9ce0a60f9070127335bdd56e193d7fa))
* Pinning of higher version of dependencies to fix potential security issues ([#363](https://github.com/docling-project/docling-serve/issues/363)) ([`ba61af2`](https://github.com/docling-project/docling-serve/commit/ba61af23591eff200481aa2e532cf7d0701f0ea4))
### Documentation
* Fix docs for websocket breaking condition ([#390](https://github.com/docling-project/docling-serve/issues/390)) ([`f6b5f0e`](https://github.com/docling-project/docling-serve/commit/f6b5f0e06354d2db7d03d274b114499e3407dccf))
### Docling libraries included in this release:
- docling 2.55.1
- docling-core 2.48.4
- docling-ibm-models 3.9.1
- docling-jobkit 1.6.0
- docling-mcp 1.3.2
- docling-parse 4.5.0
- docling-serve 1.6.0
## [v1.5.1](https://github.com/docling-project/docling-serve/releases/tag/v1.5.1) - 2025-09-17
### Fix
* Remove old dependencies, fixes in docling-parse and more minor dependencies upgrade ([#362](https://github.com/docling-project/docling-serve/issues/362)) ([`513ae0c`](https://github.com/docling-project/docling-serve/commit/513ae0c119b66d3b17cf9a5d371a0f7971f43be7))
* Updates rapidocr deps ([#361](https://github.com/docling-project/docling-serve/issues/361)) ([`bde0406`](https://github.com/docling-project/docling-serve/commit/bde040661fb65c67699326cd6281c0e6232e26f2))
### Docling libraries included in this release:
- docling 2.52.0
- docling-core 2.48.1
- docling-ibm-models 3.9.1
- docling-jobkit 1.5.0
- docling-mcp 1.2.0
- docling-parse 4.5.0
- docling-serve 1.5.1
## [v1.5.0](https://github.com/docling-project/docling-serve/releases/tag/v1.5.0) - 2025-09-09
### Feature
* Add chunking endpoints ([#353](https://github.com/docling-project/docling-serve/issues/353)) ([`9d6def0`](https://github.com/docling-project/docling-serve/commit/9d6def0ec8b1804ad31aa71defa17658d73d29a1))
### Docling libraries included in this release:
- docling 2.46.0
- docling 2.51.0
- docling-core 2.47.0
- docling-ibm-models 3.9.1
- docling-jobkit 1.5.0
- docling-mcp 1.2.0
- docling-parse 4.4.0
- docling-serve 1.5.0
## [v1.4.1](https://github.com/docling-project/docling-serve/releases/tag/v1.4.1) - 2025-09-08
### Fix
* Trigger fix after ci fixes ([#355](https://github.com/docling-project/docling-serve/issues/355)) ([`b0360d7`](https://github.com/docling-project/docling-serve/commit/b0360d723bff202dcf44a25a3173ec1995945fc2))
### Docling libraries included in this release:
- docling 2.46.0
- docling 2.51.0
- docling-core 2.47.0
- docling-ibm-models 3.9.1
- docling-jobkit 1.4.1
- docling-mcp 1.2.0
- docling-parse 4.4.0
- docling-serve 1.4.1
## [v1.4.0](https://github.com/docling-project/docling-serve/releases/tag/v1.4.0) - 2025-09-05
### Feature
* **docling:** Perfomance improvements in parsing, new layout model, fixes in html processing ([#352](https://github.com/docling-project/docling-serve/issues/352)) ([`d64a2a9`](https://github.com/docling-project/docling-serve/commit/d64a2a974a276c7ae3b105c448fd79f77a653d20))
### Fix
* Upgrade to latest docling version with fixes ([#335](https://github.com/docling-project/docling-serve/issues/335)) ([`e544947`](https://github.com/docling-project/docling-serve/commit/e5449472b2a3e71796f41c8a58c251d8229305c1))
### Documentation
* Add split processing example ([#303](https://github.com/docling-project/docling-serve/issues/303)) ([`0d4545a`](https://github.com/docling-project/docling-serve/commit/0d4545a65a5a941fc1fdefda57e39cfb1ea106ab))
* Document DOCLING_NUM_THREADS environment variable ([#341](https://github.com/docling-project/docling-serve/issues/341)) ([`27fdd7b`](https://github.com/docling-project/docling-serve/commit/27fdd7b85ab18b3eece428366f46dc5cf0995e38))
* Fix parameters typo ([#333](https://github.com/docling-project/docling-serve/issues/333)) ([`81f0a8d`](https://github.com/docling-project/docling-serve/commit/81f0a8ddf80a532042d550ae4568f891458b45e7))
* Describe how to use Docling MCP ([#332](https://github.com/docling-project/docling-serve/issues/332)) ([`a69cc86`](https://github.com/docling-project/docling-serve/commit/a69cc867f5a3fb76648803ca866d65cc3a75c6b8))
### Docling libraries included in this release:
- docling 2.46.0
- docling 2.51.0
- docling-core 2.47.0
- docling-ibm-models 3.9.1
- docling-jobkit 1.4.1
- docling-mcp 1.2.0
- docling-parse 4.4.0
- docling-serve 1.4.0
## [v1.3.1](https://github.com/docling-project/docling-serve/releases/tag/v1.3.1) - 2025-08-21
### Fix
* Configuration and performance fixes via upgrade of packages ([#328](https://github.com/docling-project/docling-serve/issues/328)) ([`f02dbc0`](https://github.com/docling-project/docling-serve/commit/f02dbc01449fe1caf3fb4a73c0a5f4adf8265faf))
### Documentation
* Fix parameter in api key docs ([#323](https://github.com/docling-project/docling-serve/issues/323)) ([`37fe022`](https://github.com/docling-project/docling-serve/commit/37fe02277b3e2358eced28e15b4360e7c82d3b43))
## [v1.3.0](https://github.com/docling-project/docling-serve/releases/tag/v1.3.0) - 2025-08-14
### Feature
* Add configuration option for apikey security ([#322](https://github.com/docling-project/docling-serve/issues/322)) ([`9a64410`](https://github.com/docling-project/docling-serve/commit/9a644105523d312431993ded8dd88e064550a5db))
* Add RQ engine ([#315](https://github.com/docling-project/docling-serve/issues/315)) ([`885f319`](https://github.com/docling-project/docling-serve/commit/885f319d3a3488a4090869560447437a4104f14e))
### Documentation
* Example of docling-serve deployment in the RQ engine mode ([#321](https://github.com/docling-project/docling-serve/issues/321)) ([`71edf41`](https://github.com/docling-project/docling-serve/commit/71edf4184960d8664ef9da20617e2d0f91793d36))
* Handling models in docling-serve ([#319](https://github.com/docling-project/docling-serve/issues/319)) ([`6e9aa8c`](https://github.com/docling-project/docling-serve/commit/6e9aa8c759220458281c7fe4c87443ac41023eee))
* Add Gradio cache usage ([#312](https://github.com/docling-project/docling-serve/issues/312)) ([`d584895`](https://github.com/docling-project/docling-serve/commit/d584895e1108d71a0f45deadcd3c669eb0a58133))
## [v1.2.2](https://github.com/docling-project/docling-serve/releases/tag/v1.2.2) - 2025-08-13
### Fix
* Update of transformers module to 4.55.1 ([#316](https://github.com/docling-project/docling-serve/issues/316)) ([`7692eb2`](https://github.com/docling-project/docling-serve/commit/7692eb26006fd4deaa021180c99e23a1b65de506))
## [v1.2.1](https://github.com/docling-project/docling-serve/releases/tag/v1.2.1) - 2025-08-13
### Fix
* Handling of vlm model options and update deps ([#314](https://github.com/docling-project/docling-serve/issues/314)) ([`8b470cb`](https://github.com/docling-project/docling-serve/commit/8b470cba8ef500c271eb84c8368c8a1a1a5a6d6a))
* Add missing response type in sync endpoints ([#309](https://github.com/docling-project/docling-serve/issues/309)) ([`8048f45`](https://github.com/docling-project/docling-serve/commit/8048f4589a91de2b2b391ab33a326efd1b29f25b))
### Documentation
* Update readme to use v1 ([#306](https://github.com/docling-project/docling-serve/issues/306)) ([`b3058e9`](https://github.com/docling-project/docling-serve/commit/b3058e91e0c56e27110eb50f22cbdd89640bf398))
* Update deployment examples to use v1 API ([#308](https://github.com/docling-project/docling-serve/issues/308)) ([`63da9ee`](https://github.com/docling-project/docling-serve/commit/63da9eedebae3ad31d04e65635e573194e413793))
* Fix typo in v1 migration instructions ([#307](https://github.com/docling-project/docling-serve/issues/307)) ([`b15dc25`](https://github.com/docling-project/docling-serve/commit/b15dc2529f78d68a475e5221c37408c3f77d8588))
## [v1.2.0](https://github.com/docling-project/docling-serve/releases/tag/v1.2.0) - 2025-08-07
### Feature
* Workers without shared models and convert params ([#304](https://github.com/docling-project/docling-serve/issues/304)) ([`db3fdb5`](https://github.com/docling-project/docling-serve/commit/db3fdb5bc1a0ae250afd420d737abc4071a7546c))
* Add rocm image build support and fix cuda ([#292](https://github.com/docling-project/docling-serve/issues/292)) ([`fd1b987`](https://github.com/docling-project/docling-serve/commit/fd1b987e8dc174f1a6013c003dde33e9acbae39a))
## [v1.1.0](https://github.com/docling-project/docling-serve/releases/tag/v1.1.0) - 2025-07-30
### Feature
* Add docling-mcp in the distribution ([#290](https://github.com/docling-project/docling-serve/issues/290)) ([`ecb1874`](https://github.com/docling-project/docling-serve/commit/ecb1874a507bef83d102e0e031e49fed34298637))
* Add 3.0 openapi endpoint ([#287](https://github.com/docling-project/docling-serve/issues/287)) ([`ec594d8`](https://github.com/docling-project/docling-serve/commit/ec594d84fe36df23e7d010a2fcf769856c43600b))
* Add new source and target ([#270](https://github.com/docling-project/docling-serve/issues/270)) ([`3771c1b`](https://github.com/docling-project/docling-serve/commit/3771c1b55403bd51966d07d8f760d5c4fbcc1760))
### Fix
* Referenced paths relative to zip root ([#289](https://github.com/docling-project/docling-serve/issues/289)) ([`1333f71`](https://github.com/docling-project/docling-serve/commit/1333f71c9c6495342b2169d574e921f828446f15))
## [v1.0.1](https://github.com/docling-project/docling-serve/releases/tag/v1.0.1) - 2025-07-21
### Fix
* Docling update v2.42.0 ([#277](https://github.com/docling-project/docling-serve/issues/277)) ([`8706706`](https://github.com/docling-project/docling-serve/commit/8706706e8797b0a06ec4baa7cf87988311be68b6))
### Documentation
* Typo in README ([#276](https://github.com/docling-project/docling-serve/issues/276)) ([`766adb2`](https://github.com/docling-project/docling-serve/commit/766adb248113c7bd5144d14b3c82929a2ad29f8e))
## [v1.0.0](https://github.com/docling-project/docling-serve/releases/tag/v1.0.0) - 2025-07-14
### Feature
* V1 api with list of sources and target ([#249](https://github.com/docling-project/docling-serve/issues/249)) ([`56e328b`](https://github.com/docling-project/docling-serve/commit/56e328baf76b4bb0476fc6ca820b52034e4f97bf))
* Use orchestrators from jobkit ([#248](https://github.com/docling-project/docling-serve/issues/248)) ([`daa924a`](https://github.com/docling-project/docling-serve/commit/daa924a77e56d063ef17347dfd8a838872a70529))
### Breaking
* v1 api with list of sources and target ([#249](https://github.com/docling-project/docling-serve/issues/249)) ([`56e328b`](https://github.com/docling-project/docling-serve/commit/56e328baf76b4bb0476fc6ca820b52034e4f97bf))
* use orchestrators from jobkit ([#248](https://github.com/docling-project/docling-serve/issues/248)) ([`daa924a`](https://github.com/docling-project/docling-serve/commit/daa924a77e56d063ef17347dfd8a838872a70529))
## [v0.16.1](https://github.com/docling-project/docling-serve/releases/tag/v0.16.1) - 2025-07-07
### Fix
* Upgrade deps including, docling v2.40.0 with locks in models init ([#264](https://github.com/docling-project/docling-serve/issues/264)) ([`bfde1a0`](https://github.com/docling-project/docling-serve/commit/bfde1a0991c2da53b72c4f131ff74fa10f6340de))
* Missing tesseract osd ([#263](https://github.com/docling-project/docling-serve/issues/263)) ([`eb3892e`](https://github.com/docling-project/docling-serve/commit/eb3892ee141eb2c941d580b095d8a266f2d2610c))
* Properly load models at boot ([#244](https://github.com/docling-project/docling-serve/issues/244)) ([`149a8cb`](https://github.com/docling-project/docling-serve/commit/149a8cb1c0a16c1e0b7d17f40b88b4d6e8f0109d))
### Documentation
* Fix typo ([#259](https://github.com/docling-project/docling-serve/issues/259)) ([`93b8471`](https://github.com/docling-project/docling-serve/commit/93b84712b2c6d180908a197847b52b217a7ff05f))
* Change the doc example ([#258](https://github.com/docling-project/docling-serve/issues/258)) ([`c45b937`](https://github.com/docling-project/docling-serve/commit/c45b93706466a073ab4a5c75aa8a267110873e26))
* Update typo ([#247](https://github.com/docling-project/docling-serve/issues/247)) ([`50e431f`](https://github.com/docling-project/docling-serve/commit/50e431f30fbffa33f43727417fe746d20cbb9d6b))
## [v0.16.0](https://github.com/docling-project/docling-serve/releases/tag/v0.16.0) - 2025-06-25
### Feature
* Package updates and more cuda images ([#229](https://github.com/docling-project/docling-serve/issues/229)) ([`30aca92`](https://github.com/docling-project/docling-serve/commit/30aca92298ab0d86bb4debcfcacb2dd8b9040a27))
### Documentation
* Update example resources and improve README ([#231](https://github.com/docling-project/docling-serve/issues/231)) ([`80755a7`](https://github.com/docling-project/docling-serve/commit/80755a7d5955f7d0c53df8e558fdd852dd1f5b75))
## [v0.15.0](https://github.com/docling-project/docling-serve/releases/tag/v0.15.0) - 2025-06-17
### Feature
* Use redocs and scalar as api docs ([#228](https://github.com/docling-project/docling-serve/issues/228)) ([`873d05a`](https://github.com/docling-project/docling-serve/commit/873d05aefe141c63b9c1cf53b23b4fa8c96de05d))
### Fix
* "tesserocr" instead of "tesseract_cli" in usage docs ([#223](https://github.com/docling-project/docling-serve/issues/223)) ([`196c5ce`](https://github.com/docling-project/docling-serve/commit/196c5ce42a04d77234a4212c3d9b9772d2c2073e))
## [v0.14.0](https://github.com/docling-project/docling-serve/releases/tag/v0.14.0) - 2025-06-17
### Feature
* Read supported file extensions from docling ([#214](https://github.com/docling-project/docling-serve/issues/214)) ([`524f6a8`](https://github.com/docling-project/docling-serve/commit/524f6a8997b86d2f869ca491ec8fb40585b42ca4))
### Fix
* Typo in Headline ([#220](https://github.com/docling-project/docling-serve/issues/220)) ([`d5455b7`](https://github.com/docling-project/docling-serve/commit/d5455b7f66de39ea1f8b8927b5968d2baa23ca88))
## [v0.13.0](https://github.com/docling-project/docling-serve/releases/tag/v0.13.0) - 2025-06-04
### Feature
* Upgrade docling to 2.36 ([#212](https://github.com/docling-project/docling-serve/issues/212)) ([`ffea347`](https://github.com/docling-project/docling-serve/commit/ffea34732b24fdd438fabd6df02d3d9ce66b4534))
## [v0.12.0](https://github.com/docling-project/docling-serve/releases/tag/v0.12.0) - 2025-06-03
### Feature
* Export annotations in markdown and html (Docling upgrade) ([#202](https://github.com/docling-project/docling-serve/issues/202)) ([`c4c41f1`](https://github.com/docling-project/docling-serve/commit/c4c41f16dff83c5d2a0b8a4c625b5de19b36b7c5))
### Fix
* Processing complex params in multipart-form ([#210](https://github.com/docling-project/docling-serve/issues/210)) ([`7066f35`](https://github.com/docling-project/docling-serve/commit/7066f3520a88c07df1c80a0cc6c4339eaac4d6a7))
### Documentation
* Add openshift replicasets examples ([#209](https://github.com/docling-project/docling-serve/issues/209)) ([`6a8190c`](https://github.com/docling-project/docling-serve/commit/6a8190c315792bd1e0e2b0af310656baaa5551e5))
## [v0.11.0](https://github.com/docling-project/docling-serve/releases/tag/v0.11.0) - 2025-05-23
### Feature

View File

@@ -1,13 +1,17 @@
ARG BASE_IMAGE=quay.io/sclorg/python-312-c9s:c9s
FROM ${BASE_IMAGE}
ARG UV_IMAGE=ghcr.io/astral-sh/uv:0.8.19
USER 0
ARG UV_SYNC_EXTRA_ARGS=""
FROM ${BASE_IMAGE} AS docling-base
###################################################################################################
# OS Layer #
###################################################################################################
USER 0
RUN --mount=type=bind,source=os-packages.txt,target=/tmp/os-packages.txt \
dnf -y install --best --nodocs --setopt=install_weak_deps=False dnf-plugins-core && \
dnf config-manager --best --nodocs --setopt=install_weak_deps=False --save && \
@@ -21,16 +25,19 @@ RUN /usr/bin/fix-permissions /opt/app-root/src/.cache
ENV TESSDATA_PREFIX=/usr/share/tesseract/tessdata/
FROM ${UV_IMAGE} AS uv_stage
###################################################################################################
# Docling layer #
###################################################################################################
FROM docling-base
USER 1001
WORKDIR /opt/app-root/src
ENV \
# On container environments, always set a thread budget to avoid undesired thread congestion.
OMP_NUM_THREADS=4 \
LANG=en_US.UTF-8 \
LC_ALL=en_US.UTF-8 \
@@ -40,9 +47,9 @@ ENV \
UV_PROJECT_ENVIRONMENT=/opt/app-root \
DOCLING_SERVE_ARTIFACTS_PATH=/opt/app-root/src/.cache/docling/models
ARG UV_SYNC_EXTRA_ARGS=""
ARG UV_SYNC_EXTRA_ARGS
RUN --mount=from=ghcr.io/astral-sh/uv:0.6.1,source=/uv,target=/bin/uv \
RUN --mount=from=uv_stage,source=/uv,target=/bin/uv \
--mount=type=cache,target=/opt/app-root/src/.cache/uv,uid=1001 \
--mount=type=bind,source=uv.lock,target=uv.lock \
--mount=type=bind,source=pyproject.toml,target=pyproject.toml \
@@ -61,7 +68,8 @@ RUN echo "Downloading models..." && \
chmod -R g=u ${DOCLING_SERVE_ARTIFACTS_PATH}
COPY --chown=1001:0 ./docling_serve ./docling_serve
RUN --mount=from=ghcr.io/astral-sh/uv:0.6.1,source=/uv,target=/bin/uv \
RUN --mount=from=uv_stage,source=/uv,target=/bin/uv \
--mount=type=cache,target=/opt/app-root/src/.cache/uv,uid=1001 \
--mount=type=bind,source=uv.lock,target=uv.lock \
--mount=type=bind,source=pyproject.toml,target=pyproject.toml \

View File

@@ -1,11 +1,11 @@
# MAINTAINERS
- Christoph Auer - [@cau-git](https://github.com/cau-git)
- Michele Dolfi - [@dolfim-ibm](https://github.com/dolfim-ibm)
- Maxim Lysak - [@maxmnemonic](https://github.com/maxmnemonic)
- Nikos Livathinos - [@nikos-livathinos](https://github.com/nikos-livathinos)
- Ahmed Nassar - [@nassarofficial](https://github.com/nassarofficial)
- Panos Vagenas - [@vagenas](https://github.com/vagenas)
- Peter Staar - [@PeterStaar-IBM](https://github.com/PeterStaar-IBM)
- Christoph Auer - [`@cau-git`](https://github.com/cau-git)
- Michele Dolfi - [`@dolfim-ibm`](https://github.com/dolfim-ibm)
- Maxim Lysak - [`@maxmnemonic`](https://github.com/maxmnemonic)
- Nikos Livathinos - [`@nikos-livathinos`](https://github.com/nikos-livathinos)
- Ahmed Nassar - [`@nassarofficial`](https://github.com/nassarofficial)
- Panos Vagenas - [`@vagenas`](https://github.com/vagenas)
- Peter Staar - [`@PeterStaar-IBM`](https://github.com/PeterStaar-IBM)
Maintainers can be contacted at [deepsearch-core@zurich.ibm.com](mailto:deepsearch-core@zurich.ibm.com).

View File

@@ -26,26 +26,47 @@ md-lint-file:
$(CMD_PREFIX) touch .markdown-lint
.PHONY: docling-serve-image
docling-serve-image: Containerfile
docling-serve-image: Containerfile ## Build docling-serve container image
$(ECHO_PREFIX) printf " %-12s Containerfile\n" "[docling-serve]"
$(CMD_PREFIX) docker build --load --build-arg "UV_SYNC_EXTRA_ARGS=--no-extra cu124 --no-extra cpu" -f Containerfile -t ghcr.io/docling-project/docling-serve:$(TAG) .
$(CMD_PREFIX) docker build --load -f Containerfile -t ghcr.io/docling-project/docling-serve:$(TAG) .
$(CMD_PREFIX) docker tag ghcr.io/docling-project/docling-serve:$(TAG) ghcr.io/docling-project/docling-serve:$(BRANCH_TAG)
$(CMD_PREFIX) docker tag ghcr.io/docling-project/docling-serve:$(TAG) quay.io/docling-project/docling-serve:$(BRANCH_TAG)
.PHONY: docling-serve-cpu-image
docling-serve-cpu-image: Containerfile ## Build docling-serve "cpu only" container image
$(ECHO_PREFIX) printf " %-12s Containerfile\n" "[docling-serve CPU]"
$(CMD_PREFIX) docker build --load --build-arg "UV_SYNC_EXTRA_ARGS=--no-extra cu124 --no-extra flash-attn" -f Containerfile -t ghcr.io/docling-project/docling-serve-cpu:$(TAG) .
$(CMD_PREFIX) docker build --load --build-arg "UV_SYNC_EXTRA_ARGS=--no-group pypi --group cpu --no-extra flash-attn" -f Containerfile -t ghcr.io/docling-project/docling-serve-cpu:$(TAG) .
$(CMD_PREFIX) docker tag ghcr.io/docling-project/docling-serve-cpu:$(TAG) ghcr.io/docling-project/docling-serve-cpu:$(BRANCH_TAG)
$(CMD_PREFIX) docker tag ghcr.io/docling-project/docling-serve-cpu:$(TAG) quay.io/docling-project/docling-serve-cpu:$(BRANCH_TAG)
.PHONY: docling-serve-cu124-image
docling-serve-cu124-image: Containerfile ## Build docling-serve container image with GPU support
docling-serve-cu124-image: Containerfile ## Build docling-serve container image with CUDA 12.4 support
$(ECHO_PREFIX) printf " %-12s Containerfile\n" "[docling-serve with Cuda 12.4]"
$(CMD_PREFIX) docker build --load --build-arg "UV_SYNC_EXTRA_ARGS=--no-extra cpu" -f Containerfile --platform linux/amd64 -t ghcr.io/docling-project/docling-serve-cu124:$(TAG) .
$(CMD_PREFIX) docker build --load --build-arg "UV_SYNC_EXTRA_ARGS=--no-group pypi --group cu124" -f Containerfile --platform linux/amd64 -t ghcr.io/docling-project/docling-serve-cu124:$(TAG) .
$(CMD_PREFIX) docker tag ghcr.io/docling-project/docling-serve-cu124:$(TAG) ghcr.io/docling-project/docling-serve-cu124:$(BRANCH_TAG)
$(CMD_PREFIX) docker tag ghcr.io/docling-project/docling-serve-cu124:$(TAG) quay.io/docling-project/docling-serve-cu124:$(BRANCH_TAG)
.PHONY: docling-serve-cu126-image
docling-serve-cu126-image: Containerfile ## Build docling-serve container image with CUDA 12.6 support
$(ECHO_PREFIX) printf " %-12s Containerfile\n" "[docling-serve with Cuda 12.6]"
$(CMD_PREFIX) docker build --load --build-arg "UV_SYNC_EXTRA_ARGS=--no-group pypi --group cu126" -f Containerfile --platform linux/amd64 -t ghcr.io/docling-project/docling-serve-cu126:$(TAG) .
$(CMD_PREFIX) docker tag ghcr.io/docling-project/docling-serve-cu126:$(TAG) ghcr.io/docling-project/docling-serve-cu126:$(BRANCH_TAG)
$(CMD_PREFIX) docker tag ghcr.io/docling-project/docling-serve-cu126:$(TAG) quay.io/docling-project/docling-serve-cu126:$(BRANCH_TAG)
.PHONY: docling-serve-cu128-image
docling-serve-cu128-image: Containerfile ## Build docling-serve container image with CUDA 12.8 support
$(ECHO_PREFIX) printf " %-12s Containerfile\n" "[docling-serve with Cuda 12.8]"
$(CMD_PREFIX) docker build --load --build-arg "UV_SYNC_EXTRA_ARGS=--no-group pypi --group cu128" -f Containerfile --platform linux/amd64 -t ghcr.io/docling-project/docling-serve-cu128:$(TAG) .
$(CMD_PREFIX) docker tag ghcr.io/docling-project/docling-serve-cu128:$(TAG) ghcr.io/docling-project/docling-serve-cu128:$(BRANCH_TAG)
$(CMD_PREFIX) docker tag ghcr.io/docling-project/docling-serve-cu128:$(TAG) quay.io/docling-project/docling-serve-cu128:$(BRANCH_TAG)
.PHONY: docling-serve-rocm-image
docling-serve-rocm-image: Containerfile ## Build docling-serve container image with ROCm support
$(ECHO_PREFIX) printf " %-12s Containerfile\n" "[docling-serve with ROCm 6.3]"
$(CMD_PREFIX) docker build --load --build-arg "UV_SYNC_EXTRA_ARGS=--no-group pypi --group rocm --no-extra flash-attn" -f Containerfile --platform linux/amd64 -t ghcr.io/docling-project/docling-serve-rocm:$(TAG) .
$(CMD_PREFIX) docker tag ghcr.io/docling-project/docling-serve-rocm:$(TAG) ghcr.io/docling-project/docling-serve-rocm:$(BRANCH_TAG)
$(CMD_PREFIX) docker tag ghcr.io/docling-project/docling-serve-rocm:$(TAG) quay.io/docling-project/docling-serve-rocm:$(BRANCH_TAG)
.PHONY: action-lint
action-lint: .action-lint ## Lint GitHub Action workflows
.action-lint: $(shell find .github -type f) | action-lint-file
@@ -87,9 +108,30 @@ run-docling-cpu: ## Run the docling-serve container with CPU support and assign
$(ECHO_PREFIX) printf " %-12s Running docling-serve container with CPU support on port 5001...\n" "[RUN CPU]"
$(CMD_PREFIX) docker run -it --name docling-serve-cpu -p 5001:5001 ghcr.io/docling-project/docling-serve-cpu:main
.PHONY: run-docling-gpu
run-docling-gpu: ## Run the docling-serve container with GPU support and assign a container name
.PHONY: run-docling-cu124
run-docling-cu124: ## Run the docling-serve container with GPU support and assign a container name
$(ECHO_PREFIX) printf " %-12s Removing existing container if it exists...\n" "[CLEANUP]"
$(CMD_PREFIX) docker rm -f docling-serve-gpu 2>/dev/null || true
$(ECHO_PREFIX) printf " %-12s Running docling-serve container with GPU support on port 5001...\n" "[RUN GPU]"
$(CMD_PREFIX) docker run -it --name docling-serve-gpu -p 5001:5001 ghcr.io/docling-project/docling-serve:main
$(CMD_PREFIX) docker rm -f docling-serve-cu124 2>/dev/null || true
$(ECHO_PREFIX) printf " %-12s Running docling-serve container with GPU support on port 5001...\n" "[RUN CUDA 12.4]"
$(CMD_PREFIX) docker run -it --name docling-serve-cu124 -p 5001:5001 ghcr.io/docling-project/docling-serve-cu124:main
.PHONY: run-docling-cu126
run-docling-cu126: ## Run the docling-serve container with GPU support and assign a container name
$(ECHO_PREFIX) printf " %-12s Removing existing container if it exists...\n" "[CLEANUP]"
$(CMD_PREFIX) docker rm -f docling-serve-cu126 2>/dev/null || true
$(ECHO_PREFIX) printf " %-12s Running docling-serve container with GPU support on port 5001...\n" "[RUN CUDA 12.6]"
$(CMD_PREFIX) docker run -it --name docling-serve-cu126 -p 5001:5001 ghcr.io/docling-project/docling-serve-cu126:main
.PHONY: run-docling-cu128
run-docling-cu128: ## Run the docling-serve container with GPU support and assign a container name
$(ECHO_PREFIX) printf " %-12s Removing existing container if it exists...\n" "[CLEANUP]"
$(CMD_PREFIX) docker rm -f docling-serve-cu128 2>/dev/null || true
$(ECHO_PREFIX) printf " %-12s Running docling-serve container with GPU support on port 5001...\n" "[RUN CUDA 12.8]"
$(CMD_PREFIX) docker run -it --name docling-serve-cu128 -p 5001:5001 ghcr.io/docling-project/docling-serve-cu128:main
.PHONY: run-docling-rocm
run-docling-rocm: ## Run the docling-serve container with GPU support and assign a container name
$(ECHO_PREFIX) printf " %-12s Removing existing container if it exists...\n" "[CLEANUP]"
$(CMD_PREFIX) docker rm -f docling-serve-rocm 2>/dev/null || true
$(ECHO_PREFIX) printf " %-12s Running docling-serve container with GPU support on port 5001...\n" "[RUN ROCm 6.3]"
$(CMD_PREFIX) docker run -it --name docling-serve-rocm -p 5001:5001 ghcr.io/docling-project/docling-serve-rocm:main

View File

@@ -8,69 +8,85 @@
Running [Docling](https://github.com/docling-project/docling) as an API service.
📚 [Docling Serve documentation](./docs/README.md)
- Learning how to [configure the webserver](./docs/configuration.md)
- Get to know all [runtime options](./docs/usage.md) of the API
- Explore useful [deployment examples](./docs/deployment.md)
- And more
> [!NOTE]
> **Migration to the `v1` API.** Docling Serve now has a stable v1 API. Read more on the [migration to v1](./docs/v1_migration.md).
## Getting started
Install the `docling-serve` package and run the server.
```bash
# Using the python package
pip install "docling-serve"
docling-serve run
pip install "docling-serve[ui]"
docling-serve run --enable-ui
# Using container images, e.g. with Podman
podman run -p 5001:5001 quay.io/docling-project/docling-serve
podman run -p 5001:5001 -e DOCLING_SERVE_ENABLE_UI=1 quay.io/docling-project/docling-serve
```
The server is available at
- API <http://127.0.0.1:5001>
- API documentation <http://127.0.0.1:5001/docs>
![swagger.png](img/swagger.png)
- UI playground <http://127.0.0.1:5001/ui>
![API documentation](img/fastapi-ui.png)
Try it out with a simple conversion:
```bash
curl -X 'POST' \
'http://localhost:5001/v1alpha/convert/source' \
'http://localhost:5001/v1/convert/source' \
-H 'accept: application/json' \
-H 'Content-Type: application/json' \
-d '{
"http_sources": [{"url": "https://arxiv.org/pdf/2501.17887"}]
"sources": [{"kind": "http", "url": "https://arxiv.org/pdf/2501.17887"}]
}'
```
### Container images
### Container Images
Available container images:
The following container images are available for running **Docling Serve** with different hardware and PyTorch configurations:
| Name | Description | Arch | Size |
| -----|-------------|------|------|
| [`ghcr.io/docling-project/docling-serve`](https://github.com/docling-project/docling-serve/pkgs/container/docling-serve) <br /> [`quay.io/docling-project/docling-serve`](https://quay.io/repository/docling-project/docling-serve) | Simple image for Docling Serve, installing all packages from the official pypi.org index. | `linux/amd64`, `linux/arm64` | 3.6 GB |
| [`ghcr.io/docling-project/docling-serve-cpu`](https://github.com/docling-project/docling-serve/pkgs/container/docling-serve-cpu) <br /> [`quay.io/docling-project/docling-serve-cpu`](https://quay.io/repository/docling-project/docling-serve-cpu) | Cpu-only image which installs `torch` from the pytorch cpu index. | `linux/amd64`, `linux/arm64` | 3.6 GB |
| [`ghcr.io/docling-project/docling-serve-cu124`](https://github.com/docling-project/docling-serve/pkgs/container/docling-serve-cu124) <br /> [`quay.io/docling-project/docling-serve-cu124`](https://quay.io/repository/docling-project/docling-serve-cu124) | Cuda 12.4 image which installs `torch` from the pytorch cu124 index. | `linux/amd64` | 8.7 GB |
#### 📦 Distributed Images
| Image | Description | Architectures | Size |
|-------|-------------|----------------|------|
| [`ghcr.io/docling-project/docling-serve`](https://github.com/docling-project/docling-serve/pkgs/container/docling-serve) <br> [`quay.io/docling-project/docling-serve`](https://quay.io/repository/docling-project/docling-serve) | Base image with all packages installed from the official PyPI index. | `linux/amd64`, `linux/arm64` | 4.4 GB (arm64) <br> 8.7 GB (amd64) |
| [`ghcr.io/docling-project/docling-serve-cpu`](https://github.com/docling-project/docling-serve/pkgs/container/docling-serve-cpu) <br> [`quay.io/docling-project/docling-serve-cpu`](https://quay.io/repository/docling-project/docling-serve-cpu) | CPU-only variant, using `torch` from the PyTorch CPU index. | `linux/amd64`, `linux/arm64` | 4.4 GB |
| [`ghcr.io/docling-project/docling-serve-cu126`](https://github.com/docling-project/docling-serve/pkgs/container/docling-serve-cu126) <br> [`quay.io/docling-project/docling-serve-cu126`](https://quay.io/repository/docling-project/docling-serve-cu126) | CUDA 12.6 build with `torch` from the cu126 index. | `linux/amd64` | 10.0 GB |
| [`ghcr.io/docling-project/docling-serve-cu128`](https://github.com/docling-project/docling-serve/pkgs/container/docling-serve-cu128) <br> [`quay.io/docling-project/docling-serve-cu128`](https://quay.io/repository/docling-project/docling-serve-cu128) | CUDA 12.8 build with `torch` from the cu128 index. | `linux/amd64` | 11.4 GB |
#### 🚫 Not Distributed
An image for AMD ROCm 6.3 (`docling-serve-rocm`) is supported but **not published** due to its large size.
To build it locally:
```bash
git clone --branch main git@github.com:docling-project/docling-serve.git
cd docling-serve/
make docling-serve-rocm-image
```
For deployment using Docker Compose, see [docs/deployment.md](docs/deployment.md).
Coming soon: `docling-serve-slim` images will reduce the size by skipping the model weights download.
### Demonstration UI
```bash
# Install the Python package with the extra dependencies
pip install "docling-serve[ui]"
docling-serve run --enable-ui
# Run the container image with the extra env parameters
podman run -p 5001:5001 -e DOCLING_SERVE_ENABLE_UI=true quay.io/docling-project/docling-serve
```
An easy to use UI is available at the `/ui` endpoint.
![ui-input.png](img/ui-input.png)
![Input controllers in the UI](img/ui-input.png)
![ui-output.png](img/ui-output.png)
## Documentation and advance usages
Visit the [Docling Serve documentation](./docs/README.md) for learning how to [configure the webserver](./docs/configuration.md), use all the [runtime options](./docs/usage.md) of the API and [deployment examples](./docs/deployment.md), pre-load model weights into a persistent volume [model weights on persistent volume](./docs/pre-loading-models.md)
![Output visualization in the UI](img/ui-output.png)
## Get help and support

View File

@@ -11,6 +11,7 @@ import uvicorn
from rich.console import Console
from docling_serve.settings import docling_serve_settings, uvicorn_settings
from docling_serve.storage import get_scratch
warnings.filterwarnings(action="ignore", category=UserWarning, module="pydantic|torch")
warnings.filterwarnings(action="ignore", category=FutureWarning, module="easyocr")
@@ -30,6 +31,7 @@ logger = logging.getLogger(__name__)
def version_callback(value: bool) -> None:
if value:
docling_serve_version = importlib.metadata.version("docling_serve")
docling_jobkit_version = importlib.metadata.version("docling-jobkit")
docling_version = importlib.metadata.version("docling")
docling_core_version = importlib.metadata.version("docling-core")
docling_ibm_models_version = importlib.metadata.version("docling-ibm-models")
@@ -38,6 +40,7 @@ def version_callback(value: bool) -> None:
py_impl_version = sys.implementation.cache_tag
py_lang_version = platform.python_version()
console.print(f"Docling Serve version: {docling_serve_version}")
console.print(f"Docling Jobkit version: {docling_jobkit_version}")
console.print(f"Docling version: {docling_version}")
console.print(f"Docling Core version: {docling_core_version}")
console.print(f"Docling IBM Models version: {docling_ibm_models_version}")
@@ -113,11 +116,13 @@ def _run(
protocol = "https" if run_ssl else "http"
url = f"{protocol}://{uvicorn_settings.host}:{uvicorn_settings.port}"
url_docs = f"{url}/docs"
url_scalar = f"{url}/scalar"
url_ui = f"{url}/ui"
console.print("")
console.print(f"Server started at [link={url}]{url}[/]")
console.print(f"Documentation at [link={url_docs}]{url_docs}[/]")
console.print(f"Scalar docs at [link={url_docs}]{url_scalar}[/]")
if docling_serve_settings.enable_ui:
console.print(f"UI at [link={url_ui}]{url_ui}[/]")
@@ -357,6 +362,37 @@ def run(
)
@app.command()
def rq_worker() -> Any:
"""
Run the [bold]Docling JobKit[/bold] RQ worker.
"""
from docling_jobkit.convert.manager import DoclingConverterManagerConfig
from docling_jobkit.orchestrators.rq.orchestrator import RQOrchestratorConfig
from docling_jobkit.orchestrators.rq.worker import run_worker
rq_config = RQOrchestratorConfig(
redis_url=docling_serve_settings.eng_rq_redis_url,
results_prefix=docling_serve_settings.eng_rq_results_prefix,
sub_channel=docling_serve_settings.eng_rq_sub_channel,
scratch_dir=get_scratch(),
)
cm_config = DoclingConverterManagerConfig(
artifacts_path=docling_serve_settings.artifacts_path,
options_cache_size=docling_serve_settings.options_cache_size,
enable_remote_services=docling_serve_settings.enable_remote_services,
allow_external_plugins=docling_serve_settings.allow_external_plugins,
max_num_pages=docling_serve_settings.max_num_pages,
max_file_size=docling_serve_settings.max_file_size,
)
run_worker(
rq_config=rq_config,
cm_config=cm_config,
)
def main() -> None:
app()

View File

@@ -1,4 +1,5 @@
import asyncio
import copy
import importlib.metadata
import logging
import shutil
@@ -11,11 +12,13 @@ from fastapi import (
BackgroundTasks,
Depends,
FastAPI,
Form,
HTTPException,
Query,
UploadFile,
WebSocket,
WebSocketDisconnect,
status,
)
from fastapi.middleware.cors import CORSMiddleware
from fastapi.openapi.docs import (
@@ -23,40 +26,62 @@ from fastapi.openapi.docs import (
get_swagger_ui_html,
get_swagger_ui_oauth2_redirect_html,
)
from fastapi.responses import RedirectResponse
from fastapi.responses import JSONResponse, RedirectResponse
from fastapi.staticfiles import StaticFiles
from scalar_fastapi import get_scalar_api_reference
from docling.datamodel.base_models import DocumentStream
from docling_serve.datamodel.callback import (
from docling_jobkit.datamodel.callback import (
ProgressCallbackRequest,
ProgressCallbackResponse,
)
from docling_serve.datamodel.convert import ConvertDocumentsOptions
from docling_jobkit.datamodel.chunking import (
BaseChunkerOptions,
ChunkingExportOptions,
HierarchicalChunkerOptions,
HybridChunkerOptions,
)
from docling_jobkit.datamodel.http_inputs import FileSource, HttpSource
from docling_jobkit.datamodel.s3_coords import S3Coordinates
from docling_jobkit.datamodel.task import Task, TaskSource, TaskType
from docling_jobkit.datamodel.task_targets import (
InBodyTarget,
ZipTarget,
)
from docling_jobkit.orchestrators.base_orchestrator import (
BaseOrchestrator,
ProgressInvalid,
TaskNotFoundError,
)
from docling_serve.auth import APIKeyAuth, AuthenticationResult
from docling_serve.datamodel.convert import ConvertDocumentsRequestOptions
from docling_serve.datamodel.requests import (
ConvertDocumentFileSourcesRequest,
ConvertDocumentHttpSourcesRequest,
ConvertDocumentsRequest,
FileSourceRequest,
GenericChunkDocumentsRequest,
HttpSourceRequest,
S3SourceRequest,
TargetName,
TargetRequest,
make_request_model,
)
from docling_serve.datamodel.responses import (
ChunkDocumentResponse,
ClearResponse,
ConvertDocumentResponse,
HealthCheckResponse,
MessageKind,
PresignedUrlConvertDocumentResponse,
TaskStatusResponse,
WebsocketMessage,
)
from docling_serve.datamodel.task import Task, TaskSource
from docling_serve.docling_conversion import _get_converter_from_hash
from docling_serve.engines.async_orchestrator import (
BaseAsyncOrchestrator,
ProgressInvalid,
)
from docling_serve.engines.async_orchestrator_factory import get_async_orchestrator
from docling_serve.engines.base_orchestrator import TaskNotFoundError
from docling_serve.helper_functions import FormDepends
from docling_serve.orchestrator_factory import get_async_orchestrator
from docling_serve.response_preparation import prepare_response
from docling_serve.settings import docling_serve_settings
from docling_serve.storage import get_scratch
from docling_serve.websocket_notifier import WebsocketNotifier
# Set up custom logging as we'll be intermixes with FastAPI/Uvicorn's logging
@@ -94,11 +119,15 @@ _log = logging.getLogger(__name__)
# Context manager to initialize and clean up the lifespan of the FastAPI app
@asynccontextmanager
async def lifespan(app: FastAPI):
orchestrator = get_async_orchestrator()
scratch_dir = get_scratch()
orchestrator = get_async_orchestrator()
notifier = WebsocketNotifier(orchestrator)
orchestrator.bind_notifier(notifier)
# Warm up processing cache
await orchestrator.warm_up_caches()
if docling_serve_settings.load_models_at_boot:
await orchestrator.warm_up_caches()
# Start the background queue processor
queue_task = asyncio.create_task(orchestrator.process_queue())
@@ -138,10 +167,11 @@ def create_app(): # noqa: C901
offline_docs_assets = True
_log.info("Found static assets.")
require_auth = APIKeyAuth(docling_serve_settings.api_key)
app = FastAPI(
title="Docling Serve",
docs_url=None if offline_docs_assets else "/docs",
redoc_url=None if offline_docs_assets else "/redocs",
docs_url=None if offline_docs_assets else "/swagger",
redoc_url=None if offline_docs_assets else "/docs",
lifespan=lifespan,
version=version,
)
@@ -192,7 +222,7 @@ def create_app(): # noqa: C901
name="static",
)
@app.get("/docs", include_in_schema=False)
@app.get("/swagger", include_in_schema=False)
async def custom_swagger_ui_html():
return get_swagger_ui_html(
openapi_url=app.openapi_url,
@@ -206,7 +236,7 @@ def create_app(): # noqa: C901
async def swagger_ui_redirect():
return get_swagger_ui_oauth2_redirect_html()
@app.get("/redoc", include_in_schema=False)
@app.get("/docs", include_in_schema=False)
async def redoc_html():
return get_redoc_html(
openapi_url=app.openapi_url,
@@ -214,28 +244,67 @@ def create_app(): # noqa: C901
redoc_js_url="/static/redoc.standalone.js",
)
@app.get("/scalar", include_in_schema=False)
async def scalar_html():
return get_scalar_api_reference(
openapi_url=app.openapi_url,
title=app.title,
scalar_favicon_url="https://raw.githubusercontent.com/docling-project/docling/refs/heads/main/docs/assets/logo.svg",
# hide_client_button=True, # not yet released but in main
)
########################
# Async / Sync helpers #
########################
async def _enque_source(
orchestrator: BaseAsyncOrchestrator, conversion_request: ConvertDocumentsRequest
orchestrator: BaseOrchestrator,
request: ConvertDocumentsRequest | GenericChunkDocumentsRequest,
) -> Task:
sources: list[TaskSource] = []
if isinstance(conversion_request, ConvertDocumentFileSourcesRequest):
sources.extend(conversion_request.file_sources)
if isinstance(conversion_request, ConvertDocumentHttpSourcesRequest):
sources.extend(conversion_request.http_sources)
for s in request.sources:
if isinstance(s, FileSourceRequest):
sources.append(FileSource.model_validate(s))
elif isinstance(s, HttpSourceRequest):
sources.append(HttpSource.model_validate(s))
elif isinstance(s, S3SourceRequest):
sources.append(S3Coordinates.model_validate(s))
convert_options: ConvertDocumentsRequestOptions
chunking_options: BaseChunkerOptions | None = None
chunking_export_options = ChunkingExportOptions()
task_type: TaskType
if isinstance(request, ConvertDocumentsRequest):
task_type = TaskType.CONVERT
convert_options = request.options
elif isinstance(request, GenericChunkDocumentsRequest):
task_type = TaskType.CHUNK
convert_options = request.convert_options
chunking_options = request.chunking_options
chunking_export_options.include_converted_doc = (
request.include_converted_doc
)
else:
raise RuntimeError("Uknown request type.")
task = await orchestrator.enqueue(
sources=sources, options=conversion_request.options
task_type=task_type,
sources=sources,
convert_options=convert_options,
chunking_options=chunking_options,
chunking_export_options=chunking_export_options,
target=request.target,
)
return task
async def _enque_file(
orchestrator: BaseAsyncOrchestrator,
orchestrator: BaseOrchestrator,
files: list[UploadFile],
options: ConvertDocumentsOptions,
task_type: TaskType,
convert_options: ConvertDocumentsRequestOptions,
chunking_options: BaseChunkerOptions | None,
chunking_export_options: ChunkingExportOptions | None,
target: TargetRequest,
) -> Task:
_log.info(f"Received {len(files)} files for processing.")
@@ -247,12 +316,17 @@ def create_app(): # noqa: C901
name = file.filename if file.filename else f"file{suffix}.pdf"
file_sources.append(DocumentStream(name=name, stream=buf))
task = await orchestrator.enqueue(sources=file_sources, options=options)
task = await orchestrator.enqueue(
task_type=task_type,
sources=file_sources,
convert_options=convert_options,
chunking_options=chunking_options,
chunking_export_options=chunking_export_options,
target=target,
)
return task
async def _wait_task_complete(
orchestrator: BaseAsyncOrchestrator, task_id: str
) -> bool:
async def _wait_task_complete(orchestrator: BaseOrchestrator, task_id: str) -> bool:
start_time = time.monotonic()
while True:
task = await orchestrator.task_status(task_id=task_id)
@@ -263,10 +337,79 @@ def create_app(): # noqa: C901
if elapsed_time > docling_serve_settings.max_sync_wait:
return False
##########################################
# Downgrade openapi 3.1 to 3.0.x helpers #
##########################################
def ensure_array_items(schema):
"""Ensure that array items are defined."""
if "type" in schema and schema["type"] == "array":
if "items" not in schema or schema["items"] is None:
schema["items"] = {"type": "string"}
elif isinstance(schema["items"], dict):
if "type" not in schema["items"]:
schema["items"]["type"] = "string"
def handle_discriminators(schema):
"""Ensure that discriminator properties are included in required."""
if "discriminator" in schema and "propertyName" in schema["discriminator"]:
prop = schema["discriminator"]["propertyName"]
if "properties" in schema and prop in schema["properties"]:
if "required" not in schema:
schema["required"] = []
if prop not in schema["required"]:
schema["required"].append(prop)
def handle_properties(schema):
"""Ensure that property 'kind' is included in required."""
if "properties" in schema and "kind" in schema["properties"]:
if "required" not in schema:
schema["required"] = []
if "kind" not in schema["required"]:
schema["required"].append("kind")
# Downgrade openapi 3.1 to 3.0.x
def downgrade_openapi31_to_30(spec):
def strip_unsupported(obj):
if isinstance(obj, dict):
obj = {
k: strip_unsupported(v)
for k, v in obj.items()
if k not in ("const", "examples", "prefixItems")
}
handle_discriminators(obj)
ensure_array_items(obj)
# Check for oneOf and anyOf to handle nested schemas
for key in ["oneOf", "anyOf"]:
if key in obj:
for sub in obj[key]:
handle_discriminators(sub)
ensure_array_items(sub)
return obj
elif isinstance(obj, list):
return [strip_unsupported(i) for i in obj]
return obj
if "components" in spec and "schemas" in spec["components"]:
for schema_name, schema in spec["components"]["schemas"].items():
handle_properties(schema)
return strip_unsupported(copy.deepcopy(spec))
#############################
# API Endpoints definitions #
#############################
@app.get("/openapi-3.0.json")
def openapi_30():
spec = app.openapi()
downgraded = downgrade_openapi31_to_30(spec)
downgraded["openapi"] = "3.0.3"
return JSONResponse(downgraded)
# Favicon
@app.get("/favicon.ico", include_in_schema=False)
async def favicon():
@@ -276,7 +419,7 @@ def create_app(): # noqa: C901
response = RedirectResponse(url=logo_url)
return response
@app.get("/health")
@app.get("/health", tags=["health"])
def health() -> HealthCheckResponse:
return HealthCheckResponse()
@@ -287,8 +430,9 @@ def create_app(): # noqa: C901
# Convert a document from URL(s)
@app.post(
"/v1alpha/convert/source",
response_model=ConvertDocumentResponse,
"/v1/convert/source",
tags=["convert"],
response_model=ConvertDocumentResponse | PresignedUrlConvertDocumentResponse,
responses={
200: {
"content": {"application/zip": {}},
@@ -298,37 +442,43 @@ def create_app(): # noqa: C901
)
async def process_url(
background_tasks: BackgroundTasks,
orchestrator: Annotated[BaseAsyncOrchestrator, Depends(get_async_orchestrator)],
auth: Annotated[AuthenticationResult, Depends(require_auth)],
orchestrator: Annotated[BaseOrchestrator, Depends(get_async_orchestrator)],
conversion_request: ConvertDocumentsRequest,
):
task = await _enque_source(
orchestrator=orchestrator, conversion_request=conversion_request
orchestrator=orchestrator, request=conversion_request
)
success = await _wait_task_complete(
completed = await _wait_task_complete(
orchestrator=orchestrator, task_id=task.task_id
)
if not success:
if not completed:
# TODO: abort task!
return HTTPException(
raise HTTPException(
status_code=504,
detail=f"Conversion is taking too long. The maximum wait time is configure as DOCLING_SERVE_MAX_SYNC_WAIT={docling_serve_settings.max_sync_wait}.",
)
result = await orchestrator.task_result(
task_id=task.task_id, background_tasks=background_tasks
)
if result is None:
task_result = await orchestrator.task_result(task_id=task.task_id)
if task_result is None:
raise HTTPException(
status_code=404,
detail="Task result not found. Please wait for a completion status.",
)
return result
response = await prepare_response(
task_id=task.task_id,
task_result=task_result,
orchestrator=orchestrator,
background_tasks=background_tasks,
)
return response
# Convert a document from file(s)
@app.post(
"/v1alpha/convert/file",
response_model=ConvertDocumentResponse,
"/v1/convert/file",
tags=["convert"],
response_model=ConvertDocumentResponse | PresignedUrlConvertDocumentResponse,
responses={
200: {
"content": {"application/zip": {}},
@@ -337,53 +487,69 @@ def create_app(): # noqa: C901
)
async def process_file(
background_tasks: BackgroundTasks,
orchestrator: Annotated[BaseAsyncOrchestrator, Depends(get_async_orchestrator)],
auth: Annotated[AuthenticationResult, Depends(require_auth)],
orchestrator: Annotated[BaseOrchestrator, Depends(get_async_orchestrator)],
files: list[UploadFile],
options: Annotated[
ConvertDocumentsOptions, FormDepends(ConvertDocumentsOptions)
ConvertDocumentsRequestOptions, FormDepends(ConvertDocumentsRequestOptions)
],
target_type: Annotated[TargetName, Form()] = TargetName.INBODY,
):
target = InBodyTarget() if target_type == TargetName.INBODY else ZipTarget()
task = await _enque_file(
orchestrator=orchestrator, files=files, options=options
task_type=TaskType.CONVERT,
orchestrator=orchestrator,
files=files,
convert_options=options,
chunking_options=None,
chunking_export_options=None,
target=target,
)
success = await _wait_task_complete(
completed = await _wait_task_complete(
orchestrator=orchestrator, task_id=task.task_id
)
if not success:
if not completed:
# TODO: abort task!
return HTTPException(
raise HTTPException(
status_code=504,
detail=f"Conversion is taking too long. The maximum wait time is configure as DOCLING_SERVE_MAX_SYNC_WAIT={docling_serve_settings.max_sync_wait}.",
)
result = await orchestrator.task_result(
task_id=task.task_id, background_tasks=background_tasks
)
if result is None:
task_result = await orchestrator.task_result(task_id=task.task_id)
if task_result is None:
raise HTTPException(
status_code=404,
detail="Task result not found. Please wait for a completion status.",
)
return result
response = await prepare_response(
task_id=task.task_id,
task_result=task_result,
orchestrator=orchestrator,
background_tasks=background_tasks,
)
return response
# Convert a document from URL(s) using the async api
@app.post(
"/v1alpha/convert/source/async",
"/v1/convert/source/async",
tags=["convert"],
response_model=TaskStatusResponse,
)
async def process_url_async(
orchestrator: Annotated[BaseAsyncOrchestrator, Depends(get_async_orchestrator)],
auth: Annotated[AuthenticationResult, Depends(require_auth)],
orchestrator: Annotated[BaseOrchestrator, Depends(get_async_orchestrator)],
conversion_request: ConvertDocumentsRequest,
):
task = await _enque_source(
orchestrator=orchestrator, conversion_request=conversion_request
orchestrator=orchestrator, request=conversion_request
)
task_queue_position = await orchestrator.get_queue_position(
task_id=task.task_id
)
return TaskStatusResponse(
task_id=task.task_id,
task_type=task.task_type,
task_status=task.task_status,
task_position=task_queue_position,
task_meta=task.processing_meta,
@@ -391,40 +557,274 @@ def create_app(): # noqa: C901
# Convert a document from file(s) using the async api
@app.post(
"/v1alpha/convert/file/async",
"/v1/convert/file/async",
tags=["convert"],
response_model=TaskStatusResponse,
)
async def process_file_async(
orchestrator: Annotated[BaseAsyncOrchestrator, Depends(get_async_orchestrator)],
auth: Annotated[AuthenticationResult, Depends(require_auth)],
orchestrator: Annotated[BaseOrchestrator, Depends(get_async_orchestrator)],
background_tasks: BackgroundTasks,
files: list[UploadFile],
options: Annotated[
ConvertDocumentsOptions, FormDepends(ConvertDocumentsOptions)
ConvertDocumentsRequestOptions, FormDepends(ConvertDocumentsRequestOptions)
],
target_type: Annotated[TargetName, Form()] = TargetName.INBODY,
):
target = InBodyTarget() if target_type == TargetName.INBODY else ZipTarget()
task = await _enque_file(
orchestrator=orchestrator, files=files, options=options
task_type=TaskType.CONVERT,
orchestrator=orchestrator,
files=files,
convert_options=options,
chunking_options=None,
chunking_export_options=None,
target=target,
)
task_queue_position = await orchestrator.get_queue_position(
task_id=task.task_id
)
return TaskStatusResponse(
task_id=task.task_id,
task_type=task.task_type,
task_status=task.task_status,
task_position=task_queue_position,
task_meta=task.processing_meta,
)
# Chunking endpoints
for display_name, path_name, opt_cls in (
("HybridChunker", "hybrid", HybridChunkerOptions),
("HierarchicalChunker", "hierarchical", HierarchicalChunkerOptions),
):
req_cls = make_request_model(opt_cls)
@app.post(
f"/v1/chunk/{path_name}/source/async",
name=f"Chunk sources with {display_name} as async task",
tags=["chunk"],
response_model=TaskStatusResponse,
)
async def chunk_source_async(
background_tasks: BackgroundTasks,
auth: Annotated[AuthenticationResult, Depends(require_auth)],
orchestrator: Annotated[BaseOrchestrator, Depends(get_async_orchestrator)],
request: req_cls,
):
task = await _enque_source(orchestrator=orchestrator, request=request)
task_queue_position = await orchestrator.get_queue_position(
task_id=task.task_id
)
return TaskStatusResponse(
task_id=task.task_id,
task_type=task.task_type,
task_status=task.task_status,
task_position=task_queue_position,
task_meta=task.processing_meta,
)
@app.post(
f"/v1/chunk/{path_name}/file/async",
name=f"Chunk files with {display_name} as async task",
tags=["chunk"],
response_model=TaskStatusResponse,
)
async def chunk_file_async(
background_tasks: BackgroundTasks,
auth: Annotated[AuthenticationResult, Depends(require_auth)],
orchestrator: Annotated[BaseOrchestrator, Depends(get_async_orchestrator)],
files: list[UploadFile],
convert_options: Annotated[
ConvertDocumentsRequestOptions,
FormDepends(
ConvertDocumentsRequestOptions,
prefix="convert_",
excluded_fields=[
"to_formats",
],
),
],
chunking_options: Annotated[
opt_cls,
FormDepends(
HybridChunkerOptions,
prefix="chunking_",
excluded_fields=["chunker"],
),
],
include_converted_doc: Annotated[
bool,
Form(
description="If true, the output will include both the chunks and the converted document."
),
] = False,
target_type: Annotated[
TargetName,
Form(description="Specification for the type of output target."),
] = TargetName.INBODY,
):
target = InBodyTarget() if target_type == TargetName.INBODY else ZipTarget()
task = await _enque_file(
task_type=TaskType.CHUNK,
orchestrator=orchestrator,
files=files,
convert_options=convert_options,
chunking_options=chunking_options,
chunking_export_options=ChunkingExportOptions(
include_converted_doc=include_converted_doc
),
target=target,
)
task_queue_position = await orchestrator.get_queue_position(
task_id=task.task_id
)
return TaskStatusResponse(
task_id=task.task_id,
task_type=task.task_type,
task_status=task.task_status,
task_position=task_queue_position,
task_meta=task.processing_meta,
)
@app.post(
f"/v1/chunk/{path_name}/source",
name=f"Chunk sources with {display_name}",
tags=["chunk"],
response_model=ChunkDocumentResponse,
responses={
200: {
"content": {"application/zip": {}},
# "description": "Return the JSON item or an image.",
}
},
)
async def chunk_source(
background_tasks: BackgroundTasks,
auth: Annotated[AuthenticationResult, Depends(require_auth)],
orchestrator: Annotated[BaseOrchestrator, Depends(get_async_orchestrator)],
request: req_cls,
):
task = await _enque_source(orchestrator=orchestrator, request=request)
completed = await _wait_task_complete(
orchestrator=orchestrator, task_id=task.task_id
)
if not completed:
# TODO: abort task!
raise HTTPException(
status_code=504,
detail=f"Conversion is taking too long. The maximum wait time is configure as DOCLING_SERVE_MAX_SYNC_WAIT={docling_serve_settings.max_sync_wait}.",
)
task_result = await orchestrator.task_result(task_id=task.task_id)
if task_result is None:
raise HTTPException(
status_code=404,
detail="Task result not found. Please wait for a completion status.",
)
response = await prepare_response(
task_id=task.task_id,
task_result=task_result,
orchestrator=orchestrator,
background_tasks=background_tasks,
)
return response
@app.post(
f"/v1/chunk/{path_name}/file",
name=f"Chunk files with {display_name}",
tags=["chunk"],
response_model=ChunkDocumentResponse,
responses={
200: {
"content": {"application/zip": {}},
}
},
)
async def chunk_file(
background_tasks: BackgroundTasks,
auth: Annotated[AuthenticationResult, Depends(require_auth)],
orchestrator: Annotated[BaseOrchestrator, Depends(get_async_orchestrator)],
files: list[UploadFile],
convert_options: Annotated[
ConvertDocumentsRequestOptions,
FormDepends(
ConvertDocumentsRequestOptions,
prefix="convert_",
excluded_fields=[
"to_formats",
],
),
],
chunking_options: Annotated[
opt_cls,
FormDepends(
HybridChunkerOptions,
prefix="chunking_",
excluded_fields=["chunker"],
),
],
include_converted_doc: Annotated[
bool,
Form(
description="If true, the output will include both the chunks and the converted document."
),
] = False,
target_type: Annotated[
TargetName,
Form(description="Specification for the type of output target."),
] = TargetName.INBODY,
):
target = InBodyTarget() if target_type == TargetName.INBODY else ZipTarget()
task = await _enque_file(
task_type=TaskType.CHUNK,
orchestrator=orchestrator,
files=files,
convert_options=convert_options,
chunking_options=chunking_options,
chunking_export_options=ChunkingExportOptions(
include_converted_doc=include_converted_doc
),
target=target,
)
completed = await _wait_task_complete(
orchestrator=orchestrator, task_id=task.task_id
)
if not completed:
# TODO: abort task!
raise HTTPException(
status_code=504,
detail=f"Conversion is taking too long. The maximum wait time is configure as DOCLING_SERVE_MAX_SYNC_WAIT={docling_serve_settings.max_sync_wait}.",
)
task_result = await orchestrator.task_result(task_id=task.task_id)
if task_result is None:
raise HTTPException(
status_code=404,
detail="Task result not found. Please wait for a completion status.",
)
response = await prepare_response(
task_id=task.task_id,
task_result=task_result,
orchestrator=orchestrator,
background_tasks=background_tasks,
)
return response
# Task status poll
@app.get(
"/v1alpha/status/poll/{task_id}",
"/v1/status/poll/{task_id}",
tags=["tasks"],
response_model=TaskStatusResponse,
)
async def task_status_poll(
orchestrator: Annotated[BaseAsyncOrchestrator, Depends(get_async_orchestrator)],
auth: Annotated[AuthenticationResult, Depends(require_auth)],
orchestrator: Annotated[BaseOrchestrator, Depends(get_async_orchestrator)],
task_id: str,
wait: Annotated[
float, Query(help="Number of seconds to wait for a completed status.")
float,
Query(description="Number of seconds to wait for a completed status."),
] = 0.0,
):
try:
@@ -434,6 +834,7 @@ def create_app(): # noqa: C901
raise HTTPException(status_code=404, detail="Task not found.")
return TaskStatusResponse(
task_id=task.task_id,
task_type=task.task_type,
task_status=task.task_status,
task_position=task_queue_position,
task_meta=task.processing_meta,
@@ -441,13 +842,22 @@ def create_app(): # noqa: C901
# Task status websocket
@app.websocket(
"/v1alpha/status/ws/{task_id}",
"/v1/status/ws/{task_id}",
)
async def task_status_ws(
websocket: WebSocket,
orchestrator: Annotated[BaseAsyncOrchestrator, Depends(get_async_orchestrator)],
orchestrator: Annotated[BaseOrchestrator, Depends(get_async_orchestrator)],
task_id: str,
api_key: Annotated[str, Query()] = "",
):
if docling_serve_settings.api_key:
if api_key != docling_serve_settings.api_key:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Api key is required as ?api_key=SECRET.",
)
assert isinstance(orchestrator.notifier, WebsocketNotifier)
await websocket.accept()
if task_id not in orchestrator.tasks:
@@ -462,12 +872,13 @@ def create_app(): # noqa: C901
task = orchestrator.tasks[task_id]
# Track active WebSocket connections for this job
orchestrator.task_subscribers[task_id].add(websocket)
orchestrator.notifier.task_subscribers[task_id].add(websocket)
try:
task_queue_position = await orchestrator.get_queue_position(task_id=task_id)
task_response = TaskStatusResponse(
task_id=task.task_id,
task_type=task.task_type,
task_status=task.task_status,
task_position=task_queue_position,
task_meta=task.processing_meta,
@@ -483,6 +894,7 @@ def create_app(): # noqa: C901
)
task_response = TaskStatusResponse(
task_id=task.task_id,
task_type=task.task_type,
task_status=task.task_status,
task_position=task_queue_position,
task_meta=task.processing_meta,
@@ -500,12 +912,15 @@ def create_app(): # noqa: C901
_log.info(f"WebSocket disconnected for job {task_id}")
finally:
orchestrator.task_subscribers[task_id].remove(websocket)
orchestrator.notifier.task_subscribers[task_id].remove(websocket)
# Task result
@app.get(
"/v1alpha/result/{task_id}",
response_model=ConvertDocumentResponse,
"/v1/result/{task_id}",
tags=["tasks"],
response_model=ConvertDocumentResponse
| PresignedUrlConvertDocumentResponse
| ChunkDocumentResponse,
responses={
200: {
"content": {"application/zip": {}},
@@ -513,27 +928,38 @@ def create_app(): # noqa: C901
},
)
async def task_result(
orchestrator: Annotated[BaseAsyncOrchestrator, Depends(get_async_orchestrator)],
auth: Annotated[AuthenticationResult, Depends(require_auth)],
orchestrator: Annotated[BaseOrchestrator, Depends(get_async_orchestrator)],
background_tasks: BackgroundTasks,
task_id: str,
):
result = await orchestrator.task_result(
task_id=task_id, background_tasks=background_tasks
)
if result is None:
raise HTTPException(
status_code=404,
detail="Task result not found. Please wait for a completion status.",
try:
task_result = await orchestrator.task_result(task_id=task_id)
if task_result is None:
raise HTTPException(
status_code=404,
detail="Task result not found. Please wait for a completion status.",
)
response = await prepare_response(
task_id=task_id,
task_result=task_result,
orchestrator=orchestrator,
background_tasks=background_tasks,
)
return result
return response
except TaskNotFoundError:
raise HTTPException(status_code=404, detail="Task not found.")
# Update task progress
@app.post(
"/v1alpha/callback/task/progress",
"/v1/callback/task/progress",
tags=["internal"],
include_in_schema=False,
response_model=ProgressCallbackResponse,
)
async def callback_task_progress(
orchestrator: Annotated[BaseAsyncOrchestrator, Depends(get_async_orchestrator)],
auth: Annotated[AuthenticationResult, Depends(require_auth)],
orchestrator: Annotated[BaseOrchestrator, Depends(get_async_orchestrator)],
request: ProgressCallbackRequest,
):
try:
@@ -550,20 +976,26 @@ def create_app(): # noqa: C901
# Offload models
@app.get(
"/v1alpha/clear/converters",
"/v1/clear/converters",
tags=["clear"],
response_model=ClearResponse,
)
async def clear_converters():
_get_converter_from_hash.cache_clear()
async def clear_converters(
auth: Annotated[AuthenticationResult, Depends(require_auth)],
orchestrator: Annotated[BaseOrchestrator, Depends(get_async_orchestrator)],
):
await orchestrator.clear_converters()
return ClearResponse()
# Clean results
@app.get(
"/v1alpha/clear/results",
"/v1/clear/results",
tags=["clear"],
response_model=ClearResponse,
)
async def clear_results(
orchestrator: Annotated[BaseAsyncOrchestrator, Depends(get_async_orchestrator)],
auth: Annotated[AuthenticationResult, Depends(require_auth)],
orchestrator: Annotated[BaseOrchestrator, Depends(get_async_orchestrator)],
older_then: float = 3600,
):
await orchestrator.clear_results(older_than=older_then)

56
docling_serve/auth.py Normal file
View File

@@ -0,0 +1,56 @@
from typing import Any
from fastapi import HTTPException, Request, status
from fastapi.security import APIKeyHeader
from pydantic import BaseModel
class AuthenticationResult(BaseModel):
valid: bool
errors: list[str] = []
detail: Any | None = None
class APIKeyAuth(APIKeyHeader):
"""
FastAPI dependency which evaluates a status API Key.
"""
def __init__(
self,
api_key: str,
header_name: str = "X-Api-Key",
fail_on_unauthorized: bool = True,
) -> None:
self.api_key = api_key
self.header_name = header_name
super().__init__(name=self.header_name, auto_error=False)
async def _validate_api_key(self, header_api_key: str | None):
if header_api_key is None:
return AuthenticationResult(
valid=False, errors=[f"Missing header {self.header_name}."]
)
header_api_key = header_api_key.strip()
# Otherwise check the apikey
if header_api_key == self.api_key or self.api_key == "":
return AuthenticationResult(
valid=True,
detail=header_api_key,
)
else:
return AuthenticationResult(
valid=False,
errors=["The provided API Key is invalid."],
)
async def __call__(self, request: Request) -> AuthenticationResult: # type: ignore
header_api_key = await super().__call__(request=request)
result = await self._validate_api_key(header_api_key)
if self.api_key and not result.valid:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED, detail=result.detail
)
return result

View File

@@ -1,50 +0,0 @@
import enum
from typing import Annotated, Literal
from pydantic import BaseModel, Field
class ProgressKind(str, enum.Enum):
SET_NUM_DOCS = "set_num_docs"
UPDATE_PROCESSED = "update_processed"
class BaseProgress(BaseModel):
kind: ProgressKind
class ProgressSetNumDocs(BaseProgress):
kind: Literal[ProgressKind.SET_NUM_DOCS] = ProgressKind.SET_NUM_DOCS
num_docs: int
class SucceededDocsItem(BaseModel):
source: str
class FailedDocsItem(BaseModel):
source: str
error: str
class ProgressUpdateProcessed(BaseProgress):
kind: Literal[ProgressKind.UPDATE_PROCESSED] = ProgressKind.UPDATE_PROCESSED
num_processed: int
num_succeeded: int
num_failed: int
docs_succeeded: list[SucceededDocsItem]
docs_failed: list[FailedDocsItem]
class ProgressCallbackRequest(BaseModel):
task_id: str
progress: Annotated[
ProgressSetNumDocs | ProgressUpdateProcessed, Field(discriminator="kind")
]
class ProgressCallbackResponse(BaseModel):
status: Literal["ack"] = "ack"

View File

@@ -1,24 +1,13 @@
# Define the input options for the API
from typing import Annotated, Any, Optional
from typing import Annotated
from pydantic import AnyUrl, BaseModel, Field, model_validator
from typing_extensions import Self
from pydantic import Field
from docling.datamodel.base_models import InputFormat, OutputFormat
from docling.datamodel.pipeline_options import (
EasyOcrOptions,
PdfBackend,
PdfPipeline,
PictureDescriptionBaseOptions,
TableFormerMode,
TableStructureOptions,
)
from docling.datamodel.settings import (
DEFAULT_PAGE_RANGE,
PageRange,
)
from docling.models.factories import get_ocr_factory
from docling_core.types.doc import ImageRefMode
from docling_jobkit.datamodel.convert import ConvertDocumentsOptions
from docling_serve.settings import docling_serve_settings
@@ -28,150 +17,7 @@ ocr_factory = get_ocr_factory(
ocr_engines_enum = ocr_factory.get_enum()
class PictureDescriptionLocal(BaseModel):
repo_id: Annotated[
str,
Field(
description="Repository id from the Hugging Face Hub.",
examples=[
"HuggingFaceTB/SmolVLM-256M-Instruct",
"ibm-granite/granite-vision-3.2-2b",
],
),
]
prompt: Annotated[
str,
Field(
description="Prompt used when calling the vision-language model.",
examples=[
"Describe this image in a few sentences.",
"This is a figure from a document. Provide a detailed description of it.",
],
),
] = "Describe this image in a few sentences."
generation_config: Annotated[
dict[str, Any],
Field(
description="Config from https://huggingface.co/docs/transformers/en/main_classes/text_generation#transformers.GenerationConfig",
examples=[{"max_new_tokens": 200, "do_sample": False}],
),
] = {"max_new_tokens": 200, "do_sample": False}
class PictureDescriptionApi(BaseModel):
url: Annotated[
AnyUrl,
Field(
description="Endpoint which accepts openai-api compatible requests.",
examples=[
AnyUrl(
"http://localhost:8000/v1/chat/completions"
), # example of a local vllm api
AnyUrl(
"http://localhost:11434/v1/chat/completions"
), # example of ollama
],
),
]
headers: Annotated[
dict[str, str],
Field(
description="Headers used for calling the API endpoint. For example, it could include authentication headers."
),
] = {}
params: Annotated[
dict[str, Any],
Field(
description="Model parameters.",
examples=[
{ # on vllm
"model": "HuggingFaceTB/SmolVLM-256M-Instruct",
"max_completion_tokens": 200,
},
{ # on vllm
"model": "ibm-granite/granite-vision-3.2-2b",
"max_completion_tokens": 200,
},
{ # on ollama
"model": "granite3.2-vision:2b"
},
],
),
] = {}
timeout: Annotated[float, Field(description="Timeout for the API request.")] = 20
prompt: Annotated[
str,
Field(
description="Prompt used when calling the vision-language model.",
examples=[
"Describe this image in a few sentences.",
"This is a figures from a document. Provide a detailed description of it.",
],
),
] = "Describe this image in a few sentences."
class ConvertDocumentsOptions(BaseModel):
from_formats: Annotated[
list[InputFormat],
Field(
description=(
"Input format(s) to convert from. String or list of strings. "
f"Allowed values: {', '.join([v.value for v in InputFormat])}. "
"Optional, defaults to all formats."
),
examples=[[v.value for v in InputFormat]],
),
] = list(InputFormat)
to_formats: Annotated[
list[OutputFormat],
Field(
description=(
"Output format(s) to convert to. String or list of strings. "
f"Allowed values: {', '.join([v.value for v in OutputFormat])}. "
"Optional, defaults to Markdown."
),
examples=[[OutputFormat.MARKDOWN]],
),
] = [OutputFormat.MARKDOWN]
image_export_mode: Annotated[
ImageRefMode,
Field(
description=(
"Image export mode for the document (in case of JSON,"
" Markdown or HTML). "
f"Allowed values: {', '.join([v.value for v in ImageRefMode])}. "
"Optional, defaults to Embedded."
),
examples=[ImageRefMode.EMBEDDED.value],
# pattern="embedded|placeholder|referenced",
),
] = ImageRefMode.EMBEDDED
do_ocr: Annotated[
bool,
Field(
description=(
"If enabled, the bitmap content will be processed using OCR. "
"Boolean. Optional, defaults to true"
),
# examples=[True],
),
] = True
force_ocr: Annotated[
bool,
Field(
description=(
"If enabled, replace existing text with OCR-generated "
"text over content. Boolean. Optional, defaults to false."
),
# examples=[False],
),
] = False
class ConvertDocumentsRequestOptions(ConvertDocumentsOptions):
ocr_engine: Annotated[ # type: ignore
ocr_engines_enum,
Field(
@@ -184,57 +30,6 @@ class ConvertDocumentsOptions(BaseModel):
),
] = ocr_engines_enum(EasyOcrOptions.kind) # type: ignore
ocr_lang: Annotated[
Optional[list[str]],
Field(
description=(
"List of languages used by the OCR engine. "
"Note that each OCR engine has "
"different values for the language names. String or list of strings. "
"Optional, defaults to empty."
),
examples=[["fr", "de", "es", "en"]],
),
] = None
pdf_backend: Annotated[
PdfBackend,
Field(
description=(
"The PDF backend to use. String. "
f"Allowed values: {', '.join([v.value for v in PdfBackend])}. "
f"Optional, defaults to {PdfBackend.DLPARSE_V4.value}."
),
examples=[PdfBackend.DLPARSE_V4],
),
] = PdfBackend.DLPARSE_V4
table_mode: Annotated[
TableFormerMode,
Field(
description=(
"Mode to use for table structure, String. "
f"Allowed values: {', '.join([v.value for v in TableFormerMode])}. "
"Optional, defaults to fast."
),
examples=[TableStructureOptions().mode],
# pattern="fast|accurate",
),
] = TableStructureOptions().mode
pipeline: Annotated[
PdfPipeline,
Field(description="Choose the pipeline to process PDF or image files."),
] = PdfPipeline.STANDARD
page_range: Annotated[
PageRange,
Field(
description="Only convert a range of pages. The page number starts at 1.",
examples=[(1, 4)],
),
] = DEFAULT_PAGE_RANGE
document_timeout: Annotated[
float,
Field(
@@ -243,142 +38,3 @@ class ConvertDocumentsOptions(BaseModel):
le=docling_serve_settings.max_document_timeout,
),
] = docling_serve_settings.max_document_timeout
abort_on_error: Annotated[
bool,
Field(
description=(
"Abort on error if enabled. Boolean. Optional, defaults to false."
),
# examples=[False],
),
] = False
return_as_file: Annotated[
bool,
Field(
description=(
"Return the output as a zip file "
"(will happen anyway if multiple files are generated). "
"Boolean. Optional, defaults to false."
),
examples=[False],
),
] = False
do_table_structure: Annotated[
bool,
Field(
description=(
"If enabled, the table structure will be extracted. "
"Boolean. Optional, defaults to true."
),
examples=[True],
),
] = True
include_images: Annotated[
bool,
Field(
description=(
"If enabled, images will be extracted from the document. "
"Boolean. Optional, defaults to true."
),
examples=[True],
),
] = True
images_scale: Annotated[
float,
Field(
description="Scale factor for images. Float. Optional, defaults to 2.0.",
examples=[2.0],
),
] = 2.0
md_page_break_placeholder: Annotated[
str,
Field(
description="Add this placeholder betweek pages in the markdown output.",
examples=["<!-- page-break -->", ""],
),
] = ""
do_code_enrichment: Annotated[
bool,
Field(
description=(
"If enabled, perform OCR code enrichment. "
"Boolean. Optional, defaults to false."
),
examples=[False],
),
] = False
do_formula_enrichment: Annotated[
bool,
Field(
description=(
"If enabled, perform formula OCR, return LaTeX code. "
"Boolean. Optional, defaults to false."
),
examples=[False],
),
] = False
do_picture_classification: Annotated[
bool,
Field(
description=(
"If enabled, classify pictures in documents. "
"Boolean. Optional, defaults to false."
),
examples=[False],
),
] = False
do_picture_description: Annotated[
bool,
Field(
description=(
"If enabled, describe pictures in documents. "
"Boolean. Optional, defaults to false."
),
examples=[False],
),
] = False
picture_description_area_threshold: Annotated[
float,
Field(
description="Minimum percentage of the area for a picture to be processed with the models.",
examples=[PictureDescriptionBaseOptions().picture_area_threshold],
),
] = PictureDescriptionBaseOptions().picture_area_threshold
picture_description_local: Annotated[
Optional[PictureDescriptionLocal],
Field(
description="Options for running a local vision-language model in the picture description. The parameters refer to a model hosted on Hugging Face. This parameter is mutually exclusive with picture_description_api."
),
] = None
picture_description_api: Annotated[
Optional[PictureDescriptionApi],
Field(
description="API details for using a vision-language model in the picture description. This parameter is mutually exclusive with picture_description_local."
),
] = None
@model_validator(mode="after")
def picture_description_exclusivity(self) -> Self:
# Validate picture description options
if (
self.picture_description_local is not None
and self.picture_description_api is not None
):
raise ValueError(
"The parameters picture_description_local and picture_description_api are mutually exclusive, only one of them can be set."
)
return self

View File

@@ -1,13 +0,0 @@
import enum
class TaskStatus(str, enum.Enum):
SUCCESS = "success"
PENDING = "pending"
STARTED = "started"
FAILURE = "failure"
class AsyncEngine(str, enum.Enum):
LOCAL = "local"
KFP = "kfp"

View File

@@ -1,7 +0,0 @@
from pydantic import AnyUrl, BaseModel
class CallbackSpec(BaseModel):
url: AnyUrl
headers: dict[str, str] = {}
ca_cert: str = ""

View File

@@ -1,62 +1,130 @@
import base64
from io import BytesIO
from typing import Annotated, Any, Union
import enum
from functools import cache
from typing import Annotated, Generic, Literal
from pydantic import AnyHttpUrl, BaseModel, Field
from pydantic import BaseModel, Field, model_validator
from pydantic_core import PydanticCustomError
from typing_extensions import Self, TypeVar
from docling.datamodel.base_models import DocumentStream
from docling_jobkit.datamodel.chunking import (
BaseChunkerOptions,
)
from docling_jobkit.datamodel.http_inputs import FileSource, HttpSource
from docling_jobkit.datamodel.s3_coords import S3Coordinates
from docling_jobkit.datamodel.task_targets import (
InBodyTarget,
PutTarget,
S3Target,
ZipTarget,
)
from docling_serve.datamodel.convert import ConvertDocumentsOptions
from docling_serve.datamodel.convert import ConvertDocumentsRequestOptions
from docling_serve.settings import AsyncEngine, docling_serve_settings
## Sources
class DocumentsConvertBase(BaseModel):
options: ConvertDocumentsOptions = ConvertDocumentsOptions()
class FileSourceRequest(FileSource):
kind: Literal["file"] = "file"
class HttpSource(BaseModel):
url: Annotated[
AnyHttpUrl,
Field(
description="HTTP url to process",
examples=["https://arxiv.org/pdf/2206.01062"],
),
]
headers: Annotated[
dict[str, Any],
Field(
description="Additional headers used to fetch the urls, "
"e.g. authorization, agent, etc"
),
] = {}
class HttpSourceRequest(HttpSource):
kind: Literal["http"] = "http"
class FileSource(BaseModel):
base64_string: Annotated[
str,
Field(
description="Content of the file serialized in base64. "
"For example it can be obtained via "
"`base64 -w 0 /path/to/file/pdf-to-convert.pdf`."
),
]
filename: Annotated[
str,
Field(description="Filename of the uploaded document", examples=["file.pdf"]),
]
def to_document_stream(self) -> DocumentStream:
buf = BytesIO(base64.b64decode(self.base64_string))
return DocumentStream(stream=buf, name=self.filename)
class S3SourceRequest(S3Coordinates):
kind: Literal["s3"] = "s3"
class ConvertDocumentHttpSourcesRequest(DocumentsConvertBase):
http_sources: list[HttpSource]
## Multipart targets
class TargetName(str, enum.Enum):
INBODY = InBodyTarget().kind
ZIP = ZipTarget().kind
class ConvertDocumentFileSourcesRequest(DocumentsConvertBase):
file_sources: list[FileSource]
ConvertDocumentsRequest = Union[
ConvertDocumentFileSourcesRequest, ConvertDocumentHttpSourcesRequest
## Aliases
SourceRequestItem = Annotated[
FileSourceRequest | HttpSourceRequest | S3SourceRequest, Field(discriminator="kind")
]
TargetRequest = Annotated[
InBodyTarget | ZipTarget | S3Target | PutTarget,
Field(discriminator="kind"),
]
## Complete Source request
class ConvertDocumentsRequest(BaseModel):
options: ConvertDocumentsRequestOptions = ConvertDocumentsRequestOptions()
sources: list[SourceRequestItem]
target: TargetRequest = InBodyTarget()
@model_validator(mode="after")
def validate_s3_source_and_target(self) -> Self:
for source in self.sources:
if isinstance(source, S3SourceRequest):
if docling_serve_settings.eng_kind != AsyncEngine.KFP:
raise PydanticCustomError(
"error source", 'source kind "s3" requires engine kind "KFP"'
)
if self.target.kind != "s3":
raise PydanticCustomError(
"error source", 'source kind "s3" requires target kind "s3"'
)
if isinstance(self.target, S3Target):
for source in self.sources:
if isinstance(source, S3SourceRequest):
return self
raise PydanticCustomError(
"error target", 'target kind "s3" requires source kind "s3"'
)
return self
## Source chunking requests
class BaseChunkDocumentsRequest(BaseModel):
convert_options: Annotated[
ConvertDocumentsRequestOptions, Field(description="Conversion options.")
] = ConvertDocumentsRequestOptions()
sources: Annotated[
list[SourceRequestItem],
Field(description="List of input document sources to process."),
]
include_converted_doc: Annotated[
bool,
Field(
description="If true, the output will include both the chunks and the converted document."
),
] = False
target: Annotated[
TargetRequest, Field(description="Specification for the type of output target.")
] = InBodyTarget()
ChunkingOptT = TypeVar("ChunkingOptT", bound=BaseChunkerOptions)
class GenericChunkDocumentsRequest(BaseChunkDocumentsRequest, Generic[ChunkingOptT]):
chunking_options: ChunkingOptT
@cache
def make_request_model(
opt_type: type[ChunkingOptT],
) -> type[GenericChunkDocumentsRequest[ChunkingOptT]]:
"""
Dynamically create (and cache) a subclass of GenericChunkDocumentsRequest[opt_type]
with chunking_options having a default factory.
"""
return type(
f"{opt_type.__name__}DocumentsRequest",
(GenericChunkDocumentsRequest[opt_type],), # type: ignore[valid-type]
{
"__annotations__": {"chunking_options": opt_type},
"chunking_options": Field(
default_factory=opt_type, description="Options specific to the chunker."
),
},
)

View File

@@ -5,9 +5,12 @@ from pydantic import BaseModel
from docling.datamodel.document import ConversionStatus, ErrorItem
from docling.utils.profiling import ProfilingItem
from docling_core.types.doc import DoclingDocument
from docling_serve.datamodel.task_meta import TaskProcessingMeta
from docling_jobkit.datamodel.result import (
ChunkedDocumentResultItem,
ExportDocumentResponse,
ExportResult,
)
from docling_jobkit.datamodel.task_meta import TaskProcessingMeta, TaskType
# Status
@@ -19,29 +22,34 @@ class ClearResponse(BaseModel):
status: str = "ok"
class DocumentResponse(BaseModel):
filename: str
md_content: Optional[str] = None
json_content: Optional[DoclingDocument] = None
html_content: Optional[str] = None
text_content: Optional[str] = None
doctags_content: Optional[str] = None
class ConvertDocumentResponse(BaseModel):
document: DocumentResponse
document: ExportDocumentResponse
status: ConversionStatus
errors: list[ErrorItem] = []
processing_time: float
timings: dict[str, ProfilingItem] = {}
class PresignedUrlConvertDocumentResponse(BaseModel):
processing_time: float
num_converted: int
num_succeeded: int
num_failed: int
class ConvertDocumentErrorResponse(BaseModel):
status: ConversionStatus
class ChunkDocumentResponse(BaseModel):
chunks: list[ChunkedDocumentResultItem]
documents: list[ExportResult]
processing_time: float
class TaskStatusResponse(BaseModel):
task_id: str
task_type: TaskType
task_status: str
task_position: Optional[int] = None
task_meta: Optional[TaskProcessingMeta] = None

View File

@@ -1,55 +0,0 @@
import datetime
from functools import partial
from pathlib import Path
from typing import Optional, Union
from fastapi.responses import FileResponse
from pydantic import BaseModel, ConfigDict, Field
from docling.datamodel.base_models import DocumentStream
from docling_serve.datamodel.convert import ConvertDocumentsOptions
from docling_serve.datamodel.engines import TaskStatus
from docling_serve.datamodel.requests import FileSource, HttpSource
from docling_serve.datamodel.responses import ConvertDocumentResponse
from docling_serve.datamodel.task_meta import TaskProcessingMeta
TaskSource = Union[HttpSource, FileSource, DocumentStream]
class Task(BaseModel):
model_config = ConfigDict(arbitrary_types_allowed=True)
task_id: str
task_status: TaskStatus = TaskStatus.PENDING
sources: list[TaskSource] = []
options: Optional[ConvertDocumentsOptions]
result: Optional[Union[ConvertDocumentResponse, FileResponse]] = None
scratch_dir: Optional[Path] = None
processing_meta: Optional[TaskProcessingMeta] = None
created_at: datetime.datetime = Field(
default_factory=partial(datetime.datetime.now, datetime.timezone.utc)
)
started_at: Optional[datetime.datetime] = None
finished_at: Optional[datetime.datetime] = None
last_update_at: datetime.datetime = Field(
default_factory=partial(datetime.datetime.now, datetime.timezone.utc)
)
def set_status(self, status: TaskStatus):
now = datetime.datetime.now(datetime.timezone.utc)
if status == TaskStatus.STARTED and self.started_at is None:
self.started_at = now
if (
status in [TaskStatus.SUCCESS, TaskStatus.FAILURE]
and self.finished_at is None
):
self.finished_at = now
self.last_update_at = now
self.task_status = status
def is_completed(self) -> bool:
if self.task_status in [TaskStatus.SUCCESS, TaskStatus.FAILURE]:
return True
return False

View File

@@ -1,8 +0,0 @@
from pydantic import BaseModel
class TaskProcessingMeta(BaseModel):
num_docs: int
num_processed: int = 0
num_succeeded: int = 0
num_failed: int = 0

View File

@@ -1,256 +0,0 @@
import hashlib
import json
import logging
import sys
from collections.abc import Iterable, Iterator
from functools import lru_cache
from pathlib import Path
from typing import Any, Optional, Union
from fastapi import HTTPException
from docling.backend.docling_parse_backend import DoclingParseDocumentBackend
from docling.backend.docling_parse_v2_backend import DoclingParseV2DocumentBackend
from docling.backend.docling_parse_v4_backend import DoclingParseV4DocumentBackend
from docling.backend.pdf_backend import PdfDocumentBackend
from docling.backend.pypdfium2_backend import PyPdfiumDocumentBackend
from docling.datamodel.base_models import DocumentStream, InputFormat
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import (
OcrOptions,
PdfBackend,
PdfPipeline,
PdfPipelineOptions,
PictureDescriptionApiOptions,
PictureDescriptionVlmOptions,
TableFormerMode,
VlmPipelineOptions,
smoldocling_vlm_conversion_options,
smoldocling_vlm_mlx_conversion_options,
)
from docling.document_converter import DocumentConverter, FormatOption, PdfFormatOption
from docling.pipeline.vlm_pipeline import VlmPipeline
from docling_core.types.doc import ImageRefMode
from docling_serve.datamodel.convert import ConvertDocumentsOptions, ocr_factory
from docling_serve.helper_functions import _to_list_of_strings
from docling_serve.settings import docling_serve_settings
_log = logging.getLogger(__name__)
# Custom serializer for PdfFormatOption
# (model_dump_json does not work with some classes)
def _hash_pdf_format_option(pdf_format_option: PdfFormatOption) -> bytes:
data = pdf_format_option.model_dump(serialize_as_any=True)
# pipeline_options are not fully serialized by model_dump, dedicated pass
if pdf_format_option.pipeline_options:
data["pipeline_options"] = pdf_format_option.pipeline_options.model_dump(
serialize_as_any=True, mode="json"
)
# Replace `pipeline_cls` with a string representation
data["pipeline_cls"] = repr(data["pipeline_cls"])
# Replace `backend` with a string representation
data["backend"] = repr(data["backend"])
# Serialize the dictionary to JSON with sorted keys to have consistent hashes
serialized_data = json.dumps(data, sort_keys=True)
options_hash = hashlib.sha1(
serialized_data.encode(), usedforsecurity=False
).digest()
return options_hash
# Cache of DocumentConverter objects
_options_map: dict[bytes, PdfFormatOption] = {}
@lru_cache(maxsize=docling_serve_settings.options_cache_size)
def _get_converter_from_hash(options_hash: bytes) -> DocumentConverter:
pdf_format_option = _options_map[options_hash]
format_options: dict[InputFormat, FormatOption] = {
InputFormat.PDF: pdf_format_option,
InputFormat.IMAGE: pdf_format_option,
}
return DocumentConverter(format_options=format_options)
def get_converter(pdf_format_option: PdfFormatOption) -> DocumentConverter:
options_hash = _hash_pdf_format_option(pdf_format_option)
_options_map[options_hash] = pdf_format_option
return _get_converter_from_hash(options_hash)
def _parse_standard_pdf_opts(
request: ConvertDocumentsOptions, artifacts_path: Optional[Path]
) -> PdfPipelineOptions:
try:
ocr_options: OcrOptions = ocr_factory.create_options(
kind=request.ocr_engine.value, # type: ignore
force_full_page_ocr=request.force_ocr,
)
except ImportError as err:
raise HTTPException(
status_code=400,
detail="The requested OCR engine"
f" (ocr_engine={request.ocr_engine.value})" # type: ignore
" is not available on this system. Please choose another OCR engine "
"or contact your system administrator.\n"
f"{err}",
)
if request.ocr_lang is not None:
if isinstance(request.ocr_lang, str):
ocr_options.lang = _to_list_of_strings(request.ocr_lang)
else:
ocr_options.lang = request.ocr_lang
pipeline_options = PdfPipelineOptions(
artifacts_path=artifacts_path,
enable_remote_services=docling_serve_settings.enable_remote_services,
document_timeout=request.document_timeout,
do_ocr=request.do_ocr,
ocr_options=ocr_options,
do_table_structure=request.do_table_structure,
do_code_enrichment=request.do_code_enrichment,
do_formula_enrichment=request.do_formula_enrichment,
do_picture_classification=request.do_picture_classification,
do_picture_description=request.do_picture_description,
)
pipeline_options.table_structure_options.mode = TableFormerMode(request.table_mode)
if request.image_export_mode != ImageRefMode.PLACEHOLDER:
pipeline_options.generate_page_images = True
if request.image_export_mode == ImageRefMode.REFERENCED:
pipeline_options.generate_picture_images = True
if request.images_scale:
pipeline_options.images_scale = request.images_scale
if request.picture_description_local is not None:
pipeline_options.picture_description_options = (
PictureDescriptionVlmOptions.model_validate(
request.picture_description_local.model_dump()
)
)
if request.picture_description_api is not None:
pipeline_options.picture_description_options = (
PictureDescriptionApiOptions.model_validate(
request.picture_description_api.model_dump()
)
)
pipeline_options.picture_description_options.picture_area_threshold = (
request.picture_description_area_threshold
)
return pipeline_options
def _parse_backend(request: ConvertDocumentsOptions) -> type[PdfDocumentBackend]:
if request.pdf_backend == PdfBackend.DLPARSE_V1:
backend: type[PdfDocumentBackend] = DoclingParseDocumentBackend
elif request.pdf_backend == PdfBackend.DLPARSE_V2:
backend = DoclingParseV2DocumentBackend
elif request.pdf_backend == PdfBackend.DLPARSE_V4:
backend = DoclingParseV4DocumentBackend
elif request.pdf_backend == PdfBackend.PYPDFIUM2:
backend = PyPdfiumDocumentBackend
else:
raise RuntimeError(f"Unexpected PDF backend type {request.pdf_backend}")
return backend
def _parse_vlm_pdf_opts(
request: ConvertDocumentsOptions, artifacts_path: Optional[Path]
) -> VlmPipelineOptions:
pipeline_options = VlmPipelineOptions(
artifacts_path=artifacts_path,
document_timeout=request.document_timeout,
)
pipeline_options.vlm_options = smoldocling_vlm_conversion_options
if sys.platform == "darwin":
try:
import mlx_vlm # noqa: F401
pipeline_options.vlm_options = smoldocling_vlm_mlx_conversion_options
except ImportError:
_log.warning(
"To run SmolDocling faster, please install mlx-vlm:\n"
"pip install mlx-vlm"
)
return pipeline_options
# Computes the PDF pipeline options and returns the PdfFormatOption and its hash
def get_pdf_pipeline_opts(
request: ConvertDocumentsOptions,
) -> PdfFormatOption:
artifacts_path: Optional[Path] = None
if docling_serve_settings.artifacts_path is not None:
if str(docling_serve_settings.artifacts_path.absolute()) == "":
_log.info(
"artifacts_path is an empty path, model weights will be downloaded "
"at runtime."
)
artifacts_path = None
elif docling_serve_settings.artifacts_path.is_dir():
_log.info(
"artifacts_path is set to a valid directory. "
"No model weights will be downloaded at runtime."
)
artifacts_path = docling_serve_settings.artifacts_path
else:
_log.warning(
"artifacts_path is set to an invalid directory. "
"The system will download the model weights at runtime."
)
artifacts_path = None
else:
_log.info(
"artifacts_path is unset. "
"The system will download the model weights at runtime."
)
pipeline_options: Union[PdfPipelineOptions, VlmPipelineOptions]
if request.pipeline == PdfPipeline.STANDARD:
pipeline_options = _parse_standard_pdf_opts(request, artifacts_path)
backend = _parse_backend(request)
pdf_format_option = PdfFormatOption(
pipeline_options=pipeline_options,
backend=backend,
)
elif request.pipeline == PdfPipeline.VLM:
pipeline_options = _parse_vlm_pdf_opts(request, artifacts_path)
pdf_format_option = PdfFormatOption(
pipeline_cls=VlmPipeline, pipeline_options=pipeline_options
)
else:
raise NotImplementedError(
f"The pipeline {request.pipeline} is not implemented."
)
return pdf_format_option
def convert_documents(
sources: Iterable[Union[Path, str, DocumentStream]],
options: ConvertDocumentsOptions,
headers: Optional[dict[str, Any]] = None,
):
pdf_format_option = get_pdf_pipeline_opts(options)
converter = get_converter(pdf_format_option)
results: Iterator[ConversionResult] = converter.convert_all(
sources,
headers=headers,
page_range=options.page_range,
max_file_size=docling_serve_settings.max_file_size,
max_num_pages=docling_serve_settings.max_num_pages,
)
return results

View File

@@ -1,137 +0,0 @@
# ruff: noqa: E402, UP006, UP035
from typing import Any, Dict, List
from kfp import dsl
PYTHON_BASE_IMAGE = "python:3.12"
@dsl.component(
base_image=PYTHON_BASE_IMAGE,
packages_to_install=[
"pydantic",
"docling-serve @ git+https://github.com/docling-project/docling-serve@feat-kfp-engine",
],
pip_index_urls=["https://download.pytorch.org/whl/cpu", "https://pypi.org/simple"],
)
def generate_chunks(
run_name: str,
request: Dict[str, Any],
batch_size: int,
callbacks: List[Dict[str, Any]],
) -> List[List[Dict[str, Any]]]:
from pydantic import TypeAdapter
from docling_serve.datamodel.callback import (
ProgressCallbackRequest,
ProgressSetNumDocs,
)
from docling_serve.datamodel.kfp import CallbackSpec
from docling_serve.engines.async_kfp.notify import notify_callbacks
CallbacksListType = TypeAdapter(list[CallbackSpec])
sources = request["http_sources"]
splits = [sources[i : i + batch_size] for i in range(0, len(sources), batch_size)]
total = sum(len(chunk) for chunk in splits)
payload = ProgressCallbackRequest(
task_id=run_name, progress=ProgressSetNumDocs(num_docs=total)
)
notify_callbacks(
payload=payload,
callbacks=CallbacksListType.validate_python(callbacks),
)
return splits
@dsl.component(
base_image=PYTHON_BASE_IMAGE,
packages_to_install=[
"pydantic",
"docling-serve @ git+https://github.com/docling-project/docling-serve@feat-kfp-engine",
],
pip_index_urls=["https://download.pytorch.org/whl/cpu", "https://pypi.org/simple"],
)
def convert_batch(
run_name: str,
data_splits: List[Dict[str, Any]],
request: Dict[str, Any],
callbacks: List[Dict[str, Any]],
output_path: dsl.OutputPath("Directory"), # type: ignore
):
from pathlib import Path
from pydantic import AnyUrl, TypeAdapter
from docling_serve.datamodel.callback import (
FailedDocsItem,
ProgressCallbackRequest,
ProgressUpdateProcessed,
SucceededDocsItem,
)
from docling_serve.datamodel.convert import ConvertDocumentsOptions
from docling_serve.datamodel.kfp import CallbackSpec
from docling_serve.datamodel.requests import HttpSource
from docling_serve.engines.async_kfp.notify import notify_callbacks
CallbacksListType = TypeAdapter(list[CallbackSpec])
convert_options = ConvertDocumentsOptions.model_validate(request["options"])
print(convert_options)
output_dir = Path(output_path)
output_dir.mkdir(exist_ok=True, parents=True)
docs_succeeded: list[SucceededDocsItem] = []
docs_failed: list[FailedDocsItem] = []
for source_dict in data_splits:
source = HttpSource.model_validate(source_dict)
filename = Path(str(AnyUrl(source.url).path)).name
output_filename = output_dir / filename
print(f"Writing {output_filename}")
with output_filename.open("w") as f:
f.write(source.model_dump_json())
docs_succeeded.append(SucceededDocsItem(source=source.url))
payload = ProgressCallbackRequest(
task_id=run_name,
progress=ProgressUpdateProcessed(
num_failed=len(docs_failed),
num_processed=len(docs_succeeded) + len(docs_failed),
num_succeeded=len(docs_succeeded),
docs_succeeded=docs_succeeded,
docs_failed=docs_failed,
),
)
print(payload)
notify_callbacks(
payload=payload,
callbacks=CallbacksListType.validate_python(callbacks),
)
@dsl.pipeline()
def process(
batch_size: int,
request: Dict[str, Any],
callbacks: List[Dict[str, Any]] = [],
run_name: str = "",
):
chunks_task = generate_chunks(
run_name=run_name,
request=request,
batch_size=batch_size,
callbacks=callbacks,
)
chunks_task.set_caching_options(False)
with dsl.ParallelFor(chunks_task.output, parallelism=4) as data_splits:
convert_batch(
run_name=run_name,
data_splits=data_splits,
request=request,
callbacks=callbacks,
)

View File

@@ -1,32 +0,0 @@
import ssl
import certifi
import httpx
from docling_serve.datamodel.callback import ProgressCallbackRequest
from docling_serve.datamodel.kfp import CallbackSpec
def notify_callbacks(
payload: ProgressCallbackRequest,
callbacks: list[CallbackSpec],
):
if len(callbacks) == 0:
return
for callback in callbacks:
# https://www.python-httpx.org/advanced/ssl/#configuring-client-instances
if callback.ca_cert:
ctx = ssl.create_default_context(cadata=callback.ca_cert)
else:
ctx = ssl.create_default_context(cafile=certifi.where())
try:
httpx.post(
str(callback.url),
headers=callback.headers,
json=payload.model_dump(mode="json"),
verify=ctx,
)
except httpx.HTTPError as err:
print(f"Error notifying callback {callback.url}: {err}")

View File

@@ -1,235 +0,0 @@
import datetime
import json
import logging
import uuid
from pathlib import Path
from typing import Optional
from kfp_server_api.models import V2beta1RuntimeState
from pydantic import BaseModel, TypeAdapter
from pydantic_settings import SettingsConfigDict
from docling_serve.datamodel.callback import (
ProgressCallbackRequest,
ProgressSetNumDocs,
ProgressUpdateProcessed,
)
from docling_serve.datamodel.convert import ConvertDocumentsOptions
from docling_serve.datamodel.engines import TaskStatus
from docling_serve.datamodel.kfp import CallbackSpec
from docling_serve.datamodel.requests import HttpSource
from docling_serve.datamodel.task import Task, TaskSource
from docling_serve.datamodel.task_meta import TaskProcessingMeta
from docling_serve.engines.async_kfp.kfp_pipeline import process
from docling_serve.engines.async_orchestrator import (
BaseAsyncOrchestrator,
ProgressInvalid,
)
from docling_serve.settings import docling_serve_settings
_log = logging.getLogger(__name__)
class _RunItem(BaseModel):
model_config = SettingsConfigDict(arbitrary_types_allowed=True)
run_id: str
state: str
created_at: datetime.datetime
scheduled_at: datetime.datetime
finished_at: datetime.datetime
class AsyncKfpOrchestrator(BaseAsyncOrchestrator):
def __init__(self):
super().__init__()
import kfp
kfp_endpoint = docling_serve_settings.eng_kfp_endpoint
if kfp_endpoint is None:
raise ValueError("KFP endpoint is required when using the KFP engine.")
kube_sa_token_path = Path("/run/secrets/kubernetes.io/serviceaccount/token")
kube_sa_ca_cert_path = Path(
"/run/secrets/kubernetes.io/serviceaccount/service-ca.crt"
)
ssl_ca_cert = docling_serve_settings.eng_kfp_ca_cert_path
token = docling_serve_settings.eng_kfp_token
if (
ssl_ca_cert is None
and ".svc" in kfp_endpoint.host
and kube_sa_ca_cert_path.exists()
):
ssl_ca_cert = str(kube_sa_ca_cert_path)
if token is None and kube_sa_token_path.exists():
token = kube_sa_token_path.read_text()
self._client = kfp.Client(
host=str(kfp_endpoint),
existing_token=token,
ssl_ca_cert=ssl_ca_cert,
# verify_ssl=False,
)
async def enqueue(
self, sources: list[TaskSource], options: ConvertDocumentsOptions
) -> Task:
callbacks = []
if docling_serve_settings.eng_kfp_self_callback_endpoint is not None:
headers = {}
if docling_serve_settings.eng_kfp_self_callback_token_path is not None:
token = (
docling_serve_settings.eng_kfp_self_callback_token_path.read_text()
)
headers["Authorization"] = f"Bearer {token}"
ca_cert = ""
if docling_serve_settings.eng_kfp_self_callback_ca_cert_path is not None:
ca_cert = docling_serve_settings.eng_kfp_self_callback_ca_cert_path.read_text()
callbacks.append(
CallbackSpec(
url=docling_serve_settings.eng_kfp_self_callback_endpoint,
headers=headers,
ca_cert=ca_cert,
)
)
CallbacksType = TypeAdapter(list[CallbackSpec])
SourcesListType = TypeAdapter(list[HttpSource])
http_sources = [s for s in sources if isinstance(s, HttpSource)]
# hack: since the current kfp backend is not resolving the job_id placeholder,
# we set the run_name and pass it as argument to the job itself.
run_name = f"docling-job-{uuid.uuid4()}"
kfp_run = self._client.create_run_from_pipeline_func(
process,
arguments={
"batch_size": 10,
"sources": SourcesListType.dump_python(http_sources, mode="json"),
"options": options.model_dump(mode="json"),
"callbacks": CallbacksType.dump_python(callbacks, mode="json"),
"run_name": run_name,
},
run_name=run_name,
)
task_id = kfp_run.run_id
task = Task(task_id=task_id, sources=sources, options=options)
await self.init_task_tracking(task)
return task
async def _update_task_from_run(self, task_id: str, wait: float = 0.0):
run_info = self._client.get_run(run_id=task_id)
task = await self.get_raw_task(task_id=task_id)
# RUNTIME_STATE_UNSPECIFIED = "RUNTIME_STATE_UNSPECIFIED"
# PENDING = "PENDING"
# RUNNING = "RUNNING"
# SUCCEEDED = "SUCCEEDED"
# SKIPPED = "SKIPPED"
# FAILED = "FAILED"
# CANCELING = "CANCELING"
# CANCELED = "CANCELED"
# PAUSED = "PAUSED"
if run_info.state == V2beta1RuntimeState.SUCCEEDED:
task.set_status(TaskStatus.SUCCESS)
elif run_info.state == V2beta1RuntimeState.PENDING:
task.set_status(TaskStatus.PENDING)
elif run_info.state == V2beta1RuntimeState.RUNNING:
task.set_status(TaskStatus.STARTED)
else:
task.set_status(TaskStatus.FAILURE)
async def task_status(self, task_id: str, wait: float = 0.0) -> Task:
await self._update_task_from_run(task_id=task_id, wait=wait)
return await self.get_raw_task(task_id=task_id)
async def _get_pending(self) -> list[_RunItem]:
runs: list[_RunItem] = []
next_page: Optional[str] = None
while True:
res = self._client.list_runs(
page_token=next_page,
page_size=20,
filter=json.dumps(
{
"predicates": [
{
"operation": "EQUALS",
"key": "state",
"stringValue": "PENDING",
}
]
}
),
)
if res.runs is not None:
for run in res.runs:
runs.append(
_RunItem(
run_id=run.run_id,
state=run.state,
created_at=run.created_at,
scheduled_at=run.scheduled_at,
finished_at=run.finished_at,
)
)
if res.next_page_token is None:
break
next_page = res.next_page_token
return runs
async def queue_size(self) -> int:
runs = await self._get_pending()
return len(runs)
async def get_queue_position(self, task_id: str) -> Optional[int]:
runs = await self._get_pending()
for pos, run in enumerate(runs, start=1):
if run.run_id == task_id:
return pos
return None
async def process_queue(self):
return
async def warm_up_caches(self):
return
async def _get_run_id(self, run_name: str) -> str:
res = self._client.list_runs(
filter=json.dumps(
{
"predicates": [
{
"operation": "EQUALS",
"key": "name",
"stringValue": run_name,
}
]
}
),
)
if res.runs is not None and len(res.runs) > 0:
return res.runs[0].run_id
raise RuntimeError(f"Run with {run_name=} not found.")
async def receive_task_progress(self, request: ProgressCallbackRequest):
task_id = await self._get_run_id(run_name=request.task_id)
progress = request.progress
task = await self.get_raw_task(task_id=task_id)
if isinstance(progress, ProgressSetNumDocs):
task.processing_meta = TaskProcessingMeta(num_docs=progress.num_docs)
task.task_status = TaskStatus.STARTED
elif isinstance(progress, ProgressUpdateProcessed):
if task.processing_meta is None:
raise ProgressInvalid(
"UpdateProcessed was called before setting the expected number of documents."
)
task.processing_meta.num_processed += progress.num_processed
task.processing_meta.num_succeeded += progress.num_succeeded
task.processing_meta.num_failed += progress.num_failed
task.task_status = TaskStatus.STARTED
# TODO: could be moved to BackgroundTask
await self.notify_task_subscribers(task_id=task_id)

View File

@@ -1,57 +0,0 @@
import asyncio
import logging
import uuid
from typing import Optional
from docling_serve.datamodel.convert import ConvertDocumentsOptions
from docling_serve.datamodel.task import Task, TaskSource
from docling_serve.docling_conversion import get_converter, get_pdf_pipeline_opts
from docling_serve.engines.async_local.worker import AsyncLocalWorker
from docling_serve.engines.async_orchestrator import BaseAsyncOrchestrator
from docling_serve.settings import docling_serve_settings
_log = logging.getLogger(__name__)
class AsyncLocalOrchestrator(BaseAsyncOrchestrator):
def __init__(self):
super().__init__()
self.task_queue = asyncio.Queue()
self.queue_list: list[str] = []
async def enqueue(
self, sources: list[TaskSource], options: ConvertDocumentsOptions
) -> Task:
task_id = str(uuid.uuid4())
task = Task(task_id=task_id, sources=sources, options=options)
await self.init_task_tracking(task)
self.queue_list.append(task_id)
await self.task_queue.put(task_id)
return task
async def queue_size(self) -> int:
return self.task_queue.qsize()
async def get_queue_position(self, task_id: str) -> Optional[int]:
return (
self.queue_list.index(task_id) + 1 if task_id in self.queue_list else None
)
async def process_queue(self):
# Create a pool of workers
workers = []
for i in range(docling_serve_settings.eng_loc_num_workers):
_log.debug(f"Starting worker {i}")
w = AsyncLocalWorker(i, self)
worker_task = asyncio.create_task(w.loop())
workers.append(worker_task)
# Wait for all workers to complete (they won't, as they run indefinitely)
await asyncio.gather(*workers)
_log.debug("All workers completed.")
async def warm_up_caches(self):
# Converter with default options
pdf_format_option = get_pdf_pipeline_opts(ConvertDocumentsOptions())
get_converter(pdf_format_option)

View File

@@ -1,124 +0,0 @@
import asyncio
import logging
import shutil
import time
from typing import TYPE_CHECKING, Any, Optional, Union
from fastapi.responses import FileResponse
from docling.datamodel.base_models import DocumentStream
from docling_serve.datamodel.engines import TaskStatus
from docling_serve.datamodel.requests import FileSource, HttpSource
from docling_serve.docling_conversion import convert_documents
from docling_serve.response_preparation import process_results
from docling_serve.storage import get_scratch
if TYPE_CHECKING:
from docling_serve.engines.async_local.orchestrator import AsyncLocalOrchestrator
_log = logging.getLogger(__name__)
class AsyncLocalWorker:
def __init__(self, worker_id: int, orchestrator: "AsyncLocalOrchestrator"):
self.worker_id = worker_id
self.orchestrator = orchestrator
async def loop(self):
_log.debug(f"Starting loop for worker {self.worker_id}")
while True:
task_id: str = await self.orchestrator.task_queue.get()
self.orchestrator.queue_list.remove(task_id)
if task_id not in self.orchestrator.tasks:
raise RuntimeError(f"Task {task_id} not found.")
task = self.orchestrator.tasks[task_id]
try:
task.set_status(TaskStatus.STARTED)
_log.info(f"Worker {self.worker_id} processing task {task_id}")
# Notify clients about task updates
await self.orchestrator.notify_task_subscribers(task_id)
# Notify clients about queue updates
await self.orchestrator.notify_queue_positions()
# Define a callback function to send progress updates to the client.
# TODO: send partial updates, e.g. when a document in the batch is done
def run_conversion():
convert_sources: list[Union[str, DocumentStream]] = []
headers: Optional[dict[str, Any]] = None
for source in task.sources:
if isinstance(source, DocumentStream):
convert_sources.append(source)
elif isinstance(source, FileSource):
convert_sources.append(source.to_document_stream())
elif isinstance(source, HttpSource):
convert_sources.append(str(source.url))
if headers is None and source.headers:
headers = source.headers
# Note: results are only an iterator->lazy evaluation
results = convert_documents(
sources=convert_sources,
options=task.options,
headers=headers,
)
# The real processing will happen here
work_dir = get_scratch() / task_id
response = process_results(
conversion_options=task.options,
conv_results=results,
work_dir=work_dir,
)
if work_dir.exists():
task.scratch_dir = work_dir
if not isinstance(response, FileResponse):
_log.warning(
f"Task {task_id=} produced content in {work_dir=} but the response is not a file."
)
shutil.rmtree(work_dir, ignore_errors=True)
return response
start_time = time.monotonic()
# Run the prediction in a thread to avoid blocking the event loop.
# Get the current event loop
# loop = asyncio.get_event_loop()
# future = asyncio.run_coroutine_threadsafe(
# run_conversion(),
# loop=loop
# )
# response = future.result()
# Run in a thread
response = await asyncio.to_thread(
run_conversion,
)
processing_time = time.monotonic() - start_time
task.result = response
task.sources = []
task.options = None
task.set_status(TaskStatus.SUCCESS)
_log.info(
f"Worker {self.worker_id} completed job {task_id} "
f"in {processing_time:.2f} seconds"
)
except Exception as e:
_log.error(
f"Worker {self.worker_id} failed to process job {task_id}: {e}"
)
task.set_status(TaskStatus.FAILURE)
finally:
await self.orchestrator.notify_task_subscribers(task_id)
self.orchestrator.task_queue.task_done()
_log.debug(f"Worker {self.worker_id} completely done with {task_id}")

View File

@@ -1,127 +0,0 @@
import asyncio
import datetime
import logging
import shutil
from typing import Union
from fastapi import BackgroundTasks, WebSocket
from fastapi.responses import FileResponse
from docling_serve.datamodel.callback import ProgressCallbackRequest
from docling_serve.datamodel.engines import TaskStatus
from docling_serve.datamodel.responses import (
ConvertDocumentResponse,
MessageKind,
TaskStatusResponse,
WebsocketMessage,
)
from docling_serve.datamodel.task import Task
from docling_serve.engines.base_orchestrator import (
BaseOrchestrator,
OrchestratorError,
TaskNotFoundError,
)
from docling_serve.settings import docling_serve_settings
_log = logging.getLogger(__name__)
class ProgressInvalid(OrchestratorError):
pass
class BaseAsyncOrchestrator(BaseOrchestrator):
def __init__(self):
self.tasks: dict[str, Task] = {}
self.task_subscribers: dict[str, set[WebSocket]] = {}
async def init_task_tracking(self, task: Task):
task_id = task.task_id
self.tasks[task.task_id] = task
self.task_subscribers[task_id] = set()
async def get_raw_task(self, task_id: str) -> Task:
if task_id not in self.tasks:
raise TaskNotFoundError()
return self.tasks[task_id]
async def task_status(self, task_id: str, wait: float = 0.0) -> Task:
return await self.get_raw_task(task_id=task_id)
async def task_result(
self, task_id: str, background_tasks: BackgroundTasks
) -> Union[ConvertDocumentResponse, FileResponse, None]:
try:
task = await self.get_raw_task(task_id=task_id)
if task.is_completed() and docling_serve_settings.single_use_results:
if task.scratch_dir is not None:
background_tasks.add_task(
shutil.rmtree, task.scratch_dir, ignore_errors=True
)
async def _remove_task_impl():
await asyncio.sleep(docling_serve_settings.result_removal_delay)
await self.delete_task(task_id=task.task_id)
async def _remove_task():
asyncio.create_task(_remove_task_impl()) # noqa: RUF006
background_tasks.add_task(_remove_task)
return task.result
except TaskNotFoundError:
return None
async def delete_task(self, task_id: str):
_log.info(f"Deleting {task_id=}")
if task_id in self.task_subscribers:
for websocket in self.task_subscribers[task_id]:
await websocket.close()
del self.task_subscribers[task_id]
if task_id in self.tasks:
del self.tasks[task_id]
async def clear_results(self, older_than: float = 0.0):
cutoff_time = datetime.datetime.now(datetime.timezone.utc) - datetime.timedelta(
seconds=older_than
)
tasks_to_delete = [
task_id
for task_id, task in self.tasks.items()
if task.finished_at is not None and task.finished_at < cutoff_time
]
for task_id in tasks_to_delete:
await self.delete_task(task_id=task_id)
async def notify_task_subscribers(self, task_id: str):
if task_id not in self.task_subscribers:
raise RuntimeError(f"Task {task_id} does not have a subscribers list.")
task = await self.get_raw_task(task_id=task_id)
task_queue_position = await self.get_queue_position(task_id)
msg = TaskStatusResponse(
task_id=task.task_id,
task_status=task.task_status,
task_position=task_queue_position,
task_meta=task.processing_meta,
)
for websocket in self.task_subscribers[task_id]:
await websocket.send_text(
WebsocketMessage(message=MessageKind.UPDATE, task=msg).model_dump_json()
)
if task.is_completed():
await websocket.close()
async def notify_queue_positions(self):
for task_id in self.task_subscribers.keys():
# notify only pending tasks
if self.tasks[task_id].task_status != TaskStatus.PENDING:
continue
await self.notify_task_subscribers(task_id)
async def receive_task_progress(self, request: ProgressCallbackRequest):
raise NotImplementedError()

View File

@@ -1,21 +0,0 @@
from functools import lru_cache
from docling_serve.datamodel.engines import AsyncEngine
from docling_serve.engines.async_orchestrator import BaseAsyncOrchestrator
from docling_serve.settings import docling_serve_settings
@lru_cache
def get_async_orchestrator() -> BaseAsyncOrchestrator:
if docling_serve_settings.eng_kind == AsyncEngine.LOCAL:
from docling_serve.engines.async_local.orchestrator import (
AsyncLocalOrchestrator,
)
return AsyncLocalOrchestrator()
elif docling_serve_settings.eng_kind == AsyncEngine.KFP:
from docling_serve.engines.async_kfp.orchestrator import AsyncKfpOrchestrator
return AsyncKfpOrchestrator()
raise RuntimeError(f"Engine {docling_serve_settings.eng_kind} not recognized.")

View File

@@ -1,55 +0,0 @@
from abc import ABC, abstractmethod
from typing import Optional, Union
from fastapi import BackgroundTasks
from fastapi.responses import FileResponse
from docling_serve.datamodel.convert import ConvertDocumentsOptions
from docling_serve.datamodel.responses import ConvertDocumentResponse
from docling_serve.datamodel.task import Task, TaskSource
class OrchestratorError(Exception):
pass
class TaskNotFoundError(OrchestratorError):
pass
class BaseOrchestrator(ABC):
@abstractmethod
async def enqueue(
self, sources: list[TaskSource], options: ConvertDocumentsOptions
) -> Task:
pass
@abstractmethod
async def queue_size(self) -> int:
pass
@abstractmethod
async def get_queue_position(self, task_id: str) -> Optional[int]:
pass
@abstractmethod
async def task_status(self, task_id: str, wait: float = 0.0) -> Task:
pass
@abstractmethod
async def task_result(
self, task_id: str, background_tasks: BackgroundTasks
) -> Union[ConvertDocumentResponse, FileResponse, None]:
pass
@abstractmethod
async def clear_results(self, older_than: float = 0.0):
pass
@abstractmethod
async def process_queue(self):
pass
@abstractmethod
async def warm_up_caches(self):
pass

View File

@@ -1,5 +1,6 @@
import base64
import importlib
import itertools
import json
import logging
import ssl
@@ -12,9 +13,10 @@ import certifi
import gradio as gr
import httpx
from docling.datamodel.base_models import FormatToExtensions
from docling.datamodel.pipeline_options import (
PdfBackend,
PdfPipeline,
ProcessingPipeline,
TableFormerMode,
TableStructureOptions,
)
@@ -231,15 +233,21 @@ def change_ocr_lang(ocr_engine):
return "english,chinese"
def wait_task_finish(task_id: str, return_as_file: bool):
def wait_task_finish(auth: str, task_id: str, return_as_file: bool):
conversion_sucess = False
task_finished = False
task_status = ""
headers = {}
if docling_serve_settings.api_key:
headers["X-Api-Key"] = str(auth)
ssl_ctx = get_ssl_context()
while not task_finished:
try:
response = httpx.get(
f"{get_api_endpoint()}/v1alpha/status/poll/{task_id}?wait=5",
f"{get_api_endpoint()}/v1/status/poll/{task_id}?wait=5",
headers=headers,
verify=ssl_ctx,
timeout=15,
)
@@ -262,7 +270,8 @@ def wait_task_finish(task_id: str, return_as_file: bool):
if conversion_sucess:
try:
response = httpx.get(
f"{get_api_endpoint()}/v1alpha/result/{task_id}",
f"{get_api_endpoint()}/v1/result/{task_id}",
headers=headers,
timeout=15,
verify=ssl_ctx,
)
@@ -277,6 +286,7 @@ def wait_task_finish(task_id: str, return_as_file: bool):
def process_url(
auth,
input_sources,
to_formats,
image_export_mode,
@@ -294,8 +304,11 @@ def process_url(
do_picture_classification,
do_picture_description,
):
target = {"kind": "zip" if return_as_file else "inbody"}
parameters = {
"http_sources": [{"url": source} for source in input_sources.split(",")],
"sources": [
{"kind": "http", "url": source} for source in input_sources.split(",")
],
"options": {
"to_formats": to_formats,
"image_export_mode": image_export_mode,
@@ -307,25 +320,32 @@ def process_url(
"pdf_backend": pdf_backend,
"table_mode": table_mode,
"abort_on_error": abort_on_error,
"return_as_file": return_as_file,
"do_code_enrichment": do_code_enrichment,
"do_formula_enrichment": do_formula_enrichment,
"do_picture_classification": do_picture_classification,
"do_picture_description": do_picture_description,
},
"target": target,
}
if (
not parameters["http_sources"]
or len(parameters["http_sources"]) == 0
or parameters["http_sources"][0]["url"] == ""
not parameters["sources"]
or len(parameters["sources"]) == 0
or parameters["sources"][0]["url"] == ""
):
logger.error("No input sources provided.")
raise gr.Error("No input sources provided.", print_exception=False)
headers = {}
if docling_serve_settings.api_key:
headers["X-Api-Key"] = str(auth)
print(f"{headers=}")
try:
ssl_ctx = get_ssl_context()
response = httpx.post(
f"{get_api_endpoint()}/v1alpha/convert/source/async",
f"{get_api_endpoint()}/v1/convert/source/async",
json=parameters,
headers=headers,
verify=ssl_ctx,
timeout=60,
)
@@ -349,6 +369,7 @@ def file_to_base64(file):
def process_file(
auth,
files,
to_formats,
image_export_mode,
@@ -370,11 +391,13 @@ def process_file(
logger.error("No files provided.")
raise gr.Error("No files provided.", print_exception=False)
files_data = [
{"base64_string": file_to_base64(file), "filename": file.name} for file in files
{"kind": "file", "base64_string": file_to_base64(file), "filename": file.name}
for file in files
]
target = {"kind": "zip" if return_as_file else "inbody"}
parameters = {
"file_sources": files_data,
"sources": files_data,
"options": {
"to_formats": to_formats,
"image_export_mode": image_export_mode,
@@ -392,13 +415,19 @@ def process_file(
"do_picture_classification": do_picture_classification,
"do_picture_description": do_picture_description,
},
"target": target,
}
headers = {}
if docling_serve_settings.api_key:
headers["X-Api-Key"] = str(auth)
try:
ssl_ctx = get_ssl_context()
response = httpx.post(
f"{get_api_endpoint()}/v1alpha/convert/source/async",
f"{get_api_endpoint()}/v1/convert/source/async",
json=parameters,
headers=headers,
verify=ssl_ctx,
timeout=60,
)
@@ -472,7 +501,7 @@ with gr.Blocks(
css=css,
theme=theme,
title="Docling Serve",
delete_cache=(3600, 3600), # Delete all files older than 1 hour every hour
delete_cache=(3600, 36000), # Delete all files older than 10 hour every hour
) as ui:
# Constants stored in states to be able to pass them as inputs to functions
processing_text = gr.State("Processing your document(s), please wait...")
@@ -541,23 +570,17 @@ with gr.Blocks(
with gr.Tab("Convert File"):
with gr.Row():
with gr.Column(scale=4):
raw_exts = itertools.chain.from_iterable(FormatToExtensions.values())
file_input = gr.File(
elem_id="file_input_zone",
label="Upload File",
file_types=[
".pdf",
".docx",
".pptx",
".html",
".xlsx",
".json",
".asciidoc",
".txt",
".md",
".jpg",
".jpeg",
".png",
".gif",
f".{v.lower()}"
for v in raw_exts # lowercase
]
+ [
f".{v.upper()}"
for v in raw_exts # uppercase
],
file_count="multiple",
scale=4,
@@ -566,6 +589,15 @@ with gr.Blocks(
file_process_btn = gr.Button("Process File", scale=1)
file_reset_btn = gr.Button("Reset", scale=1)
# Auth
with gr.Row(visible=bool(docling_serve_settings.api_key)):
with gr.Column():
auth = gr.Textbox(
label="Authentication",
placeholder="API Key",
type="password",
)
# Options
with gr.Accordion("Options") as options:
with gr.Row():
@@ -591,12 +623,13 @@ with gr.Blocks(
label="Image Export Mode",
value="embedded",
)
with gr.Row():
with gr.Column(scale=1, min_width=200):
pipeline = gr.Radio(
[(v.value.capitalize(), v.value) for v in PdfPipeline],
[(v.value.capitalize(), v.value) for v in ProcessingPipeline],
label="Pipeline type",
value=PdfPipeline.STANDARD.value,
value=ProcessingPipeline.STANDARD.value,
)
with gr.Row():
with gr.Column(scale=1, min_width=200):
@@ -725,6 +758,7 @@ with gr.Blocks(
).then(
process_url,
inputs=[
auth,
url_input,
to_formats,
image_export_mode,
@@ -751,7 +785,7 @@ with gr.Blocks(
outputs=[content_output, file_output],
).then(
wait_task_finish,
inputs=[task_id_rendered, return_as_file],
inputs=[auth, task_id_rendered, return_as_file],
outputs=[
output_markdown,
output_markdown_rendered,
@@ -812,6 +846,7 @@ with gr.Blocks(
).then(
process_file,
inputs=[
auth,
file_input,
to_formats,
image_export_mode,
@@ -838,7 +873,7 @@ with gr.Blocks(
outputs=[content_output, file_output],
).then(
wait_task_finish,
inputs=[task_id_rendered, return_as_file],
inputs=[auth, task_id_rendered, return_as_file],
outputs=[
output_markdown,
output_markdown_rendered,

View File

@@ -1,36 +1,103 @@
import inspect
import json
import re
from typing import Union
from typing import Union, get_args, get_origin
from fastapi import Depends, Form
from pydantic import BaseModel
from pydantic import BaseModel, TypeAdapter
def is_pydantic_model(type_):
try:
if inspect.isclass(type_) and issubclass(type_, BaseModel):
return True
origin = get_origin(type_)
if origin is Union:
args = get_args(type_)
return any(
inspect.isclass(arg) and issubclass(arg, BaseModel)
for arg in args
if arg is not type(None)
)
except Exception:
pass
return False
# Adapted from
# https://github.com/fastapi/fastapi/discussions/8971#discussioncomment-7892972
def FormDepends(cls: type[BaseModel]):
def FormDepends(
cls: type[BaseModel], prefix: str = "", excluded_fields: list[str] = []
):
new_parameters = []
for field_name, model_field in cls.model_fields.items():
if field_name in excluded_fields:
continue
annotation = model_field.annotation
description = model_field.description
default = (
Form(..., description=description, examples=model_field.examples)
if model_field.is_required()
else Form(
model_field.default,
examples=model_field.examples,
description=description,
)
)
# Flatten nested Pydantic models by accepting them as JSON strings
if is_pydantic_model(annotation):
annotation = str
default = Form(
None
if model_field.default is None
else json.dumps(model_field.default.model_dump(mode="json")),
description=description,
examples=None
if not model_field.examples
else [
json.dumps(ex.model_dump(mode="json"))
for ex in model_field.examples
],
)
new_parameters.append(
inspect.Parameter(
name=field_name,
name=f"{prefix}{field_name}",
kind=inspect.Parameter.POSITIONAL_ONLY,
default=(
Form(...)
if model_field.is_required()
else Form(model_field.default)
),
annotation=model_field.annotation,
default=default,
annotation=annotation,
)
)
async def as_form_func(**data):
return cls(**data)
newdata = {}
for field_name, model_field in cls.model_fields.items():
if field_name in excluded_fields:
continue
value = data.get(f"{prefix}{field_name}")
newdata[field_name] = value
annotation = model_field.annotation
# Parse nested models from JSON string
if value is not None and is_pydantic_model(annotation):
try:
validator = TypeAdapter(annotation)
newdata[field_name] = validator.validate_json(value)
except Exception as e:
raise ValueError(f"Invalid JSON for field '{field_name}': {e}")
return cls(**newdata)
sig = inspect.signature(as_form_func)
sig = sig.replace(parameters=new_parameters)
as_form_func.__signature__ = sig # type: ignore
return Depends(as_form_func)

View File

@@ -0,0 +1,69 @@
from functools import lru_cache
from docling_jobkit.orchestrators.base_orchestrator import BaseOrchestrator
from docling_serve.settings import AsyncEngine, docling_serve_settings
from docling_serve.storage import get_scratch
@lru_cache
def get_async_orchestrator() -> BaseOrchestrator:
if docling_serve_settings.eng_kind == AsyncEngine.LOCAL:
from docling_jobkit.convert.manager import (
DoclingConverterManager,
DoclingConverterManagerConfig,
)
from docling_jobkit.orchestrators.local.orchestrator import (
LocalOrchestrator,
LocalOrchestratorConfig,
)
local_config = LocalOrchestratorConfig(
num_workers=docling_serve_settings.eng_loc_num_workers,
shared_models=docling_serve_settings.eng_loc_share_models,
scratch_dir=get_scratch(),
)
cm_config = DoclingConverterManagerConfig(
artifacts_path=docling_serve_settings.artifacts_path,
options_cache_size=docling_serve_settings.options_cache_size,
enable_remote_services=docling_serve_settings.enable_remote_services,
allow_external_plugins=docling_serve_settings.allow_external_plugins,
max_num_pages=docling_serve_settings.max_num_pages,
max_file_size=docling_serve_settings.max_file_size,
)
cm = DoclingConverterManager(config=cm_config)
return LocalOrchestrator(config=local_config, converter_manager=cm)
elif docling_serve_settings.eng_kind == AsyncEngine.RQ:
from docling_jobkit.orchestrators.rq.orchestrator import (
RQOrchestrator,
RQOrchestratorConfig,
)
rq_config = RQOrchestratorConfig(
redis_url=docling_serve_settings.eng_rq_redis_url,
results_prefix=docling_serve_settings.eng_rq_results_prefix,
sub_channel=docling_serve_settings.eng_rq_sub_channel,
scratch_dir=get_scratch(),
)
return RQOrchestrator(config=rq_config)
elif docling_serve_settings.eng_kind == AsyncEngine.KFP:
from docling_jobkit.orchestrators.kfp.orchestrator import (
KfpOrchestrator,
KfpOrchestratorConfig,
)
kfp_config = KfpOrchestratorConfig(
endpoint=docling_serve_settings.eng_kfp_endpoint,
token=docling_serve_settings.eng_kfp_token,
ca_cert_path=docling_serve_settings.eng_kfp_ca_cert_path,
self_callback_endpoint=docling_serve_settings.eng_kfp_self_callback_endpoint,
self_callback_token_path=docling_serve_settings.eng_kfp_self_callback_token_path,
self_callback_ca_cert_path=docling_serve_settings.eng_kfp_self_callback_ca_cert_path,
)
return KfpOrchestrator(config=kfp_config)
raise RuntimeError(f"Engine {docling_serve_settings.eng_kind} not recognized.")

View File

@@ -1,232 +1,82 @@
import asyncio
import logging
import os
import shutil
import time
from collections.abc import Iterable
from pathlib import Path
from typing import Union
from fastapi import HTTPException
from fastapi.responses import FileResponse
from fastapi import BackgroundTasks, Response
from docling.datamodel.base_models import OutputFormat
from docling.datamodel.document import ConversionResult, ConversionStatus
from docling_core.types.doc import ImageRefMode
from docling_jobkit.datamodel.result import (
ChunkedDocumentResult,
DoclingTaskResult,
ExportResult,
RemoteTargetResult,
ZipArchiveResult,
)
from docling_jobkit.orchestrators.base_orchestrator import (
BaseOrchestrator,
)
from docling_serve.datamodel.convert import ConvertDocumentsOptions
from docling_serve.datamodel.responses import ConvertDocumentResponse, DocumentResponse
from docling_serve.datamodel.responses import (
ChunkDocumentResponse,
ConvertDocumentResponse,
PresignedUrlConvertDocumentResponse,
)
from docling_serve.settings import docling_serve_settings
_log = logging.getLogger(__name__)
def _export_document_as_content(
conv_res: ConversionResult,
export_json: bool,
export_html: bool,
export_md: bool,
export_txt: bool,
export_doctags: bool,
image_mode: ImageRefMode,
md_page_break_placeholder: str,
async def prepare_response(
task_id: str,
task_result: DoclingTaskResult,
orchestrator: BaseOrchestrator,
background_tasks: BackgroundTasks,
):
document = DocumentResponse(filename=conv_res.input.file.name)
if conv_res.status == ConversionStatus.SUCCESS:
new_doc = conv_res.document._make_copy_with_refmode(Path(), image_mode)
# Create the different formats
if export_json:
document.json_content = new_doc
if export_html:
document.html_content = new_doc.export_to_html(image_mode=image_mode)
if export_txt:
document.text_content = new_doc.export_to_markdown(
strict_text=True,
image_mode=image_mode,
)
if export_md:
document.md_content = new_doc.export_to_markdown(
image_mode=image_mode,
page_break_placeholder=md_page_break_placeholder or None,
)
if export_doctags:
document.doctags_content = new_doc.export_to_doctags()
elif conv_res.status == ConversionStatus.SKIPPED:
raise HTTPException(status_code=400, detail=conv_res.errors)
else:
raise HTTPException(status_code=500, detail=conv_res.errors)
return document
def _export_documents_as_files(
conv_results: Iterable[ConversionResult],
output_dir: Path,
export_json: bool,
export_html: bool,
export_md: bool,
export_txt: bool,
export_doctags: bool,
image_export_mode: ImageRefMode,
md_page_break_placeholder: str,
):
success_count = 0
failure_count = 0
for conv_res in conv_results:
if conv_res.status == ConversionStatus.SUCCESS:
success_count += 1
doc_filename = conv_res.input.file.stem
# Export JSON format:
if export_json:
fname = output_dir / f"{doc_filename}.json"
_log.info(f"writing JSON output to {fname}")
conv_res.document.save_as_json(
filename=fname, image_mode=image_export_mode
)
# Export HTML format:
if export_html:
fname = output_dir / f"{doc_filename}.html"
_log.info(f"writing HTML output to {fname}")
conv_res.document.save_as_html(
filename=fname, image_mode=image_export_mode
)
# Export Text format:
if export_txt:
fname = output_dir / f"{doc_filename}.txt"
_log.info(f"writing TXT output to {fname}")
conv_res.document.save_as_markdown(
filename=fname,
strict_text=True,
image_mode=ImageRefMode.PLACEHOLDER,
)
# Export Markdown format:
if export_md:
fname = output_dir / f"{doc_filename}.md"
_log.info(f"writing Markdown output to {fname}")
conv_res.document.save_as_markdown(
filename=fname,
image_mode=image_export_mode,
page_break_placeholder=md_page_break_placeholder or None,
)
# Export Document Tags format:
if export_doctags:
fname = output_dir / f"{doc_filename}.doctags"
_log.info(f"writing Doc Tags output to {fname}")
conv_res.document.save_as_document_tokens(filename=fname)
else:
_log.warning(f"Document {conv_res.input.file} failed to convert.")
failure_count += 1
_log.info(
f"Processed {success_count + failure_count} docs, "
f"of which {failure_count} failed"
response: (
Response
| ConvertDocumentResponse
| PresignedUrlConvertDocumentResponse
| ChunkDocumentResponse
)
def process_results(
conversion_options: ConvertDocumentsOptions,
conv_results: Iterable[ConversionResult],
work_dir: Path,
) -> Union[ConvertDocumentResponse, FileResponse]:
# Let's start by processing the documents
try:
start_time = time.monotonic()
# Convert the iterator to a list to count the number of results and get timings
# As it's an iterator (lazy evaluation), it will also start the conversion
conv_results = list(conv_results)
processing_time = time.monotonic() - start_time
_log.info(
f"Processed {len(conv_results)} docs in {processing_time:.2f} seconds."
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
if len(conv_results) == 0:
raise HTTPException(
status_code=500, detail="No documents were generated by Docling."
)
# We have some results, let's prepare the response
response: Union[FileResponse, ConvertDocumentResponse]
# Booleans to know what to export
export_json = OutputFormat.JSON in conversion_options.to_formats
export_html = OutputFormat.HTML in conversion_options.to_formats
export_md = OutputFormat.MARKDOWN in conversion_options.to_formats
export_txt = OutputFormat.TEXT in conversion_options.to_formats
export_doctags = OutputFormat.DOCTAGS in conversion_options.to_formats
# Only 1 document was processed, and we are not returning it as a file
if len(conv_results) == 1 and not conversion_options.return_as_file:
conv_res = conv_results[0]
document = _export_document_as_content(
conv_res,
export_json=export_json,
export_html=export_html,
export_md=export_md,
export_txt=export_txt,
export_doctags=export_doctags,
image_mode=conversion_options.image_export_mode,
md_page_break_placeholder=conversion_options.md_page_break_placeholder,
)
if isinstance(task_result.result, ExportResult):
response = ConvertDocumentResponse(
document=document,
status=conv_res.status,
processing_time=processing_time,
timings=conv_res.timings,
document=task_result.result.content,
status=task_result.result.status,
processing_time=task_result.processing_time,
timings=task_result.result.timings,
errors=task_result.result.errors,
)
elif isinstance(task_result.result, ZipArchiveResult):
response = Response(
content=task_result.result.content,
media_type="application/zip",
headers={
"Content-Disposition": 'attachment; filename="converted_docs.zip"'
},
)
elif isinstance(task_result.result, RemoteTargetResult):
response = PresignedUrlConvertDocumentResponse(
processing_time=task_result.processing_time,
num_converted=task_result.num_converted,
num_succeeded=task_result.num_succeeded,
num_failed=task_result.num_failed,
)
elif isinstance(task_result.result, ChunkedDocumentResult):
response = ChunkDocumentResponse(
chunks=task_result.result.chunks,
documents=task_result.result.documents,
processing_time=task_result.processing_time,
)
# Multiple documents were processed, or we are forced returning as a file
else:
# Temporary directory to store the outputs
output_dir = work_dir / "output"
output_dir.mkdir(parents=True, exist_ok=True)
raise ValueError("Unknown result type")
# Worker pid to use in archive identification as we may have multiple workers
os.getpid()
if docling_serve_settings.single_use_results:
# Export the documents
_export_documents_as_files(
conv_results=conv_results,
output_dir=output_dir,
export_json=export_json,
export_html=export_html,
export_md=export_md,
export_txt=export_txt,
export_doctags=export_doctags,
image_export_mode=conversion_options.image_export_mode,
md_page_break_placeholder=conversion_options.md_page_break_placeholder,
)
async def _remove_task_impl():
await asyncio.sleep(docling_serve_settings.result_removal_delay)
await orchestrator.delete_task(task_id=task_id)
files = os.listdir(output_dir)
if len(files) == 0:
raise HTTPException(status_code=500, detail="No documents were exported.")
async def _remove_task():
asyncio.create_task(_remove_task_impl()) # noqa: RUF006
file_path = work_dir / "converted_docs.zip"
shutil.make_archive(
base_name=str(file_path.with_suffix("")),
format="zip",
root_dir=output_dir,
)
# Other cleanups after the response is sent
# Output directory
# background_tasks.add_task(shutil.rmtree, work_dir, ignore_errors=True)
response = FileResponse(
file_path, filename=file_path.name, media_type="application/zip"
)
background_tasks.add_task(_remove_task)
return response

View File

@@ -1,3 +1,4 @@
import enum
import sys
from pathlib import Path
from typing import Optional, Union
@@ -6,8 +7,6 @@ from pydantic import AnyUrl, model_validator
from pydantic_settings import BaseSettings, SettingsConfigDict
from typing_extensions import Self
from docling_serve.datamodel.engines import AsyncEngine
class UvicornSettings(BaseSettings):
model_config = SettingsConfigDict(
@@ -26,6 +25,12 @@ class UvicornSettings(BaseSettings):
workers: Union[int, None] = None
class AsyncEngine(str, enum.Enum):
LOCAL = "local"
KFP = "kfp"
RQ = "rq"
class DoclingServeSettings(BaseSettings):
model_config = SettingsConfigDict(
env_prefix="DOCLING_SERVE_",
@@ -41,10 +46,13 @@ class DoclingServeSettings(BaseSettings):
scratch_path: Optional[Path] = None
single_use_results: bool = True
result_removal_delay: float = 300 # 5 minutes
load_models_at_boot: bool = True
options_cache_size: int = 2
enable_remote_services: bool = False
allow_external_plugins: bool = False
api_key: str = ""
max_document_timeout: float = 3_600 * 24 * 7 # 7 days
max_num_pages: int = sys.maxsize
max_file_size: int = sys.maxsize
@@ -58,6 +66,11 @@ class DoclingServeSettings(BaseSettings):
eng_kind: AsyncEngine = AsyncEngine.LOCAL
# Local engine
eng_loc_num_workers: int = 2
eng_loc_share_models: bool = False
# RQ engine
eng_rq_redis_url: str = ""
eng_rq_results_prefix: str = "docling:results"
eng_rq_sub_channel: str = "docling:updates"
# KFP engine
eng_kfp_endpoint: Optional[AnyUrl] = None
eng_kfp_token: Optional[str] = None
@@ -81,6 +94,10 @@ class DoclingServeSettings(BaseSettings):
"KFP is not yet working. To enable the development version, you must set DOCLING_SERVE_ENG_KFP_EXPERIMENTAL=true."
)
if self.eng_kind == AsyncEngine.RQ:
if not self.eng_rq_redis_url:
raise ValueError("RQ Redis url is required when using the RQ engine.")
return self

View File

@@ -0,0 +1,55 @@
from fastapi import WebSocket
from docling_jobkit.datamodel.task_meta import TaskStatus
from docling_jobkit.orchestrators.base_notifier import BaseNotifier
from docling_jobkit.orchestrators.base_orchestrator import BaseOrchestrator
from docling_serve.datamodel.responses import (
MessageKind,
TaskStatusResponse,
WebsocketMessage,
)
class WebsocketNotifier(BaseNotifier):
def __init__(self, orchestrator: BaseOrchestrator):
super().__init__(orchestrator)
self.task_subscribers: dict[str, set[WebSocket]] = {}
async def add_task(self, task_id: str):
self.task_subscribers[task_id] = set()
async def remove_task(self, task_id: str):
if task_id in self.task_subscribers:
for websocket in self.task_subscribers[task_id]:
await websocket.close()
del self.task_subscribers[task_id]
async def notify_task_subscribers(self, task_id: str):
if task_id not in self.task_subscribers:
raise RuntimeError(f"Task {task_id} does not have a subscribers list.")
task = await self.orchestrator.get_raw_task(task_id=task_id)
task_queue_position = await self.orchestrator.get_queue_position(task_id)
msg = TaskStatusResponse(
task_id=task.task_id,
task_type=task.task_type,
task_status=task.task_status,
task_position=task_queue_position,
task_meta=task.processing_meta,
)
for websocket in self.task_subscribers[task_id]:
await websocket.send_text(
WebsocketMessage(message=MessageKind.UPDATE, task=msg).model_dump_json()
)
if task.is_completed():
await websocket.close()
async def notify_queue_positions(self):
for task_id in self.task_subscribers.keys():
# notify only pending tasks
if self.orchestrator.tasks[task_id].task_status != TaskStatus.PENDING:
continue
await self.notify_task_subscribers(task_id)

View File

@@ -1,8 +1,11 @@
# Dolcing Serve documentation
# Docling Serve documentation
This documentation pages explore the webserver configurations, runtime options, deployment examples as well as development best practices.
- [Configuration](./configuration.md)
- [Advance usage](./usage.md)
- [Handling models](./models.md)
- [Usage](./usage.md)
- [Deployment](./deployment.md)
- [MCP](./mcp.md)
- [Development](./development.md)
- [`v1` migration](./v1_migration.md)

View File

@@ -7,7 +7,7 @@ server and the actual app-specific configurations.
> [!WARNING]
> When the server is running with `reload` or with multiple `workers`, uvicorn
> will spawn multiple subprocessed. This invalides all the values configured
> will spawn multiple subprocesses. This invalidates all the values configured
> via the CLI command line options. Please use environment variables in this
> type of deployments.
@@ -36,7 +36,7 @@ THe following table describes the options to configure the Docling Serve app.
| CLI option | ENV | Default | Description |
| -----------|-----|---------|-------------|
| `--artifacts-path` | `DOCLING_SERVE_ARTIFACTS_PATH` | unset | If set to a valid directory, the model weights will be loaded from this path |
| | `DOCLING_SERVE_STATIC_PATH` | unset | If set to a valid directory, the static assets for the docs and ui will be loaded from this path |
| | `DOCLING_SERVE_STATIC_PATH` | unset | If set to a valid directory, the static assets for the docs and UI will be loaded from this path |
| | `DOCLING_SERVE_SCRATCH_PATH` | | If set, this directory will be used as scratch workspace, e.g. storing the results before they get requested. If unset, a temporary created is created for this purpose. |
| `--enable-ui` | `DOCLING_SERVE_ENABLE_UI` | `false` | Enable the demonstrator UI. |
| | `DOCLING_SERVE_ENABLE_REMOTE_SERVICES` | `false` | Allow pipeline components making remote connections. For example, this is needed when using a vision-language model via APIs. |
@@ -44,14 +44,17 @@ THe following table describes the options to configure the Docling Serve app.
| | `DOCLING_SERVE_SINGLE_USE_RESULTS` | `true` | If true, results can be accessed only once. If false, the results accumulate in the scratch directory. |
| | `DOCLING_SERVE_RESULT_REMOVAL_DELAY` | `300` | When `DOCLING_SERVE_SINGLE_USE_RESULTS` is active, this is the delay before results are removed from the task registry. |
| | `DOCLING_SERVE_MAX_DOCUMENT_TIMEOUT` | `604800` (7 days) | The maximum time for processing a document. |
| | `DOCLING_NUM_THREADS` | `4` | Number of concurrent threads for processing a document. |
| | `DOCLING_SERVE_MAX_NUM_PAGES` | | The maximum number of pages for a document to be processed. |
| | `DOCLING_SERVE_MAX_FILE_SIZE` | | The maximum file size for a document to be processed. |
| | `DOCLING_SERVE_MAX_SYNC_WAIT` | `120` | Max number of seconds a synchronous endpoint is waiting for the task completion. |
| | `DOCLING_SERVE_LOAD_MODELS_AT_BOOT` | `True` | If enabled, the models for the default options will be loaded at boot. |
| | `DOCLING_SERVE_OPTIONS_CACHE_SIZE` | `2` | How many DocumentConveter objects (including their loaded models) to keep in the cache. |
| | `DOCLING_SERVE_CORS_ORIGINS` | `["*"]` | A list of origins that should be permitted to make cross-origin requests. |
| | `DOCLING_SERVE_CORS_METHODS` | `["*"]` | A list of HTTP methods that should be allowed for cross-origin requests. |
| | `DOCLING_SERVE_CORS_HEADERS` | `["*"]` | A list of HTTP request headers that should be supported for cross-origin requests. |
| | `DOCLING_SERVE_ENG_KIND` | `local` | The compute engine to use for the async tasks. Possible values are `local` and `kfp`. See below for more configurations of the engines. |
| | `DOCLING_SERVE_API_KEY` | | If specified, all the API requests must contain the header `X-Api-Key` with this value. |
| | `DOCLING_SERVE_ENG_KIND` | `local` | The compute engine to use for the async tasks. Possible values are `local`, `rq` and `kfp`. See below for more configurations of the engines. |
### Compute engine
@@ -60,11 +63,22 @@ The selected compute engine will be running all the async jobs.
#### Local engine
The following table describes the options to configure the Docling Serve KFP engine.
The following table describes the options to configure the Docling Serve local engine.
| ENV | Default | Description |
|-----|---------|-------------|
| `DOCLING_SERVE_ENG_LOC_NUM_WORKERS` | 2 | Number of workers/threads processing the incoming tasks. |
| `DOCLING_SERVE_ENG_LOC_SHARE_MODELS` | False | If true, each process will share the same models among all thread workers. Otherwise, one instance of the models is allocated for each worker thread. |
#### RQ engine
The following table describes the options to configure the Docling Serve RQ engine.
| ENV | Default | Description |
|-----|---------|-------------|
| `DOCLING_SERVE_ENG_RQ_REDIS_URL` | (required) | The connection Redis url, e.g. `redis://localhost:6373/` |
| `DOCLING_SERVE_ENG_RQ_RESULTS_PREFIX` | `docling:results` | The prefix used for storing the results in Redis. |
| `DOCLING_SERVE_ENG_RQ_SUB_CHANNEL` | `docling:updates` | The channel key name used for storing communicating updates between the workers and the orchestrator. |
#### KFP engine
@@ -75,6 +89,13 @@ The following table describes the options to configure the Docling Serve KFP eng
| `DOCLING_SERVE_ENG_KFP_ENDPOINT` | | Must be set to the Kubeflow Pipeline endpoint. When using the in-cluster deployment, make sure to use the cluster endpoint, e.g. `https://NAME.NAMESPACE.svc.cluster.local:8888` |
| `DOCLING_SERVE_ENG_KFP_TOKEN` | | The authentication token for KFP. For in-cluster deployment, the app will load automatically the token of the ServiceAccount. |
| `DOCLING_SERVE_ENG_KFP_CA_CERT_PATH` | | Path to the CA certificates for the KFP endpoint. For in-cluster deployment, the app will load automatically the internal CA. |
| `DOCLING_SERVE_ENG_KFP_SELF_CALLBACK_ENDPOINT` | | If set, it enables internal callbacks providing status update of the KFP job. Usually something like `https://NAME.NAMESPACE.svc.cluster.local:5001/v1alpha/callback/task/progress`. |
| `DOCLING_SERVE_ENG_KFP_SELF_CALLBACK_ENDPOINT` | | If set, it enables internal callbacks providing status update of the KFP job. Usually something like `https://NAME.NAMESPACE.svc.cluster.local:5001/v1/callback/task/progress`. |
| `DOCLING_SERVE_ENG_KFP_SELF_CALLBACK_TOKEN_PATH` | | The token used for authenticating the progress callback. For cluster-internal workloads, use `/run/secrets/kubernetes.io/serviceaccount/token`. |
| `DOCLING_SERVE_ENG_KFP_SELF_CALLBACK_CA_CERT_PATH` | | The CA certificate for the progress callback. For cluster-inetrnal workloads, use `/var/run/secrets/kubernetes.io/serviceaccount/service-ca.crt`. |
#### Gradio UI
When using Gradio UI and using the option to output conversion as file, Gradio uses cache to prevent files to be overwritten ([more info here](https://www.gradio.app/guides/file-access#the-gradio-cache)), and we defined the cache clean frequency of one hour to clean files older than 10hours. For situations that files need to be available to download from UI older than 10 hours, there is two options:
- Increase the older age of files to clean [here](https://github.com/docling-project/docling-serve/blob/main/docling_serve/gradio_ui.py#L483) to suffice the age desired;
- Or set the clean up manually by defining the temporary dir of Gradio to use the same as `DOCLING_SERVE_SCRATCH_PATH` absolute path. This can be achieved by setting the environment variable `GRADIO_TEMP_DIR`, that can be done via command line `export GRADIO_TEMP_DIR="<same_path_as_scratch>"` or in `Dockerfile` using `ENV GRADIO_TEMP_DIR="<same_path_as_scratch>"`. After this, set the clean of cache to `None` [here](https://github.com/docling-project/docling-serve/blob/main/docling_serve/gradio_ui.py#L483). Now, the clean up of `DOCLING_SERVE_SCRATCH_PATH` will also clean the Gradio temporary dir. (If you use this option, please remember when reversing changes to remove the environment variable `GRADIO_TEMP_DIR`, otherwise may lead to files not be available to download).

View File

@@ -0,0 +1,21 @@
# AMD ROCm deployment
services:
docling-serve:
image: ghcr.io/docling-project/docling-serve-rocm:main
container_name: docling-serve
ports:
- "5001:5001"
environment:
DOCLING_SERVE_ENABLE_UI: "true"
ROCR_VISIBLE_DEVICES: "0" # https://rocm.docs.amd.com/en/latest/conceptual/gpu-isolation.html#rocr-visible-devices
## This section is for compatibility with older cards
# HSA_OVERRIDE_GFX_VERSION: "11.0.0"
# HSA_ENABLE_SDMA: "0"
devices:
- /dev/kfd:/dev/kfd
- /dev/dri:/dev/dri
group_add:
- 44 # video group GID from host
- 992 # render group GID from host
restart: always

View File

@@ -1,15 +0,0 @@
services:
docling:
image: ghcr.io/docling-project/docling-serve-cu124
container_name: docling-serve
ports:
- 5001:5001
environment:
- DOCLING_SERVE_ENABLE_UI=true
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: all # nvidia-smi
capabilities: [gpu]

View File

@@ -0,0 +1,20 @@
# NVIDIA CUDA deployment
services:
docling-serve:
image: ghcr.io/docling-project/docling-serve-cu126:main
container_name: docling-serve
ports:
- "5001:5001"
environment:
DOCLING_SERVE_ENABLE_UI: "true"
NVIDIA_VISIBLE_DEVICES: "all" # https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/docker-specialized.html
# deploy: # This section is for compatibility with Swarm
# resources:
# reservations:
# devices:
# - driver: nvidia
# count: all
# capabilities: [gpu]
runtime: nvidia
restart: always

View File

@@ -22,8 +22,8 @@ spec:
- name: api
resources:
limits:
cpu: 500m
memory: 2Gi
cpu: 2
memory: 4Gi
requests:
cpu: 250m
memory: 1Gi

View File

@@ -85,7 +85,7 @@ spec:
resources:
limits:
cpu: 2000m
memory: 2Gi
memory: 4Gi
requests:
cpu: 800m
memory: 1Gi

View File

@@ -0,0 +1,76 @@
# This example deployment configures Docling Serve with a Route + Sticky sessions, a Service and cpu image
---
kind: Route
apiVersion: route.openshift.io/v1
metadata:
name: docling-serve
labels:
app: docling-serve
component: docling-serve-api
annotations:
haproxy.router.openshift.io/disable_cookies: "false" # this annotation enables the sticky sessions
spec:
path: /
to:
kind: Service
name: docling-serve
port:
targetPort: http
tls:
termination: edge
insecureEdgeTerminationPolicy: Redirect
---
apiVersion: v1
kind: Service
metadata:
name: docling-serve
labels:
app: docling-serve
component: docling-serve-api
spec:
ports:
- name: http
port: 5001
targetPort: http
selector:
app: docling-serve
component: docling-serve-api
---
kind: Deployment
apiVersion: apps/v1
metadata:
name: docling-serve
labels:
app: docling-serve
component: docling-serve-api
spec:
replicas: 3
selector:
matchLabels:
app: docling-serve
component: docling-serve-api
template:
metadata:
labels:
app: docling-serve
component: docling-serve-api
spec:
restartPolicy: Always
containers:
- name: api
resources:
limits:
cpu: 1
memory: 4Gi
requests:
cpu: 250m
memory: 1Gi
env:
- name: DOCLING_SERVE_ENABLE_UI
value: 'true'
ports:
- name: http
containerPort: 5001
protocol: TCP
imagePullPolicy: Always
image: 'ghcr.io/docling-project/docling-serve'

View File

@@ -0,0 +1,192 @@
# This example deployment configures Docling Serve with a Service and RQ workers
# Create following secret
# kubectl create secret generic docling-serve-rq-secrets --from-literal=REDIS_PASSWORD=myredispassword --from-literal=RQ_REDIS_URL=redis://:myredispassword@docling-serve-redis-service:6373/
---
apiVersion: v1
kind: Service
metadata:
name: docling-serve
labels:
app: docling-serve
component: docling-serve-api
spec:
ports:
- name: http
port: 5001
targetPort: http
selector:
app: docling-serve
component: docling-serve-api
---
kind: Deployment
apiVersion: apps/v1
metadata:
name: docling-serve
labels:
app: docling-serve
component: docling-serve-api
spec:
replicas: 1
selector:
matchLabels:
app: docling-serve
component: docling-serve-api
template:
metadata:
labels:
app: docling-serve
component: docling-serve-api
spec:
restartPolicy: Always
containers:
- name: api
resources:
limits:
cpu: 1
memory: 8Gi
requests:
cpu: 250m
memory: 1Gi
env:
- name: DOCLING_SERVE_ENABLE_UI
value: 'true'
- name: DOCLING_SERVE_ENG_KIND
value: 'rq'
- name: DOCLING_SERVE_ENG_RQ_REDIS_URL
valueFrom:
secretKeyRef:
name: docling-serve-rq-secrets
key: RQ_REDIS_URL
ports:
- name: http
containerPort: 5001
protocol: TCP
imagePullPolicy: Always
image: 'ghcr.io/docling-project/docling-serve-cpu'
---
kind: Deployment
apiVersion: apps/v1
metadata:
name: docling-serve-rq-workers
labels:
app: docling-serve-rq-workers
component: docling-serve-rq-worker
spec:
replicas: 2
selector:
matchLabels:
app: docling-serve-rq-workers
component: docling-serve-rq-worker
template:
metadata:
labels:
app: docling-serve-rq-workers
component: docling-serve-rq-worker
spec:
restartPolicy: Always
containers:
- name: worker
resources:
limits:
cpu: 1
memory: 4Gi
requests:
cpu: 250m
memory: 1Gi
env:
- name: DOCLING_SERVE_ENG_KIND
value: 'rq'
- name: DOCLING_SERVE_ENG_RQ_REDIS_URL
valueFrom:
secretKeyRef:
name: docling-serve-rq-secrets
key: RQ_REDIS_URL
ports:
- name: http
containerPort: 5001
protocol: TCP
imagePullPolicy: Always
image: 'ghcr.io/docling-project/docling-serve-cpu'
command: ["docling-serve"]
args: ["rq-worker"]
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: docling-serve-redis
labels:
app: docling-serve-redis
spec:
replicas: 1
selector:
matchLabels:
app: docling-serve-redis
template:
metadata:
labels:
app: docling-serve-redis
spec:
restartPolicy: Always
terminationGracePeriodSeconds: 30
containers:
- name: redis
resources:
limits:
cpu: 1
memory: 1Gi
requests:
cpu: 250m
memory: 100Mi
image: redis:latest
command: ["redis-server"]
args:
- "--port"
- "6373"
- "--dir"
- "/mnt/redis/data"
- "--appendonly"
- "yes"
- "--requirepass"
- "$(REDIS_PASSWORD)"
ports:
- containerPort: 6373
env:
- name: REDIS_PASSWORD
valueFrom:
secretKeyRef:
name: docling-serve-rq-secrets
key: REDIS_PASSWORD
volumeMounts:
- name: redis-data
mountPath: /mnt/redis/data
securityContext:
fsGroup: 1004
runAsNonRoot: true
allowPrivilegeEscalation: false
capabilities:
drop:
- ALL
seccompProfile:
type: RuntimeDefault
volumes:
- name: redis-data
emptyDir:
medium: Memory
sizeLimit: 2Gi
---
apiVersion: v1
kind: Service
metadata:
name: docling-serve-redis-service
labels:
app: docling-serve-redis
spec:
type: NodePort
ports:
- name: redis-service
protocol: TCP
port: 6373
targetPort: 6373
selector:
app: docling-serve-redis

View File

@@ -40,8 +40,8 @@ spec:
- name: api
resources:
limits:
cpu: 500m
memory: 2Gi
cpu: 1
memory: 4Gi
nvidia.com/gpu: 1 # Limit to one GPU
requests:
cpu: 250m

View File

@@ -4,16 +4,17 @@ This document provides deployment examples for running the application in differ
Choose the deployment option that best fits your setup.
- **[Local GPU](#local-gpu)**: For deploying the application locally on a machine with a NVIDIA GPU (using Docker Compose).
- **[Local GPU NVIDIA](#local-gpu-nvidia)**: For deploying the application locally on a machine with a supported NVIDIA GPU (using Docker Compose).
- **[Local GPU AMD](#local-gpu-amd)**: For deploying the application locally on a machine with a supported AMD GPU (using Docker Compose).
- **[OpenShift](#openshift)**: For deploying the application on an OpenShift cluster, designed for cloud-native environments.
---
## Local GPU
## Local GPU NVIDIA
### Docker compose
Manifest example: [compose-gpu.yaml](./deploy-examples/compose-gpu.yaml)
Manifest example: [compose-nvidia.yaml](./deploy-examples/compose-nvidia.yaml)
This deployment has the following features:
@@ -22,7 +23,7 @@ This deployment has the following features:
Install the app with:
```sh
docker compose -f docs/deploy-examples/compose-gpu.yaml up -d
docker compose -f docs/deploy-examples/compose-nvidia.yaml up -d
```
For using the API:
@@ -30,11 +31,11 @@ For using the API:
```sh
# Make a test query
curl -X 'POST' \
"localhost:5001/v1alpha/convert/source/async" \
"localhost:5001/v1/convert/source/async" \
-H "accept: application/json" \
-H "Content-Type: application/json" \
-d '{
"http_sources": [{"url": "https://arxiv.org/pdf/2501.17887"}]
"sources": [{"kind": "http", "url": "https://arxiv.org/pdf/2501.17887"}]
}'
```
@@ -56,7 +57,7 @@ Docs:
<details>
<summary><b>Steps</b></summary>
1. Check driver version and which GPU you want to use (0/1/2/3.. and update [compose-gpu.yaml](./deploy-examples/compose-gpu.yaml) file or use `count: all`)
1. Check driver version and which GPU you want to use 0/1/2/n (and update [compose-nvidia.yaml](./deploy-examples/compose-nvidia.yaml) file or use `count: all`)
```sh
nvidia-smi
@@ -117,7 +118,75 @@ Docs:
5. Run the container:
```sh
docker compose -f docs/deploy-examples/compose-gpu.yaml up -d
docker compose -f docs/deploy-examples/compose-nvidia.yaml up -d
```
</details>
## Local GPU AMD
### Docker compose
Manifest example: [compose-amd.yaml](./deploy-examples/compose-amd.yaml)
This deployment has the following features:
- AMD rocm enabled
Install the app with:
```sh
docker compose -f docs/deploy-examples/compose-amd.yaml up -d
```
For using the API:
```sh
# Make a test query
curl -X 'POST' \
"localhost:5001/v1/convert/source/async" \
-H "accept: application/json" \
-H "Content-Type: application/json" \
-d '{
"sources": [{"kind": "http", "url": "https://arxiv.org/pdf/2501.17887"}]
}'
```
<details>
<summary><b>Requirements</b></summary>
- debian/ubuntu/rhel/fedora/opensuse
- docker
- AMDGPU driver >=6.3
- AMD ROCm >=6.3
Docs:
- [AMD ROCm installation](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/quick-start.html)
</details>
<details>
<summary><b>Steps</b></summary>
1. Check driver version and which GPU you want to use 0/1/2/n (and update [compose-amd.yaml](./deploy-examples/compose-amd.yaml) file)
```sh
rocm-smi --showdriverversion
rocminfo | grep -i "ROCm version"
```
2. Find both video group GID and render group GID from host (and update [compose-amd.yaml](./deploy-examples/compose-amd.yaml) file)
```sh
getent group video
getent group render
```
3. Build the image locally (and update [compose-amd.yaml](./deploy-examples/compose-amd.yaml) file)
```sh
make docling-serve-rocm-image
```
</details>
@@ -148,14 +217,39 @@ oc port-forward svc/docling-serve 5001:5001
# Make a test query
curl -X 'POST' \
"localhost:5001/v1alpha/convert/source/async" \
"localhost:5001/v1/convert/source/async" \
-H "accept: application/json" \
-H "Content-Type: application/json" \
-d '{
"http_sources": [{"url": "https://arxiv.org/pdf/2501.17887"}]
"sources": [{"kind": "http", "url": "https://arxiv.org/pdf/2501.17887"}]
}'
```
### Multiple workers with RQ
Manifest example: [`docling-serve-rq-workers.yaml`](./deploy-examples/docling-serve-rq-workers.yaml)
This deployment example has the following features:
- Deployment configuration
- Service configuration
- Redis deployment
- Multiple (2 by default) worker Pods
Install the app with:
- create k8s secret:
```sh
kubectl create secret generic docling-serve-rq-secrets --from-literal=REDIS_PASSWORD=myredispassword --from-literal=RQ_REDIS_URL=redis://:myredispassword@docling-serve-redis-service:6373/
```
- apply deployment manifest:
```sh
oc apply -f docs/deploy-examples/docling-serve-rq-workers.yaml
```
### Secure deployment with `oauth-proxy`
Manifest example: [docling-serve-oauth.yaml](./deploy-examples/docling-serve-oauth.yaml)
@@ -184,11 +278,53 @@ OCP_AUTH_TOKEN=$(oc whoami --show-token)
# Make a test query
curl -X 'POST' \
"${DOCLING_ROUTE}/v1alpha/convert/source/async" \
"${DOCLING_ROUTE}/v1/convert/source/async" \
-H "Authorization: Bearer ${OCP_AUTH_TOKEN}" \
-H "accept: application/json" \
-H "Content-Type: application/json" \
-d '{
"http_sources": [{"url": "https://arxiv.org/pdf/2501.17887"}]
"sources": [{"kind": "http", "url": "https://arxiv.org/pdf/2501.17887"}]
}'
```
### ReplicaSets with `sticky sessions`
Manifest example: [docling-serve-replicas-w-sticky-sessions.yaml](./deploy-examples/docling-serve-replicas-w-sticky-sessions.yaml)
This deployment has the following features:
- Deployment configuration with 3 replicas
- Service configuration
- Expose the service using a OpenShift `Route` and enables sticky sessions
Install the app with:
```sh
oc apply -f docs/deploy-examples/docling-serve-replicas-w-sticky-sessions.yaml
```
For using the API:
```sh
# Retrieve the endpoint
DOCLING_NAME=docling-serve
DOCLING_ROUTE="https://$(oc get routes $DOCLING_NAME --template={{.spec.host}})"
# Make a test query, store the cookie and taskid
task_id=$(curl -s -X 'POST' \
"${DOCLING_ROUTE}/v1/convert/source/async" \
-H "accept: application/json" \
-H "Content-Type: application/json" \
-d '{
"sources": [{"kind": "http", "url": "https://arxiv.org/pdf/2501.17887"}]
}' \
-c cookies.txt | grep -oP '"task_id":"\K[^"]+')
```
```sh
# Grab the taskid and cookie to check the task status
curl -v -X 'GET' \
"${DOCLING_ROUTE}/v1/status/poll/$task_id?wait=0" \
-H "accept: application/json" \
-b "cookies.txt"
```

22
docs/examples.md Normal file
View File

@@ -0,0 +1,22 @@
# Examples
## Split processing
The example of provided of split processing demonstrates how to split a PDF into chunks of pages and send them for conversion. At the end, it concatenates all split pages into a single conversion `JSON`.
At beginning of file there's variables to be used (and modified) such as:
| Variable | Description |
| ---------|-------------|
| `path_to_pdf`| Path to PDF file to be split |
| `pages_per_file`| The number of pages per chunk to split PDF |
| `base_url`| Base url of the `docling-serve` host |
| `out_dir`| The output folder of each conversion `JSON` of split PDF and the final concatenated `JSON` |
The example follows the following logic:
- Get the number of pages of the `PDF`
- Based on the number of chunks of pages, send each chunk to conversion using `page_range` parameter
- Wait all conversions to finish
- Get all conversion results
- Save each conversion `JSON` result into a `JSON` file
- Concatenate all `JSONs` into a single `JSON` using `docling` concatenate method
- Save concatenated `JSON` into a `JSON` file

39
docs/mcp.md Normal file
View File

@@ -0,0 +1,39 @@
# Docling MCP in Docling Serve
The `docling-serve` container image includes all MCP (Model Communication Protocol) features starting from version v1.1.0. To leverage these features, you simply need to use a different entrypoint—no custom image builds or additional installations are required. The image provides the `docling-mcp-server` executable, which enables MCP functionality out of the box as of version v1.1.0 ([changelog](https://github.com/docling-project/docling-serve/blob/624f65d41b734e8b39ff267bc8bf6e766c376d6d/CHANGELOG.md)).
Read more on [Docling MCP](https://github.com/docling-project/docling-mcp) in its dedicated repository.
## Launching the MCP Service
By default, the container runs `docling-serve run` and exposes port 5001. To start the MCP service, override the entrypoint and specify your desired port mapping. For example:
```sh
podman run -p 8000:8000 quay.io/docling-project/docling-serve -- docling-mcp-server --transport streamable-http --port 8000 --host 0.0.0.0
```
This command starts the MCP server on port 8000, accessible at `http://localhost:8000/mcp`. Adjust the port and host as needed. Key arguments for `docling-mcp-server` include `--transport streamable-http` (HTTP transport for client connections), `--port <PORT>`, and `--host <HOST>` (use `0.0.0.0` to accept connections from any interface).
## Configuring MCP Clients
Most MCP-compatible clients, such as LM Studio and Claude Desktop, allow you to specify custom MCP server endpoints. The standard configuration uses a JSON block to define available MCP servers. For example, to connect to the Docling MCP server running on port 8000:
```json
{
"mcpServers": {
"docling": {
"url": "http://localhost:8000/mcp"
}
}
}
```
Insert this configuration in your client's settings where MCP servers are defined. Update the URL if you use a different port.
### LM Studio and Claude Desktop
Both LM Studio and Claude Desktop support MCP endpoints via configuration files or UI settings. Paste the above JSON block into the appropriate configuration section. For Claude Desktop, add the MCP server in the "Custom Model" or "MCP Server" section. For LM Studio, refer to its documentation for the location of the MCP server configuration.
### Other MCP Clients
Other clients, such as Continue Coding Assistant, also support custom MCP endpoints. Use the same configuration pattern: provide the MCP server URL ending with `/mcp` and ensure the port matches your container setup. See the [Docling MCP docs](https://github.com/docling-project/docling-mcp/tree/main/docs/integrations) for more details.

175
docs/models.md Normal file
View File

@@ -0,0 +1,175 @@
# Handling Models in Docling Serve
When enabling steps in Docling Serve that require extra models (such as picture classification, picture description, table detection, code recognition, formula extraction, or vision-language modules), you must ensure those models are available in the runtime environment. The standard container image includes only the default models. Any additional models must be downloaded and made available before use. If required models are missing, Docling Serve will raise runtime errors rather than downloading them automatically. This default choice wants to guarantee the system is not calling external services.
## Model Storage Location
Docling Serve loads models from the directory specified by the `DOCLING_SERVE_ARTIFACTS_PATH` environment variable. This path must be consistent across model download and runtime. When running with multiple workers or reload enabled, you must use the environment variable rather than the CLI argument for configuration [[source]](./configuration.md).
## Approaches for Making Extra Models Available
There are several ways to ensure required models are present:
### 1. Disable Local Models (Trigger Auto-Download)
You can configure the container to download all models at startup by clearing the artifacts path:
```sh
podman run -d -p 5001:5001 --name docling-serve \
-e DOCLING_SERVE_ARTIFACTS_PATH="" \
-e DOCLING_SERVE_ENABLE_UI=true \
quay.io/docling-project/docling-serve
```
This approach is simple for local development but not recommended for production, as it increases startup time and depends on network availability.
### 2. Build a Custom Image with Pre-Downloaded Models
You can create a new image that includes the required models:
```Dockerfile
FROM quay.io/docling-project/docling-serve
RUN docling-tools models download smolvlm
```
This method is suitable for production, as it ensures all models are present in the image and avoids runtime downloads.
### 3. Update the Entrypoint to Download Models Before Startup
You can override the entrypoint to download models before starting the service:
```sh
podman run -p 5001:5001 -e DOCLING_SERVE_ENABLE_UI=true \
quay.io/docling-project/docling-serve \
-- sh -c 'exec docling-tools models download smolvlm && exec docling-serve run'
```
This is useful for environments where you want to keep the base image unchanged but still automate model preparation.
### 4. Mount a Volume with Pre-Downloaded Models
Download models locally and mount them into the container:
```sh
# Download the models locally
docling-tools models download --all -o models
# Start the container with the local models folder
podman run -p 5001:5001 \
-v $(pwd)/models:/opt/app-root/src/models \
-e DOCLING_SERVE_ARTIFACTS_PATH="/opt/app-root/src/models" \
-e DOCLING_SERVE_ENABLE_UI=true \
quay.io/docling-project/docling-serve
```
This approach is robust for both local and production deployments, especially when using persistent storage.
## Kubernetes/Cluster Deployments
For Kubernetes or OpenShift clusters, the recommended approach is to use a PersistentVolumeClaim (PVC) for model storage, a Kubernetes Job to download models, and mount the volume into the deployment. This ensures models persist across pod restarts and scale-out scenarios.
### Example: PersistentVolumeClaim
```yaml
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: docling-model-cache-pvc
spec:
accessModes:
- ReadWriteOnce
volumeMode: Filesystem
resources:
requests:
storage: 10Gi
```
If you don't want to use default storage class, set your custom storage class with following:
```yaml
spec:
...
storageClassName: <Storage Class Name>
```
Manifest example: [docling-model-cache-pvc.yaml](./deploy-examples/docling-model-cache-pvc.yaml)
### Example: Model Download Job
```yaml
apiVersion: batch/v1
kind: Job
metadata:
name: docling-model-cache-load
spec:
template:
spec:
containers:
- name: loader
image: ghcr.io/docling-project/docling-serve-cpu:main
command:
- docling-tools
- models
- download
- '--output-dir=/modelcache'
- 'layout'
- 'tableformer'
- 'code_formula'
- 'picture_classifier'
- 'smolvlm'
- 'granite_vision'
- 'easyocr'
volumeMounts:
- name: docling-model-cache
mountPath: /modelcache
volumes:
- name: docling-model-cache
persistentVolumeClaim:
claimName: docling-model-cache-pvc
restartPolicy: Never
```
The job will mount the previously created persistent volume and execute command similar to how we would load models locally:
`docling-tools models download --output-dir <MOUNT-PATH> [LIST_OF_MODELS]`
In manifest, we specify desired models individually, or we can use `--all` parameter to download all models.
Manifest example: [docling-model-cache-job.yaml](./deploy-examples/docling-model-cache-job.yaml)
### Example: Deployment with Mounted Volume
```yaml
spec:
template:
spec:
containers:
- name: api
env:
- name: DOCLING_SERVE_ARTIFACTS_PATH
value: '/modelcache'
volumeMounts:
- name: docling-model-cache
mountPath: /modelcache
volumes:
- name: docling-model-cache
persistentVolumeClaim:
claimName: docling-model-cache-pvc
```
The value of `DOCLING_SERVE_ARTIFACTS_PATH` must match the mount path where models are stored.
Now, when docling-serve is executing tasks, the underlying docling installation will load model weights from mounted volume.
Manifest example: [docling-model-cache-deployment.yaml](./deploy-examples/docling-model-cache-deployment.yaml)
## Local Docker Execution
For local Docker or Podman execution, you can use any of the approaches above. Mounting a local directory with pre-downloaded models is the most reliable for repeated runs and avoids network dependencies.
## Troubleshooting and Best Practices
- If a required model is missing from the artifacts path, Docling Serve will raise a runtime error.
- Always ensure the value of `DOCLING_SERVE_ARTIFACTS_PATH` matches the directory where models are stored and mounted.
- For production and cluster environments, prefer persistent storage and pre-loading models via a dedicated job.
For more details and YAML manifest examples, see the [deployment documentation](./deployment.md).

View File

@@ -1,103 +0,0 @@
# Pre-loading models for docling
This document provides examples for pre-loading docling models to a persistent volume and re-using it for docling-serve deployments.
1. We need to create a persistent volume that will store models weights:
```yaml
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: docling-model-cache-pvc
spec:
accessModes:
- ReadWriteOnce
volumeMode: Filesystem
resources:
requests:
storage: 10Gi
```
If you don't want to use default storage class, set your custom storage class with following:
```yaml
spec:
...
storageClassName: <Storage Class Name>
```
Manifest example: [docling-model-cache-pvc.yaml](./deploy-examples/docling-model-cache-pvc.yaml)
2. In order to load model weights, we can use docling-toolkit to download them, as this is a one time operation we can use kubernetes job for this:
```yaml
apiVersion: batch/v1
kind: Job
metadata:
name: docling-model-cache-load
spec:
selector: {}
template:
metadata:
name: docling-model-load
spec:
containers:
- name: loader
image: ghcr.io/docling-project/docling-serve-cpu:main
command:
- docling-tools
- models
- download
- '--output-dir=/modelcache'
- 'layout'
- 'tableformer'
- 'code_formula'
- 'picture_classifier'
- 'smolvlm'
- 'granite_vision'
- 'easyocr'
volumeMounts:
- name: docling-model-cache
mountPath: /modelcache
volumes:
- name: docling-model-cache
persistentVolumeClaim:
claimName: docling-model-cache-pvc
restartPolicy: Never
```
The job will mount previously created persistent volume and execute command similar to how we would load models locally:
`docling-tools models download --output-dir <MOUNT-PATH> [LIST_OF_MODELS]`
In manifest, we specify desired models individually, or we can use `--all` parameter to download all models.
Manifest example: [docling-model-cache-job.yaml](./deploy-examples/docling-model-cache-job.yaml)
3. Now we can mount volume in the docling-serve deployment and set env `DOCLING_SERVE_ARTIFACTS_PATH` to point to it.
Following additions to deploymeny should be made:
```yaml
spec:
template:
spec:
containers:
- name: api
env:
...
- name: DOCLING_SERVE_ARTIFACTS_PATH
value: '/modelcache'
volumeMounts:
- name: docling-model-cache
mountPath: /modelcache
...
volumes:
- name: docling-model-cache
persistentVolumeClaim:
claimName: docling-model-cache-pvc
```
Make sure that value of `DOCLING_SERVE_ARTIFACTS_PATH` is the same as where models were downloaded and where volume is mounted.
Now when docling-serve is executing tasks, the underlying docling installation will load model weights from mouted volume.
Manifest example: [docling-model-cache-deployment.yaml](./deploy-examples/docling-model-cache-deployment.yaml)

View File

@@ -9,33 +9,36 @@ On top of the source of file (see below), both endpoints support the same parame
- `from_formats` (List[str]): Input format(s) to convert from. Allowed values: `docx`, `pptx`, `html`, `image`, `pdf`, `asciidoc`, `md`. Defaults to all formats.
- `to_formats` (List[str]): Output format(s) to convert to. Allowed values: `md`, `json`, `html`, `text`, `doctags`. Defaults to `md`.
- `pipeline` (str). The choice of which pipeline to use. Allowed values are `standard` and `vlm`. Defaults to `standard`.
- `page_range` (tuple). If speficied, only convert a range of pages. The page number starts at 1.
- `page_range` (tuple). If specified, only convert a range of pages. The page number starts at 1.
- `do_ocr` (bool): If enabled, the bitmap content will be processed using OCR. Defaults to `True`.
- `image_export_mode`: Image export mode for the document (only in case of JSON, Markdown or HTML). Allowed values: embedded, placeholder, referenced. Optional, defaults to `embedded`.
- `force_ocr` (bool): If enabled, replace any existing text with OCR-generated text over the full content. Defaults to `False`.
- `ocr_engine` (str): OCR engine to use. Allowed values: `easyocr`, `tesseract_cli`, `tesseract`, `rapidocr`, `ocrmac`. Defaults to `easyocr`.
- `ocr_engine` (str): OCR engine to use. Allowed values: `easyocr`, `tesserocr`, `tesseract`, `rapidocr`, `ocrmac`. Defaults to `easyocr`. To use the `tesserocr` engine, `tesserocr` must be installed where docling-serve is running: `pip install tesserocr`
- `ocr_lang` (List[str]): List of languages used by the OCR engine. Note that each OCR engine has different values for the language names. Defaults to empty.
- `pdf_backend` (str): PDF backend to use. Allowed values: `pypdfium2`, `dlparse_v1`, `dlparse_v2`, `dlparse_v4`. Defaults to `dlparse_v4`.
- `table_mode` (str): Table mode to use. Allowed values: `fast`, `accurate`. Defaults to `fast`.
- `abort_on_error` (bool): If enabled, abort on error. Defaults to false.
- `return_as_file` (boo): If enabled, return the output as a file. Defaults to false.
- `md_page_break_placeholder` (str): Add this placeholder betweek pages in the markdown output.
- `md_page_break_placeholder` (str): Add this placeholder between pages in the markdown output.
- `do_table_structure` (bool): If enabled, the table structure will be extracted. Defaults to true.
- `do_code_enrichment` (bool): If enabled, perform OCR code enrichment. Defaults to false.
- `do_formula_enrichment` (bool): If enabled, perform formula OCR, return LaTeX code. Defaults to false.
- `do_picture_classification` (bool): If enabled, classify pictures in documents. Defaults to false.
- `do_picture_description` (bool): If enabled, describe pictures in documents. Defaults to false.
- `picture_description_area_threshold` (float): Minimum percentage of the area for a picture to be processed with the models. Defaults to 0.05.
- `picture_description_local` (dict): Options for running a local vision-language model in the picture description. The parameters refer to a model hosted on Hugging Face. This parameter is mutually exclusive with picture_description_api.
- `picture_description_api` (dict): API details for using a vision-language model in the picture description. This parameter is mutually exclusive with picture_description_local.
- `picture_description_local` (dict): Options for running a local vision-language model in the picture description. The parameters refer to a model hosted on Hugging Face. This parameter is mutually exclusive with `picture_description_api`.
- `picture_description_api` (dict): API details for using a vision-language model in the picture description. This parameter is mutually exclusive with `picture_description_local`.
- `include_images` (bool): If enabled, images will be extracted from the document. Defaults to false.
- `images_scale` (float): Scale factor for images. Defaults to 2.0.
### Authentication
When authentication is activated (see the parameter `DOCLING_SERVE_API_KEY` in [configuration.md](./configuration.md)), all the API requests **must** provide the header `X-Api-Key` with the correct secret key.
## Convert endpoints
### Source endpoint
The endpoint is `/v1alpha/convert/source`, listening for POST requests of JSON payloads.
The endpoint is `/v1/convert/source`, listening for POST requests of JSON payloads.
On top of the above parameters, you must send the URL(s) of the document you want process with either the `http_sources` or `file_sources` fields.
The first is fetching URL(s) (optionally using with extra headers), the second allows to provide documents as base64-encoded strings.
@@ -66,7 +69,6 @@ Simple payload example:
"pdf_backend": "dlparse_v2",
"table_mode": "fast",
"abort_on_error": false,
"return_as_file": false,
},
"http_sources": [{"url": "https://arxiv.org/pdf/2206.01062"}]
}
@@ -80,7 +82,7 @@ Simple payload example:
```sh
curl -X 'POST' \
'http://localhost:5001/v1alpha/convert/source' \
'http://localhost:5001/v1/convert/source' \
-H 'accept: application/json' \
-H 'Content-Type: application/json' \
-d '{
@@ -109,7 +111,6 @@ curl -X 'POST' \
"pdf_backend": "dlparse_v2",
"table_mode": "fast",
"abort_on_error": false,
"return_as_file": false,
"do_table_structure": true,
"include_images": true,
"images_scale": 2
@@ -127,7 +128,7 @@ curl -X 'POST' \
import httpx
async_client = httpx.AsyncClient(timeout=60.0)
url = "http://localhost:5001/v1alpha/convert/source"
url = "http://localhost:5001/v1/convert/source"
payload = {
"options": {
"from_formats": ["docx", "pptx", "html", "image", "pdf", "asciidoc", "md", "xlsx"],
@@ -140,7 +141,6 @@ payload = {
"pdf_backend": "dlparse_v2",
"table_mode": "fast",
"abort_on_error": False,
"return_as_file": False,
},
"http_sources": [{"url": "https://arxiv.org/pdf/2206.01062"}]
}
@@ -179,7 +179,7 @@ cat <<EOF > /tmp/request_body.json
EOF
# 3. POST the request to the docling service
curl -X POST "localhost:5001/v1alpha/convert/source" \
curl -X POST "localhost:5001/v1/convert/source" \
-H "Content-Type: application/json" \
-d @/tmp/request_body.json
```
@@ -188,14 +188,14 @@ curl -X POST "localhost:5001/v1alpha/convert/source" \
### File endpoint
The endpoint is: `/v1alpha/convert/file`, listening for POST requests of Form payloads (necessary as the files are sent as multipart/form data). You can send one or multiple files.
The endpoint is: `/v1/convert/file`, listening for POST requests of Form payloads (necessary as the files are sent as multipart/form data). You can send one or multiple files.
<details>
<summary>CURL example:</summary>
```sh
curl -X 'POST' \
'http://127.0.0.1:5001/v1alpha/convert/file' \
'http://127.0.0.1:5001/v1/convert/file' \
-H 'accept: application/json' \
-H 'Content-Type: multipart/form-data' \
-F 'ocr_engine=easyocr' \
@@ -211,7 +211,6 @@ curl -X 'POST' \
-F 'abort_on_error=false' \
-F 'to_formats=md' \
-F 'to_formats=text' \
-F 'return_as_file=false' \
-F 'do_ocr=true'
```
@@ -224,7 +223,7 @@ curl -X 'POST' \
import httpx
async_client = httpx.AsyncClient(timeout=60.0)
url = "http://localhost:5001/v1alpha/convert/file"
url = "http://localhost:5001/v1/convert/file"
parameters = {
"from_formats": ["docx", "pptx", "html", "image", "pdf", "asciidoc", "md", "xlsx"],
"to_formats": ["md", "json", "html", "text", "doctags"],
@@ -236,7 +235,6 @@ parameters = {
"pdf_backend": "dlparse_v2",
"table_mode": "fast",
"abort_on_error": False,
"return_as_file": False
}
current_dir = os.path.dirname(__file__)
@@ -288,33 +286,42 @@ The api option is specified with:
Example URLs are:
- `http://localhost:8000/v1/chat/completions` for the local vllm api, with example `params`:
- `http://localhost:8000/v1/chat/completions` for the local vllm api, with example `picture_description_api`:
- the `HuggingFaceTB/SmolVLM-256M-Instruct` model
```json
{
"url": "http://localhost:8000/v1/chat/completions",
"params": {
"model": "HuggingFaceTB/SmolVLM-256M-Instruct",
"max_completion_tokens": 200,
}
}
```
- the `ibm-granite/granite-vision-3.2-2b` model
```json
{
"url": "http://localhost:8000/v1/chat/completions",
"params": {
"model": "ibm-granite/granite-vision-3.2-2b",
"max_completion_tokens": 200,
}
}
```
- `http://localhost:11434/v1/chat/completions` for the local ollama api, with example `params`:
- `http://localhost:11434/v1/chat/completions` for the local Ollama api, with example `picture_description_api`:
- the `granite3.2-vision:2b` model
```json
{
"url": "http://localhost:11434/v1/chat/completions",
"params": {
"model": "granite3.2-vision:2b"
}
}
```
```
Note that when using `picture_description_api`, the server must be launched with `DOCLING_SERVE_ENABLE_REMOTE_SERVICES=true`.
@@ -345,19 +352,19 @@ The response can be a JSON Document or a File.
`processing_time` is the Docling processing time in seconds, and `timings` (when enabled in the backend) provides the detailed
timing of all the internal Docling components.
- If you set the parameter `return_as_file` to True, the response will be a zip file.
- If multiple files are generated (multiple inputs, or one input but multiple outputs with `return_as_file` True), the response will be a zip file.
- If you set the parameter `target` to the zip mode, the response will be a zip file.
- If multiple files are generated (multiple inputs, or one input but multiple outputs with the zip target mode), the response will be a zip file.
## Asynchronous API
Both `/v1alpha/convert/source` and `/v1alpha/convert/file` endpoints are available as asynchronous variants.
Both `/v1/convert/source` and `/v1/convert/file` endpoints are available as asynchronous variants.
The advantage of the asynchronous endpoints is the possible to interrupt the connection, check for the progress update and fetch the result.
This approach is more resilient against network stabilities and allows the client application logic to easily interleave conversion with other tasks.
This approach is more resilient against network instabilities and allows the client application logic to easily interleave conversion with other tasks.
Launch an asynchronous conversion with:
- `POST /v1alpha/convert/source/async` when providing the input as sources.
- `POST /v1alpha/convert/file/async` when providing the input as multipart-form files.
- `POST /v1/convert/source/async` when providing the input as sources.
- `POST /v1/convert/file/async` when providing the input as multipart-form files.
The response format is a task detail:
@@ -374,7 +381,7 @@ The response format is a task detail:
For checking the progress of the conversion task and wait for its completion, use the endpoint:
- `GET /v1alpha/status/poll/{task_id}`
- `GET /v1/status/poll/{task_id}`
<details>
<summary>Example waiting loop:</summary>
@@ -399,9 +406,9 @@ while task["task_status"] not in ("success", "failure"):
### Subscribe with websockets
Using websocket you can get the client application being notified about updates of the conversion task.
To start the websocker connection, use the endpoint:
To start the websocket connection, use the endpoint:
- `/v1alpha/status/ws/{task_id}`
- `/v1/status/ws/{task_id}`
Websocket messages are JSON object with the following structure:
@@ -414,19 +421,19 @@ Websocket messages are JSON object with the following structure:
```
<details>
<summary>Example websocker usage:</summary>
<summary>Example websocket usage:</summary>
```python
from websockets.sync.client import connect
uri = f"ws://{base_url}/v1alpha/status/ws/{task['task_id']}"
uri = f"ws://{base_url}/v1/status/ws/{task['task_id']}"
with connect(uri) as websocket:
for message in websocket:
try:
payload = json.loads(message)
if payload["message"] == "error":
break
if payload["message"] == "error" and payload["task"]["task_status"] in ("success", "failure"):
if payload["message"] == "update" and payload["task"]["task_status"] in ("success", "failure"):
break
except:
break
@@ -438,4 +445,4 @@ with connect(uri) as websocket:
When the task is completed, the result can be fetched with the endpoint:
- `GET /v1alpha/result/{task_id}`
- `GET /v1/result/{task_id}`

80
docs/v1_migration.md Normal file
View File

@@ -0,0 +1,80 @@
# Migration to the `v1` API
Docling Serve from the initial prototype `v1alpha` API to the stable `v1` API.
This page provides simple instructions to upgrade your application to the new API.
## API changes
The breaking changes introduced in the `v1` release of Docling Serve are designed to provide a stable schema which
allows the project to provide new capabilities as new type of input sources, targets and also the definition of callback for event-driven applications.
### Endpoint names
All endpoints are renamed from `/v1alpha/` to `/v1/`.
### Sources
When using the `/v1/convert/source` endpoint, input documents have to be specified with the `sources: []` argument, which is replacing the usage of `file_sources` and `http_sources`.
Old version:
```jsonc
{
"options": {}, // conversion options
"file_sources": [ // input documents provided as base64-encoded strings
{"base64_string": "abc123...", "filename": "file.pdf"}
],
"http_sources": [ // input documents provided as http urls
{"url": "https://..."}
]
}
```
New version:
```jsonc
{
"options": {}, // conversion options
"sources": [
// input document provided as base64-encoded string
{"kind": "file", "base64_string": "abc123...", "filename": "file.pdf"},
// input document provided as http urls
{"kind": "http", "url": "https://..."},
]
}
```
### Targets
Switching between output formats, i.e. from the JSON inbody response to the zip archive response, users have to specify the `target` argument, which is replacing the usage of `options.return_as_file`.
Old version:
```jsonc
{
"options": {
"return_as_file": true // <-- to be removed
},
// ...
}
```
New version:
```jsonc
{
"options": {},
"target": {"kind": "zip"}, // <-- add this
// ...
}
```
## Continue with the old API
If you are not able to apply the changes above to your application, please consider pinning of the previous `v0.x` container images, e.g.
```sh
podman run -p 5001:5001 -e DOCLING_SERVE_ENABLE_UI=1 quay.io/docling-project/docling-serve:v0.16.1
```
_Note that the old prototype API will not be supported in new `v1.x` versions._

View File

@@ -0,0 +1,124 @@
import json
import time
from pathlib import Path
import httpx
from pydantic import BaseModel
from pypdf import PdfReader
from docling_core.types.doc.document import DoclingDocument
# Variables to use
path_to_pdf = Path("./tests/2206.01062v1.pdf")
pages_per_file = 4
base_url = "http://localhost:5001/v1"
out_dir = Path("examples/splitted_pdf/")
class ConvertedSplittedPdf(BaseModel):
task_id: str
conversion_finished: bool = False
result: dict | None = None
def get_task_result(task_id: str):
response = httpx.get(
f"{base_url}/result/{task_id}",
timeout=15,
)
return response.json()
def check_task_status(task_id: str):
response = httpx.get(f"{base_url}/status/poll/{task_id}", timeout=15)
task = response.json()
task_status = task["task_status"]
task_finished = False
if task_status == "success":
task_finished = True
if task_status in ("failure", "revoked"):
raise RuntimeError("A conversion failed")
time.sleep(5)
return task_finished
def post_file(file_path: Path, start_page: int, end_page: int):
payload = {
"to_formats": ["json"],
"image_export_mode": "placeholder",
"ocr": False,
"abort_on_error": False,
"page_range": [start_page, end_page],
}
files = {
"files": (file_path.name, file_path.open("rb"), "application/pdf"),
}
response = httpx.post(
f"{base_url}/convert/file/async",
files=files,
data=payload,
timeout=15,
)
task = response.json()
return task["task_id"]
def main():
filename = path_to_pdf
splitted_pdfs: list[ConvertedSplittedPdf] = []
with open(filename, "rb") as input_pdf_file:
pdf_reader = PdfReader(input_pdf_file)
total_pages = len(pdf_reader.pages)
for start_page in range(0, total_pages, pages_per_file):
task_id = post_file(
filename, start_page + 1, min(start_page + pages_per_file, total_pages)
)
splitted_pdfs.append(ConvertedSplittedPdf(task_id=task_id))
all_files_converted = False
while not all_files_converted:
found_conversion_running = False
for splitted_pdf in splitted_pdfs:
if not splitted_pdf.conversion_finished:
found_conversion_running = True
print("checking conversion status...")
splitted_pdf.conversion_finished = check_task_status(
splitted_pdf.task_id
)
if not found_conversion_running:
all_files_converted = True
for splitted_pdf in splitted_pdfs:
splitted_pdf.result = get_task_result(splitted_pdf.task_id)
files = []
for i, splitted_pdf in enumerate(splitted_pdfs):
json_content = json.dumps(
splitted_pdf.result.get("document").get("json_content"), indent=2
)
doc = DoclingDocument.model_validate_json(json_content)
filename = f"{out_dir}/splited_json_{i}.json"
doc.save_as_json(filename=filename)
files.append(filename)
docs = [DoclingDocument.load_from_json(filename=f) for f in files]
concate_doc = DoclingDocument.concatenate(docs=docs)
exp_json_file = Path(f"{out_dir}/concatenated.json")
concate_doc.save_as_json(exp_json_file)
print("Finished")
if __name__ == "__main__":
main()

BIN
img/fastapi-ui.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 226 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 24 KiB

View File

@@ -1,6 +1,7 @@
tesseract
tesseract-devel
tesseract-langpack-eng
tesseract-osd
leptonica-devel
libglvnd-glx
glib2

View File

@@ -1,6 +1,6 @@
[project]
name = "docling-serve"
version = "0.11.0" # DO NOT EDIT, updated automatically
version = "1.6.0" # DO NOT EDIT, updated automatically
description = "Running Docling as a service"
license = {text = "MIT"}
authors = [
@@ -8,7 +8,6 @@ authors = [
{name="Guillaume Moutier", email="gmoutier@redhat.com"},
{name="Anil Vishnoi", email="avishnoi@redhat.com"},
{name="Panos Vagenas", email="pva@zurich.ibm.com"},
{name="Panos Vagenas", email="pva@zurich.ibm.com"},
{name="Christoph Auer", email="cau@zurich.ibm.com"},
{name="Peter Staar", email="taa@zurich.ibm.com"},
]
@@ -23,48 +22,46 @@ readme = "README.md"
classifiers = [
"License :: OSI Approved :: MIT License",
"Operating System :: OS Independent",
# "Development Status :: 5 - Production/Stable",
"Development Status :: 5 - Production/Stable",
"Intended Audience :: Developers",
"Typing :: Typed",
"Programming Language :: Python :: 3"
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11",
"Programming Language :: Python :: 3.12",
"Programming Language :: Python :: 3.13",
]
requires-python = ">=3.10"
dependencies = [
"docling[vlm]~=2.28",
"mlx-vlm~=0.1.12; sys_platform == 'darwin' and platform_machine == 'arm64'",
"docling~=2.38",
"docling-core>=2.45.0",
"docling-jobkit[kfp,rq,vlm]>=1.6.0,<2.0.0",
"fastapi[standard]~=0.115",
"httpx~=0.28",
"kfp[kubernetes]>=2.10.0",
"pydantic~=2.10",
"pydantic-settings~=2.4",
"python-multipart>=0.0.14,<0.1.0",
"typer~=0.12",
"uvicorn[standard]>=0.29.0,<1.0.0",
"websockets~=14.0",
"scalar-fastapi>=1.0.3",
"docling-mcp>=1.0.0",
]
[project.optional-dependencies]
ui = [
"gradio~=5.9",
"pydantic<2.11.0", # fix compatibility between gradio and new pydantic 2.11
"gradio>=5.23.2,<6.0.0",
]
tesserocr = [
"tesserocr~=2.7"
]
rapidocr = [
"rapidocr-onnxruntime~=1.4; python_version<'3.13'",
"onnxruntime~=1.7",
]
cpu = [
"torch>=2.6.0",
"torchvision>=0.21.0",
]
cu124 = [
"torch>=2.6.0",
"torchvision>=0.21.0",
"rapidocr (>=3.3,<4.0.0) ; python_version < '3.14'",
"onnxruntime (>=1.7.0,<2.0.0)",
"modelscope>=1.29.0",
]
flash-attn = [
"flash-attn~=2.7.0; sys_platform == 'linux' and platform_machine == 'x86_64'"
"flash-attn~=2.8.2; sys_platform == 'linux' and platform_machine == 'x86_64'"
]
[dependency-groups]
@@ -72,6 +69,7 @@ dev = [
"asgi-lifespan~=2.0",
"mypy~=1.11",
"pre-commit-uv~=4.1",
"pypdf>=6.0.0",
"pytest~=8.3",
"pytest-asyncio~=0.24",
"pytest-check~=2.4",
@@ -79,40 +77,110 @@ dev = [
"ruff>=0.9.6",
]
pypi = [
"torch>=2.7.1",
"torchvision>=0.22.1",
]
cpu = [
"torch>=2.7.1",
"torchvision>=0.22.1",
]
# cu124 = [
# "torch>=2.6.0",
# "torchvision>=0.21.0",
# ]
cu126 = [
"torch>=2.7.1",
"torchvision>=0.22.1",
]
cu128 = [
"torch>=2.7.1",
"torchvision>=0.22.1",
]
rocm = [
"torch>=2.7.1",
"torchvision>=0.22.1",
"pytorch-triton-rocm>=3.3.1 ; sys_platform == 'linux' and platform_machine == 'x86_64'",
]
[tool.uv]
package = true
default-groups = ["dev", "pypi"]
conflicts = [
[
{ extra = "cpu" },
{ extra = "cu124" },
{ group = "pypi" },
{ group = "cpu" },
# { group = "cu124" },
{ group = "cu126" },
{ group = "cu128" },
{ group = "rocm" },
],
[
{ extra = "cpu" },
{ extra = "flash-attn" },
],]
]
environments = ["sys_platform != 'darwin' or platform_machine != 'x86_64'"]
override-dependencies = [
"urllib3~=2.0"
"urllib3~=2.0",
"xgrammar>=0.1.24"
]
[tool.uv.sources]
torch = [
{ index = "pytorch-cpu", extra = "cpu" },
{ index = "pytorch-cu124", extra = "cu124" },
{ index = "pytorch-pypi", group = "pypi" },
{ index = "pytorch-cpu", group = "cpu" },
# { index = "pytorch-cu124", group = "cu124", marker = "sys_platform == 'linux'" },
{ index = "pytorch-cu126", group = "cu126", marker = "sys_platform == 'linux'" },
{ index = "pytorch-cu128", group = "cu128", marker = "sys_platform == 'linux'" },
{ index = "pytorch-rocm", group = "rocm", marker = "sys_platform == 'linux'" },
]
torchvision = [
{ index = "pytorch-cpu", extra = "cpu" },
{ index = "pytorch-cu124", extra = "cu124" },
{ index = "pytorch-pypi", group = "pypi" },
{ index = "pytorch-cpu", group = "cpu" },
# { index = "pytorch-cu124", group = "cu124", marker = "sys_platform == 'linux'" },
{ index = "pytorch-cu126", group = "cu126", marker = "sys_platform == 'linux'" },
{ index = "pytorch-cu128", group = "cu128", marker = "sys_platform == 'linux'" },
{ index = "pytorch-rocm", group = "rocm", marker = "sys_platform == 'linux'" },
]
pytorch-triton-rocm = [
{ index = "pytorch-rocm", marker = "sys_platform == 'linux'" },
]
# docling-jobkit = { git = "https://github.com/docling-project/docling-jobkit/", rev = "main" }
# docling-jobkit = { path = "../docling-jobkit", editable = true }
[[tool.uv.index]]
name = "pytorch-pypi"
url = "https://pypi.org/simple"
explicit = true
[[tool.uv.index]]
name = "pytorch-cpu"
url = "https://download.pytorch.org/whl/cpu"
explicit = true
# [[tool.uv.index]]
# name = "pytorch-cu124"
# url = "https://download.pytorch.org/whl/cu124"
# explicit = true
[[tool.uv.index]]
name = "pytorch-cu124"
url = "https://download.pytorch.org/whl/cu124"
name = "pytorch-cu126"
url = "https://download.pytorch.org/whl/cu126"
explicit = true
[[tool.uv.index]]
name = "pytorch-cu128"
url = "https://download.pytorch.org/whl/cu128"
explicit = true
[[tool.uv.index]]
name = "pytorch-rocm"
url = "https://download.pytorch.org/whl/rocm6.3"
explicit = true
[tool.setuptools.packages.find]
@@ -183,7 +251,7 @@ ignore = [
max-complexity = 15
[tool.ruff.lint.isort.sections]
"docling" = ["docling", "docling_core"]
"docling" = ["docling", "docling_core", "docling_jobkit"]
[tool.ruff.lint.isort]
combine-as-imports = true
@@ -212,6 +280,8 @@ module = [
"kfp.*",
"kfp_server_api.*",
"mlx_vlm.*",
"mlx.*",
"scalar_fastapi.*",
]
ignore_missing_imports = true

View File

@@ -6,17 +6,22 @@ import pytest
import pytest_asyncio
from pytest_check import check
from docling_serve.settings import docling_serve_settings
@pytest_asyncio.fixture
async def async_client():
async with httpx.AsyncClient(timeout=60.0) as client:
headers = {}
if docling_serve_settings.api_key:
headers["X-Api-Key"] = docling_serve_settings.api_key
async with httpx.AsyncClient(timeout=60.0, headers=headers) as client:
yield client
@pytest.mark.asyncio
async def test_convert_file(async_client):
"""Test convert single file to all outputs"""
url = "http://localhost:5001/v1alpha/convert/file"
url = "http://localhost:5001/v1/convert/file"
options = {
"from_formats": [
"docx",
@@ -37,7 +42,6 @@ async def test_convert_file(async_client):
"pdf_backend": "dlparse_v2",
"table_mode": "fast",
"abort_on_error": False,
"return_as_file": False,
}
current_dir = os.path.dirname(__file__)

View File

@@ -6,10 +6,15 @@ import httpx
import pytest
import pytest_asyncio
from docling_serve.settings import docling_serve_settings
@pytest_asyncio.fixture
async def async_client():
async with httpx.AsyncClient(timeout=60.0) as client:
headers = {}
if docling_serve_settings.api_key:
headers["X-Api-Key"] = docling_serve_settings.api_key
async with httpx.AsyncClient(timeout=60.0, headers=headers) as client:
yield client
@@ -17,13 +22,12 @@ async def async_client():
async def test_convert_url(async_client):
"""Test convert URL to all outputs"""
base_url = "http://localhost:5001/v1alpha"
base_url = "http://localhost:5001/v1"
payload = {
"to_formats": ["md", "json", "html"],
"image_export_mode": "placeholder",
"ocr": False,
"abort_on_error": False,
"return_as_file": False,
}
file_path = Path(__file__).parent / "2206.01062v1.pdf"

View File

@@ -5,17 +5,22 @@ import pytest
import pytest_asyncio
from pytest_check import check
from docling_serve.settings import docling_serve_settings
@pytest_asyncio.fixture
async def async_client():
async with httpx.AsyncClient(timeout=60.0) as client:
headers = {}
if docling_serve_settings.api_key:
headers["X-Api-Key"] = docling_serve_settings.api_key
async with httpx.AsyncClient(timeout=60.0, headers=headers) as client:
yield client
@pytest.mark.asyncio
async def test_convert_url(async_client):
"""Test convert URL to all outputs"""
url = "http://localhost:5001/v1alpha/convert/source"
url = "http://localhost:5001/v1/convert/source"
payload = {
"options": {
"from_formats": [
@@ -37,9 +42,8 @@ async def test_convert_url(async_client):
"pdf_backend": "dlparse_v2",
"table_mode": "fast",
"abort_on_error": False,
"return_as_file": False,
},
"http_sources": [{"url": "https://arxiv.org/pdf/2206.01062"}],
"sources": [{"kind": "http", "url": "https://arxiv.org/pdf/2206.01062"}],
}
print(json.dumps(payload, indent=2))

View File

@@ -6,28 +6,35 @@ import pytest
import pytest_asyncio
from websockets.sync.client import connect
from docling_serve.settings import docling_serve_settings
@pytest_asyncio.fixture
async def async_client():
async with httpx.AsyncClient(timeout=60.0) as client:
headers = {}
if docling_serve_settings.api_key:
headers["X-Api-Key"] = docling_serve_settings.api_key
async with httpx.AsyncClient(timeout=60.0, headers=headers) as client:
yield client
@pytest.mark.asyncio
async def test_convert_url(async_client: httpx.AsyncClient):
"""Test convert URL to all outputs"""
headers = {}
if docling_serve_settings.api_key:
headers["X-Api-Key"] = docling_serve_settings.api_key
doc_filename = Path("tests/2408.09869v5.pdf")
encoded_doc = base64.b64encode(doc_filename.read_bytes()).decode()
base_url = "http://localhost:5001/v1alpha"
base_url = "http://localhost:5001/v1"
payload = {
"options": {
"to_formats": ["md", "json"],
"image_export_mode": "placeholder",
"ocr": True,
"abort_on_error": False,
"return_as_file": False,
# "do_picture_description": True,
# "picture_description_api": {
# "url": "http://localhost:11434/v1/chat/completions",
@@ -39,8 +46,14 @@ async def test_convert_url(async_client: httpx.AsyncClient):
# "repo_id": "HuggingFaceTB/SmolVLM-256M-Instruct",
# },
},
# "http_sources": [{"url": "https://arxiv.org/pdf/2501.17887"}],
"file_sources": [{"base64_string": encoded_doc, "filename": doc_filename.name}],
# "sources": [{"kind": "http", "url": "https://arxiv.org/pdf/2501.17887"}],
"sources": [
{
"kind": "file",
"base64_string": encoded_doc,
"filename": doc_filename.name,
}
],
}
# print(json.dumps(payload, indent=2))
@@ -52,7 +65,7 @@ async def test_convert_url(async_client: httpx.AsyncClient):
task = response.json()
uri = f"ws://localhost:5001/v1alpha/status/ws/{task['task_id']}"
uri = f"ws://localhost:5001/v1/status/ws/{task['task_id']}?api_key={docling_serve_settings.api_key}"
with connect(uri) as websocket:
for message in websocket:
print(message)

View File

@@ -6,10 +6,15 @@ import httpx
import pytest
import pytest_asyncio
from docling_serve.settings import docling_serve_settings
@pytest_asyncio.fixture
async def async_client():
async with httpx.AsyncClient(timeout=60.0) as client:
headers = {}
if docling_serve_settings.api_key:
headers["X-Api-Key"] = docling_serve_settings.api_key
async with httpx.AsyncClient(timeout=60.0, headers=headers) as client:
yield client
@@ -25,16 +30,15 @@ async def test_convert_url(async_client):
"https://arxiv.org/pdf/2311.18481",
]
base_url = "http://localhost:5001/v1alpha"
base_url = "http://localhost:5001/v1"
payload = {
"options": {
"to_formats": ["md", "json"],
"image_export_mode": "placeholder",
"ocr": True,
"abort_on_error": False,
"return_as_file": False,
},
"http_sources": [{"url": random.choice(example_docs)}],
"sources": [{"kind": "http", "url": random.choice(example_docs)}],
}
print(json.dumps(payload, indent=2))
@@ -58,3 +62,60 @@ async def test_convert_url(async_client):
time.sleep(2)
assert task["task_status"] == "success"
@pytest.mark.asyncio
@pytest.mark.parametrize("include_converted_doc", [False, True])
async def test_chunk_url(async_client, include_converted_doc: bool):
"""Test chunk URL"""
example_docs = [
"https://arxiv.org/pdf/2311.18481",
]
base_url = "http://localhost:5001/v1"
payload = {
"sources": [{"kind": "http", "url": random.choice(example_docs)}],
"include_converted_doc": include_converted_doc,
}
response = await async_client.post(
f"{base_url}/chunk/hybrid/source/async", json=payload
)
assert response.status_code == 200, "Response should be 200 OK"
task = response.json()
print(json.dumps(task, indent=2))
while task["task_status"] not in ("success", "failure"):
response = await async_client.get(f"{base_url}/status/poll/{task['task_id']}")
assert response.status_code == 200, "Response should be 200 OK"
task = response.json()
print(f"{task['task_status']=}")
print(f"{task['task_position']=}")
time.sleep(2)
assert task["task_status"] == "success"
result_resp = await async_client.get(f"{base_url}/result/{task['task_id']}")
assert result_resp.status_code == 200, "Response should be 200 OK"
result = result_resp.json()
print("Got result.")
assert "chunks" in result
assert len(result["chunks"]) > 0
assert "documents" in result
assert len(result["documents"]) > 0
assert result["documents"][0]["status"] == "success"
if include_converted_doc:
assert result["documents"][0]["content"]["json_content"] is not None
assert (
result["documents"][0]["content"]["json_content"]["schema_name"]
== "DoclingDocument"
)
else:
assert result["documents"][0]["content"]["json_content"] is None

View File

@@ -5,17 +5,22 @@ import pytest
import pytest_asyncio
from pytest_check import check
from docling_serve.settings import docling_serve_settings
@pytest_asyncio.fixture
async def async_client():
async with httpx.AsyncClient(timeout=60.0) as client:
headers = {}
if docling_serve_settings.api_key:
headers["X-Api-Key"] = docling_serve_settings.api_key
async with httpx.AsyncClient(timeout=60.0, headers=headers) as client:
yield client
@pytest.mark.asyncio
async def test_convert_file(async_client):
"""Test convert single file to all outputs"""
url = "http://localhost:5001/v1alpha/convert/file"
url = "http://localhost:5001/v1/convert/file"
options = {
"from_formats": [
"docx",
@@ -36,7 +41,6 @@ async def test_convert_file(async_client):
"pdf_backend": "dlparse_v2",
"table_mode": "fast",
"abort_on_error": False,
"return_as_file": False,
}
current_dir = os.path.dirname(__file__)

View File

@@ -3,17 +3,22 @@ import pytest
import pytest_asyncio
from pytest_check import check
from docling_serve.settings import docling_serve_settings
@pytest_asyncio.fixture
async def async_client():
async with httpx.AsyncClient(timeout=60.0) as client:
headers = {}
if docling_serve_settings.api_key:
headers["X-Api-Key"] = docling_serve_settings.api_key
async with httpx.AsyncClient(timeout=60.0, headers=headers) as client:
yield client
@pytest.mark.asyncio
async def test_convert_url(async_client):
"""Test convert URL to all outputs"""
url = "http://localhost:5001/v1alpha/convert/source"
url = "http://localhost:5001/v1/convert/source"
payload = {
"options": {
"from_formats": [
@@ -35,12 +40,12 @@ async def test_convert_url(async_client):
"pdf_backend": "dlparse_v2",
"table_mode": "fast",
"abort_on_error": False,
"return_as_file": False,
},
"http_sources": [
{"url": "https://arxiv.org/pdf/2206.01062"},
{"url": "https://arxiv.org/pdf/2408.09869"},
"sources": [
{"kind": "http", "url": "https://arxiv.org/pdf/2206.01062"},
{"kind": "http", "url": "https://arxiv.org/pdf/2408.09869"},
],
"target": {"kind": "zip"},
}
response = await async_client.post(url, json=payload)

View File

@@ -6,17 +6,22 @@ import pytest
import pytest_asyncio
from pytest_check import check
from docling_serve.settings import docling_serve_settings
@pytest_asyncio.fixture
async def async_client():
async with httpx.AsyncClient(timeout=60.0) as client:
headers = {}
if docling_serve_settings.api_key:
headers["X-Api-Key"] = docling_serve_settings.api_key
async with httpx.AsyncClient(timeout=60.0, headers=headers) as client:
yield client
@pytest.mark.asyncio
async def test_convert_url(async_client):
"""Test convert URL to all outputs"""
base_url = "http://localhost:5001/v1alpha"
base_url = "http://localhost:5001/v1"
payload = {
"options": {
"from_formats": [
@@ -38,12 +43,12 @@ async def test_convert_url(async_client):
"pdf_backend": "dlparse_v2",
"table_mode": "fast",
"abort_on_error": False,
"return_as_file": False,
},
"http_sources": [
{"url": "https://arxiv.org/pdf/2206.01062"},
{"url": "https://arxiv.org/pdf/2408.09869"},
"sources": [
{"kind": "http", "url": "https://arxiv.org/pdf/2206.01062"},
{"kind": "http", "url": "https://arxiv.org/pdf/2408.09869"},
],
"target": {"kind": "zip"},
}
response = await async_client.post(f"{base_url}/convert/source/async", json=payload)

View File

@@ -1,6 +1,8 @@
import asyncio
import io
import json
import os
import zipfile
import pytest
import pytest_asyncio
@@ -8,7 +10,10 @@ from asgi_lifespan import LifespanManager
from httpx import ASGITransport, AsyncClient
from pytest_check import check
from docling_core.types.doc import DoclingDocument, PictureItem
from docling_serve.app import create_app
from docling_serve.settings import docling_serve_settings
@pytest.fixture(scope="session")
@@ -16,6 +21,14 @@ def event_loop():
return asyncio.get_event_loop()
@pytest.fixture(scope="session")
def auth_headers():
headers = {}
if docling_serve_settings.api_key:
headers["X-Api-Key"] = docling_serve_settings.api_key
return headers
@pytest_asyncio.fixture(scope="session")
async def app():
app = create_app()
@@ -42,10 +55,10 @@ async def test_health(client: AsyncClient):
@pytest.mark.asyncio
async def test_convert_file(client: AsyncClient):
async def test_convert_file(client: AsyncClient, auth_headers: dict):
"""Test convert single file to all outputs"""
endpoint = "/v1alpha/convert/file"
endpoint = "/v1/convert/file"
options = {
"from_formats": [
"docx",
@@ -66,7 +79,6 @@ async def test_convert_file(client: AsyncClient):
"pdf_backend": "dlparse_v2",
"table_mode": "fast",
"abort_on_error": False,
"return_as_file": False,
}
current_dir = os.path.dirname(__file__)
@@ -76,7 +88,9 @@ async def test_convert_file(client: AsyncClient):
"files": ("2206.01062v1.pdf", open(file_path, "rb"), "application/pdf"),
}
response = await client.post(endpoint, files=files, data=options)
response = await client.post(
endpoint, files=files, data=options, headers=auth_headers
)
assert response.status_code == 200, "Response should be 200 OK"
data = response.json()
@@ -154,3 +168,39 @@ async def test_convert_file(client: AsyncClient):
data["document"]["doctags_content"],
msg=f"DocTags document should contain '<doctag><page_header>'. Received: {safe_slice(data['document']['doctags_content'])}",
)
@pytest.mark.asyncio
async def test_referenced_artifacts(client: AsyncClient, auth_headers: dict):
"""Test that paths in the zip file are relative to the zip file root."""
endpoint = "/v1/convert/file"
options = {
"to_formats": ["json"],
"image_export_mode": "referenced",
"target_type": "zip",
"ocr": False,
}
current_dir = os.path.dirname(__file__)
file_path = os.path.join(current_dir, "2206.01062v1.pdf")
files = {
"files": ("2206.01062v1.pdf", open(file_path, "rb"), "application/pdf"),
}
response = await client.post(
endpoint, files=files, data=options, headers=auth_headers
)
assert response.status_code == 200, "Response should be 200 OK"
with zipfile.ZipFile(io.BytesIO(response.content)) as zip_file:
namelist = zip_file.namelist()
for file in namelist:
if file.endswith(".json"):
doc = DoclingDocument.model_validate(json.loads(zip_file.read(file)))
for item, _level in doc.iterate_items():
if isinstance(item, PictureItem):
assert item.image is not None
print(f"{item.image.uri}=")
assert str(item.image.uri) in namelist

88
tests/test_file_opts.py Normal file
View File

@@ -0,0 +1,88 @@
import asyncio
import json
import os
import pytest
import pytest_asyncio
from asgi_lifespan import LifespanManager
from httpx import ASGITransport, AsyncClient
from docling_core.types import DoclingDocument
from docling_core.types.doc.document import PictureDescriptionData
from docling_serve.app import create_app
from docling_serve.settings import docling_serve_settings
@pytest.fixture(scope="session")
def event_loop():
return asyncio.get_event_loop()
@pytest.fixture(scope="session")
def auth_headers():
headers = {}
if docling_serve_settings.api_key:
headers["X-Api-Key"] = docling_serve_settings.api_key
return headers
@pytest_asyncio.fixture(scope="session")
async def app():
app = create_app()
async with LifespanManager(app) as manager:
print("Launching lifespan of app.")
yield manager.app
@pytest_asyncio.fixture(scope="session")
async def client(app):
async with AsyncClient(
transport=ASGITransport(app=app), base_url="http://app.io"
) as client:
print("Client is ready")
yield client
@pytest.mark.asyncio
async def test_convert_file(client: AsyncClient, auth_headers: dict):
"""Test convert single file to all outputs"""
endpoint = "/v1/convert/file"
options = {
"to_formats": ["md", "json"],
"image_export_mode": "placeholder",
"ocr": False,
"do_picture_description": True,
"picture_description_api": json.dumps(
{
"url": "http://localhost:11434/v1/chat/completions", # ollama
"params": {"model": "granite3.2-vision:2b"},
"timeout": 60,
"prompt": "Describe this image in a few sentences. ",
}
),
}
current_dir = os.path.dirname(__file__)
file_path = os.path.join(current_dir, "2206.01062v1.pdf")
files = {
"files": ("2206.01062v1.pdf", open(file_path, "rb"), "application/pdf"),
}
response = await client.post(
endpoint, files=files, data=options, headers=auth_headers
)
assert response.status_code == 200, "Response should be 200 OK"
data = response.json()
doc = DoclingDocument.model_validate(data["document"]["json_content"])
for pic in doc.pictures:
for ann in pic.annotations:
if isinstance(ann, PictureDescriptionData):
print(f"{pic.self_ref}")
print(ann.text)

View File

@@ -1,54 +0,0 @@
from docling_serve.datamodel.convert import (
ConvertDocumentsOptions,
PictureDescriptionApi,
)
from docling_serve.docling_conversion import (
_hash_pdf_format_option,
get_pdf_pipeline_opts,
)
def test_options_cache_key():
hashes = set()
opts = ConvertDocumentsOptions()
pipeline_opts = get_pdf_pipeline_opts(opts)
hash = _hash_pdf_format_option(pipeline_opts)
assert hash not in hashes
hashes.add(hash)
opts.do_picture_description = True
pipeline_opts = get_pdf_pipeline_opts(opts)
hash = _hash_pdf_format_option(pipeline_opts)
# pprint(pipeline_opts.pipeline_options.model_dump(serialize_as_any=True))
assert hash not in hashes
hashes.add(hash)
opts.picture_description_api = PictureDescriptionApi(
url="http://localhost",
params={"model": "mymodel"},
prompt="Hello 1",
)
pipeline_opts = get_pdf_pipeline_opts(opts)
hash = _hash_pdf_format_option(pipeline_opts)
# pprint(pipeline_opts.pipeline_options.model_dump(serialize_as_any=True))
assert hash not in hashes
hashes.add(hash)
opts.picture_description_api = PictureDescriptionApi(
url="http://localhost",
params={"model": "your-model"},
prompt="Hello 1",
)
pipeline_opts = get_pdf_pipeline_opts(opts)
hash = _hash_pdf_format_option(pipeline_opts)
# pprint(pipeline_opts.pipeline_options.model_dump(serialize_as_any=True))
assert hash not in hashes
hashes.add(hash)
opts.picture_description_api.prompt = "World"
pipeline_opts = get_pdf_pipeline_opts(opts)
hash = _hash_pdf_format_option(pipeline_opts)
# pprint(pipeline_opts.pipeline_options.model_dump(serialize_as_any=True))
assert hash not in hashes
hashes.add(hash)

View File

@@ -17,6 +17,14 @@ def event_loop():
return asyncio.get_event_loop()
@pytest.fixture(scope="session")
def auth_headers():
headers = {}
if docling_serve_settings.api_key:
headers["X-Api-Key"] = docling_serve_settings.api_key
return headers
@pytest_asyncio.fixture(scope="session")
async def app():
app = create_app()
@@ -35,7 +43,7 @@ async def client(app):
yield client
async def convert_file(client: AsyncClient):
async def convert_file(client: AsyncClient, auth_headers: dict):
doc_filename = Path("tests/2408.09869v5.pdf")
encoded_doc = base64.b64encode(doc_filename.read_bytes()).decode()
@@ -43,10 +51,18 @@ async def convert_file(client: AsyncClient):
"options": {
"to_formats": ["json"],
},
"file_sources": [{"base64_string": encoded_doc, "filename": doc_filename.name}],
"sources": [
{
"kind": "file",
"base64_string": encoded_doc,
"filename": doc_filename.name,
}
],
}
response = await client.post("/v1alpha/convert/source/async", json=payload)
response = await client.post(
"/v1/convert/source/async", json=payload, headers=auth_headers
)
assert response.status_code == 200, "Response should be 200 OK"
task = response.json()
@@ -54,7 +70,9 @@ async def convert_file(client: AsyncClient):
print(json.dumps(task, indent=2))
while task["task_status"] not in ("success", "failure"):
response = await client.get(f"/v1alpha/status/poll/{task['task_id']}")
response = await client.get(
f"/v1/status/poll/{task['task_id']}", headers=auth_headers
)
assert response.status_code == 200, "Response should be 200 OK"
task = response.json()
print(f"{task['task_status']=}")
@@ -68,52 +86,62 @@ async def convert_file(client: AsyncClient):
@pytest.mark.asyncio
async def test_clear_results(client: AsyncClient):
async def test_clear_results(client: AsyncClient, auth_headers: dict):
"""Test removal of task."""
# Set long delay deletion
docling_serve_settings.result_removal_delay = 100
# Convert and wait for completion
task = await convert_file(client)
task = await convert_file(client, auth_headers=auth_headers)
# Get result once
result_response = await client.get(f"/v1alpha/result/{task['task_id']}")
result_response = await client.get(
f"/v1/result/{task['task_id']}", headers=auth_headers
)
assert result_response.status_code == 200, "Response should be 200 OK"
print("Result 1 ok.")
result = result_response.json()
assert result["document"]["json_content"]["schema_name"] == "DoclingDocument"
# Get result twice
result_response = await client.get(f"/v1alpha/result/{task['task_id']}")
result_response = await client.get(
f"/v1/result/{task['task_id']}", headers=auth_headers
)
assert result_response.status_code == 200, "Response should be 200 OK"
print("Result 2 ok.")
result = result_response.json()
assert result["document"]["json_content"]["schema_name"] == "DoclingDocument"
# Clear
clear_response = await client.get("/v1alpha/clear/results?older_then=0")
clear_response = await client.get(
"/v1/clear/results?older_then=0", headers=auth_headers
)
assert clear_response.status_code == 200, "Response should be 200 OK"
print("Clear ok.")
# Get deleted result
result_response = await client.get(f"/v1alpha/result/{task['task_id']}")
result_response = await client.get(
f"/v1/result/{task['task_id']}", headers=auth_headers
)
assert result_response.status_code == 404, "Response should be removed"
print("Result was no longer found.")
@pytest.mark.asyncio
async def test_delay_remove(client: AsyncClient):
async def test_delay_remove(client: AsyncClient, auth_headers: dict):
"""Test automatic removal of task with delay."""
# Set short delay deletion
docling_serve_settings.result_removal_delay = 5
# Convert and wait for completion
task = await convert_file(client)
task = await convert_file(client, auth_headers=auth_headers)
# Get result once
result_response = await client.get(f"/v1alpha/result/{task['task_id']}")
result_response = await client.get(
f"/v1/result/{task['task_id']}", headers=auth_headers
)
assert result_response.status_code == 200, "Response should be 200 OK"
print("Result ok.")
result = result_response.json()
@@ -123,5 +151,7 @@ async def test_delay_remove(client: AsyncClient):
await asyncio.sleep(10)
# Get deleted result
result_response = await client.get(f"/v1alpha/result/{task['task_id']}")
result_response = await client.get(
f"/v1/result/{task['task_id']}", headers=auth_headers
)
assert result_response.status_code == 404, "Response should be removed"

9016
uv.lock generated

File diff suppressed because one or more lines are too long