mirror of
https://github.com/docling-project/docling-serve.git
synced 2025-11-29 16:43:24 +00:00
Compare commits
59 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
3bd7828570 | ||
|
|
8b470cba8e | ||
|
|
8048f4589a | ||
|
|
b3058e91e0 | ||
|
|
63da9eedeb | ||
|
|
b15dc2529f | ||
|
|
4c7207be00 | ||
|
|
db3fdb5bc1 | ||
|
|
fd1b987e8d | ||
|
|
ce15e0302b | ||
|
|
ecb1874a50 | ||
|
|
1333f71c9c | ||
|
|
ec594d84fe | ||
|
|
3771c1b554 | ||
|
|
24db461b14 | ||
|
|
8706706e87 | ||
|
|
766adb2481 | ||
|
|
8222cf8955 | ||
|
|
b922824e5b | ||
|
|
56e328baf7 | ||
|
|
daa924a77e | ||
|
|
e63197e89e | ||
|
|
767ce0982b | ||
|
|
bfde1a0991 | ||
|
|
eb3892ee14 | ||
|
|
93b84712b2 | ||
|
|
c45b937064 | ||
|
|
50e431f30f | ||
|
|
149a8cb1c0 | ||
|
|
5f9c20a985 | ||
|
|
80755a7d59 | ||
|
|
30aca92298 | ||
|
|
717fb3a8d8 | ||
|
|
873d05aefe | ||
|
|
196c5ce42a | ||
|
|
b5c5f47892 | ||
|
|
d5455b7f66 | ||
|
|
7a682494d6 | ||
|
|
524f6a8997 | ||
|
|
9ccf8e3b5e | ||
|
|
ffea34732b | ||
|
|
b299af002b | ||
|
|
c4c41f16df | ||
|
|
7066f3520a | ||
|
|
6a8190c315 | ||
|
|
060ecd8b0e | ||
|
|
32b8a809f3 | ||
|
|
de002dfcdc | ||
|
|
abe5aa03f5 | ||
|
|
3f090b7d15 | ||
|
|
21c1791e42 | ||
|
|
00be428490 | ||
|
|
3ff1b2f983 | ||
|
|
8406fb9b59 | ||
|
|
a2dcb0a20f | ||
|
|
36787bc061 | ||
|
|
509f4889f8 | ||
|
|
919cf5c041 | ||
|
|
35c2630c61 |
2
.github/dco.yml
vendored
Normal file
2
.github/dco.yml
vendored
Normal file
@@ -0,0 +1,2 @@
|
||||
allowRemediationCommits:
|
||||
individual: true
|
||||
36
.github/styles/config/vocabularies/Docling/accept.txt
vendored
Normal file
36
.github/styles/config/vocabularies/Docling/accept.txt
vendored
Normal file
@@ -0,0 +1,36 @@
|
||||
[Dd]ocling
|
||||
precommit
|
||||
asgi
|
||||
async
|
||||
(?i)urls
|
||||
uvicorn
|
||||
[Ww]ebserver
|
||||
keyfile
|
||||
[Ww]ebsocket(s?)
|
||||
[Kk]ubernetes
|
||||
UI
|
||||
(?i)vllm
|
||||
APIs
|
||||
[Ss]ubprocesses
|
||||
(?i)api
|
||||
Kubeflow
|
||||
(?i)Jobkit
|
||||
(?i)cpu
|
||||
(?i)PyTorch
|
||||
(?i)CUDA
|
||||
(?i)NVIDIA
|
||||
(?i)ROCm
|
||||
(?i)env
|
||||
Gradio
|
||||
bool
|
||||
Ollama
|
||||
inbody
|
||||
LGTMs
|
||||
Dolfi
|
||||
Lysak
|
||||
Nikos
|
||||
Nassar
|
||||
Panos
|
||||
Vagenas
|
||||
Staar
|
||||
Livathinos
|
||||
11
.github/vale.ini
vendored
Normal file
11
.github/vale.ini
vendored
Normal file
@@ -0,0 +1,11 @@
|
||||
StylesPath = styles
|
||||
MinAlertLevel = suggestion
|
||||
; Packages = write-good, proselint
|
||||
|
||||
Vocab = Docling
|
||||
|
||||
[*.md]
|
||||
BasedOnStyles = Vale
|
||||
|
||||
[CHANGELOG.md]
|
||||
BasedOnStyles =
|
||||
4
.github/workflows/cd.yml
vendored
4
.github/workflows/cd.yml
vendored
@@ -15,7 +15,7 @@ jobs:
|
||||
with:
|
||||
fetch-depth: 0 # for fetching tags, required for semantic-release
|
||||
- name: Install uv and set the python version
|
||||
uses: astral-sh/setup-uv@v5
|
||||
uses: astral-sh/setup-uv@v6
|
||||
with:
|
||||
enable-cache: true
|
||||
- name: Install dependencies
|
||||
@@ -45,7 +45,7 @@ jobs:
|
||||
token: ${{ steps.app-token.outputs.token }}
|
||||
fetch-depth: 0 # for fetching tags, required for semantic-release
|
||||
- name: Install uv and set the python version
|
||||
uses: astral-sh/setup-uv@v5
|
||||
uses: astral-sh/setup-uv@v6
|
||||
with:
|
||||
enable-cache: true
|
||||
- name: Install dependencies
|
||||
|
||||
20
.github/workflows/ci-images-dryrun.yml
vendored
20
.github/workflows/ci-images-dryrun.yml
vendored
@@ -15,16 +15,28 @@ jobs:
|
||||
spec:
|
||||
- name: docling-project/docling-serve
|
||||
build_args: |
|
||||
UV_SYNC_EXTRA_ARGS=--no-extra cu124 --no-extra cpu
|
||||
UV_SYNC_EXTRA_ARGS=--no-extra flash-attn
|
||||
platforms: linux/amd64, linux/arm64
|
||||
- name: docling-project/docling-serve-cpu
|
||||
build_args: |
|
||||
UV_SYNC_EXTRA_ARGS=--no-extra cu124
|
||||
UV_SYNC_EXTRA_ARGS=--no-group pypi --group cpu --no-extra flash-attn
|
||||
platforms: linux/amd64, linux/arm64
|
||||
- name: docling-project/docling-serve-cu124
|
||||
# - name: docling-project/docling-serve-cu124
|
||||
# build_args: |
|
||||
# UV_SYNC_EXTRA_ARGS=--no-group pypi --group cu124
|
||||
# platforms: linux/amd64
|
||||
- name: docling-project/docling-serve-cu126
|
||||
build_args: |
|
||||
UV_SYNC_EXTRA_ARGS=--no-extra cpu
|
||||
UV_SYNC_EXTRA_ARGS=--no-group pypi --group cu126
|
||||
platforms: linux/amd64
|
||||
- name: docling-project/docling-serve-cu128
|
||||
build_args: |
|
||||
UV_SYNC_EXTRA_ARGS=--no-group pypi --group cu128
|
||||
platforms: linux/amd64
|
||||
# - name: docling-project/docling-serve-rocm
|
||||
# build_args: |
|
||||
# UV_SYNC_EXTRA_ARGS=--no-group pypi --group rocm --no-extra flash-attn
|
||||
# platforms: linux/amd64
|
||||
|
||||
permissions:
|
||||
packages: write
|
||||
|
||||
192
.github/workflows/dco-advisor.yml
vendored
Normal file
192
.github/workflows/dco-advisor.yml
vendored
Normal file
@@ -0,0 +1,192 @@
|
||||
name: DCO Advisor Bot
|
||||
|
||||
on:
|
||||
pull_request_target:
|
||||
types: [opened, reopened, synchronize]
|
||||
|
||||
permissions:
|
||||
pull-requests: write
|
||||
issues: write
|
||||
|
||||
jobs:
|
||||
dco_advisor:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Handle DCO check result
|
||||
uses: actions/github-script@v7
|
||||
with:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
script: |
|
||||
const pr = context.payload.pull_request || context.payload.check_run?.pull_requests?.[0];
|
||||
if (!pr) return;
|
||||
|
||||
const prNumber = pr.number;
|
||||
const baseRef = pr.base.ref;
|
||||
const headSha =
|
||||
context.payload.check_run?.head_sha ||
|
||||
pr.head?.sha;
|
||||
const username = pr.user.login;
|
||||
|
||||
console.log("HEAD SHA:", headSha);
|
||||
|
||||
const sleep = ms => new Promise(resolve => setTimeout(resolve, ms));
|
||||
|
||||
// Poll until DCO check has a conclusion (max 6 attempts, 30s)
|
||||
let dcoCheck = null;
|
||||
for (let attempt = 0; attempt < 6; attempt++) {
|
||||
const { data: checks } = await github.rest.checks.listForRef({
|
||||
owner: context.repo.owner,
|
||||
repo: context.repo.repo,
|
||||
ref: headSha
|
||||
});
|
||||
|
||||
|
||||
console.log("All check runs:");
|
||||
checks.check_runs.forEach(run => {
|
||||
console.log(`- ${run.name} (${run.status}/${run.conclusion}) @ ${run.head_sha}`);
|
||||
});
|
||||
|
||||
dcoCheck = checks.check_runs.find(run =>
|
||||
run.name.toLowerCase().includes("dco") &&
|
||||
!run.name.toLowerCase().includes("dco_advisor") &&
|
||||
run.head_sha === headSha
|
||||
);
|
||||
|
||||
|
||||
if (dcoCheck?.conclusion) break;
|
||||
console.log(`Waiting for DCO check... (${attempt + 1})`);
|
||||
await sleep(5000); // wait 5 seconds
|
||||
}
|
||||
|
||||
if (!dcoCheck || !dcoCheck.conclusion) {
|
||||
console.log("DCO check did not complete in time.");
|
||||
return;
|
||||
}
|
||||
|
||||
const isFailure = ["failure", "action_required"].includes(dcoCheck.conclusion);
|
||||
console.log(`DCO check conclusion for ${headSha}: ${dcoCheck.conclusion} (treated as ${isFailure ? "failure" : "success"})`);
|
||||
|
||||
// Parse DCO output for commit SHAs and author
|
||||
let badCommits = [];
|
||||
let authorName = "";
|
||||
let authorEmail = "";
|
||||
let moreInfo = `More info: [DCO check report](${dcoCheck?.html_url})`;
|
||||
|
||||
if (isFailure) {
|
||||
const { data: commits } = await github.rest.pulls.listCommits({
|
||||
owner: context.repo.owner,
|
||||
repo: context.repo.repo,
|
||||
pull_number: prNumber,
|
||||
});
|
||||
|
||||
for (const commit of commits) {
|
||||
const commitMessage = commit.commit.message;
|
||||
const signoffMatch = commitMessage.match(/^Signed-off-by:\s+.+<.+>$/m);
|
||||
if (!signoffMatch) {
|
||||
console.log(`Bad commit found ${commit.sha}`)
|
||||
badCommits.push({
|
||||
sha: commit.sha,
|
||||
authorName: commit.commit.author.name,
|
||||
authorEmail: commit.commit.author.email,
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// If multiple authors are present, you could adapt the message accordingly
|
||||
// For now, we'll just use the first one
|
||||
if (badCommits.length > 0) {
|
||||
authorName = badCommits[0].authorName;
|
||||
authorEmail = badCommits[0].authorEmail;
|
||||
}
|
||||
|
||||
// Generate remediation commit message if needed
|
||||
let remediationSnippet = "";
|
||||
if (badCommits.length && authorEmail) {
|
||||
remediationSnippet = `git commit --allow-empty -s -m "DCO Remediation Commit for ${authorName} <${authorEmail}>\n\n` +
|
||||
badCommits.map(c => `I, ${c.authorName} <${c.authorEmail}>, hereby add my Signed-off-by to this commit: ${c.sha}`).join('\n') +
|
||||
`"`;
|
||||
} else {
|
||||
remediationSnippet = "# Unable to auto-generate remediation message. Please check the DCO check details.";
|
||||
}
|
||||
|
||||
// Build comment
|
||||
const commentHeader = '<!-- dco-advice-bot -->';
|
||||
let body = "";
|
||||
|
||||
if (isFailure) {
|
||||
body = [
|
||||
commentHeader,
|
||||
'❌ **DCO Check Failed**',
|
||||
'',
|
||||
`Hi @${username}, your pull request has failed the Developer Certificate of Origin (DCO) check.`,
|
||||
'',
|
||||
'This repository supports **remediation commits**, so you can fix this without rewriting history — but you must follow the required message format.',
|
||||
'',
|
||||
'---',
|
||||
'',
|
||||
'### 🛠 Quick Fix: Add a remediation commit',
|
||||
'Run this command:',
|
||||
'',
|
||||
'```bash',
|
||||
remediationSnippet,
|
||||
'git push',
|
||||
'```',
|
||||
'',
|
||||
'---',
|
||||
'',
|
||||
'<details>',
|
||||
'<summary>🔧 Advanced: Sign off each commit directly</summary>',
|
||||
'',
|
||||
'**For the latest commit:**',
|
||||
'```bash',
|
||||
'git commit --amend --signoff',
|
||||
'git push --force-with-lease',
|
||||
'```',
|
||||
'',
|
||||
'**For multiple commits:**',
|
||||
'```bash',
|
||||
`git rebase --signoff origin/${baseRef}`,
|
||||
'git push --force-with-lease',
|
||||
'```',
|
||||
'',
|
||||
'</details>',
|
||||
'',
|
||||
moreInfo
|
||||
].join('\n');
|
||||
} else {
|
||||
body = [
|
||||
commentHeader,
|
||||
'✅ **DCO Check Passed**',
|
||||
'',
|
||||
`Thanks @${username}, all your commits are properly signed off. 🎉`
|
||||
].join('\n');
|
||||
}
|
||||
|
||||
// Get existing comments on the PR
|
||||
const { data: comments } = await github.rest.issues.listComments({
|
||||
owner: context.repo.owner,
|
||||
repo: context.repo.repo,
|
||||
issue_number: prNumber
|
||||
});
|
||||
|
||||
// Look for a previous bot comment
|
||||
const existingComment = comments.find(c =>
|
||||
c.body.includes("<!-- dco-advice-bot -->")
|
||||
);
|
||||
|
||||
if (existingComment) {
|
||||
await github.rest.issues.updateComment({
|
||||
owner: context.repo.owner,
|
||||
repo: context.repo.repo,
|
||||
comment_id: existingComment.id,
|
||||
body: body
|
||||
});
|
||||
} else {
|
||||
await github.rest.issues.createComment({
|
||||
owner: context.repo.owner,
|
||||
repo: context.repo.repo,
|
||||
issue_number: prNumber,
|
||||
body: body
|
||||
});
|
||||
}
|
||||
21
.github/workflows/images.yml
vendored
21
.github/workflows/images.yml
vendored
@@ -19,17 +19,28 @@ jobs:
|
||||
spec:
|
||||
- name: docling-project/docling-serve
|
||||
build_args: |
|
||||
UV_SYNC_EXTRA_ARGS=--no-extra cu124 --no-extra cpu
|
||||
UV_SYNC_EXTRA_ARGS=--no-extra flash-attn
|
||||
platforms: linux/amd64, linux/arm64
|
||||
- name: docling-project/docling-serve-cpu
|
||||
build_args: |
|
||||
UV_SYNC_EXTRA_ARGS=--no-extra cu124
|
||||
UV_SYNC_EXTRA_ARGS=--no-group pypi --group cpu --no-extra flash-attn
|
||||
platforms: linux/amd64, linux/arm64
|
||||
- name: docling-project/docling-serve-cu124
|
||||
# - name: docling-project/docling-serve-cu124
|
||||
# build_args: |
|
||||
# UV_SYNC_EXTRA_ARGS=--no-group pypi --group cu124
|
||||
# platforms: linux/amd64
|
||||
- name: docling-project/docling-serve-cu126
|
||||
build_args: |
|
||||
UV_SYNC_EXTRA_ARGS=--no-extra cpu
|
||||
UV_SYNC_EXTRA_ARGS=--no-group pypi --group cu126
|
||||
platforms: linux/amd64
|
||||
|
||||
- name: docling-project/docling-serve-cu128
|
||||
build_args: |
|
||||
UV_SYNC_EXTRA_ARGS=--no-group pypi --group cu128
|
||||
platforms: linux/amd64
|
||||
# - name: docling-project/docling-serve-rocm
|
||||
# build_args: |
|
||||
# UV_SYNC_EXTRA_ARGS=--no-group pypi --group rocm --no-extra flash-attn
|
||||
# platforms: linux/amd64
|
||||
permissions:
|
||||
packages: write
|
||||
contents: read
|
||||
|
||||
4
.github/workflows/job-build.yml
vendored
4
.github/workflows/job-build.yml
vendored
@@ -12,12 +12,12 @@ jobs:
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Install uv and set the python version
|
||||
uses: astral-sh/setup-uv@v5
|
||||
uses: astral-sh/setup-uv@v6
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
enable-cache: true
|
||||
- name: Install dependencies
|
||||
run: uv sync --all-extras --no-extra cu124
|
||||
run: uv sync --all-extras --no-extra flash-attn
|
||||
- name: Build package
|
||||
run: uv build
|
||||
- name: Check content of wheel
|
||||
|
||||
13
.github/workflows/job-checks.yml
vendored
13
.github/workflows/job-checks.yml
vendored
@@ -12,7 +12,7 @@ jobs:
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Install uv and set the python version
|
||||
uses: astral-sh/setup-uv@v5
|
||||
uses: astral-sh/setup-uv@v6
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
enable-cache: true
|
||||
@@ -25,10 +25,10 @@ jobs:
|
||||
key: pre-commit|${{ env.PY }}|${{ hashFiles('.pre-commit-config.yaml') }}
|
||||
|
||||
- name: Install dependencies
|
||||
run: uv sync --frozen --all-extras --no-extra cu124
|
||||
run: uv sync --frozen --all-extras --no-extra flash-attn
|
||||
|
||||
- name: Run styling check
|
||||
run: pre-commit run --all-files
|
||||
run: uv run pre-commit run --all-files
|
||||
|
||||
build-package:
|
||||
uses: ./.github/workflows/job-build.yml
|
||||
@@ -47,14 +47,16 @@ jobs:
|
||||
name: python-package-distributions
|
||||
path: dist/
|
||||
- name: Install uv and set the python version
|
||||
uses: astral-sh/setup-uv@v5
|
||||
uses: astral-sh/setup-uv@v6
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
enable-cache: true
|
||||
- name: Create virtual environment
|
||||
run: uv venv
|
||||
- name: Install package
|
||||
run: uv pip install dist/*.whl
|
||||
- name: Create the server
|
||||
run: python -c 'from docling_serve.app import create_app; create_app()'
|
||||
run: .venv/bin/python -c 'from docling_serve.app import create_app; create_app()'
|
||||
|
||||
markdown-lint:
|
||||
runs-on: ubuntu-latest
|
||||
@@ -64,4 +66,3 @@ jobs:
|
||||
uses: DavidAnson/markdownlint-cli2-action@v16
|
||||
with:
|
||||
globs: "**/*.md"
|
||||
|
||||
|
||||
2
.gitignore
vendored
2
.gitignore
vendored
@@ -444,3 +444,5 @@ pip-selfcheck.json
|
||||
# Makefile
|
||||
.action-lint
|
||||
.markdown-lint
|
||||
|
||||
cookies.txt
|
||||
@@ -21,8 +21,19 @@ repos:
|
||||
pass_filenames: false
|
||||
language: system
|
||||
files: '\.py$'
|
||||
- repo: https://github.com/errata-ai/vale
|
||||
rev: v3.12.0 # Use latest stable version
|
||||
hooks:
|
||||
- id: vale
|
||||
name: vale sync
|
||||
pass_filenames: false
|
||||
args: [sync, "--config=.github/vale.ini"]
|
||||
- id: vale
|
||||
name: Spell and Style Check with Vale
|
||||
args: ["--config=.github/vale.ini"]
|
||||
files: \.md$
|
||||
- repo: https://github.com/astral-sh/uv-pre-commit
|
||||
# uv version.
|
||||
rev: 0.6.1
|
||||
# uv version, https://github.com/astral-sh/uv-pre-commit/releases
|
||||
rev: 0.8.3
|
||||
hooks:
|
||||
- id: uv-lock
|
||||
|
||||
146
CHANGELOG.md
146
CHANGELOG.md
@@ -1,3 +1,149 @@
|
||||
## [v1.2.1](https://github.com/docling-project/docling-serve/releases/tag/v1.2.1) - 2025-08-13
|
||||
|
||||
### Fix
|
||||
|
||||
* Handling of vlm model options and update deps ([#314](https://github.com/docling-project/docling-serve/issues/314)) ([`8b470cb`](https://github.com/docling-project/docling-serve/commit/8b470cba8ef500c271eb84c8368c8a1a1a5a6d6a))
|
||||
* Add missing response type in sync endpoints ([#309](https://github.com/docling-project/docling-serve/issues/309)) ([`8048f45`](https://github.com/docling-project/docling-serve/commit/8048f4589a91de2b2b391ab33a326efd1b29f25b))
|
||||
|
||||
### Documentation
|
||||
|
||||
* Update readme to use v1 ([#306](https://github.com/docling-project/docling-serve/issues/306)) ([`b3058e9`](https://github.com/docling-project/docling-serve/commit/b3058e91e0c56e27110eb50f22cbdd89640bf398))
|
||||
* Update deployment examples to use v1 API ([#308](https://github.com/docling-project/docling-serve/issues/308)) ([`63da9ee`](https://github.com/docling-project/docling-serve/commit/63da9eedebae3ad31d04e65635e573194e413793))
|
||||
* Fix typo in v1 migration instructions ([#307](https://github.com/docling-project/docling-serve/issues/307)) ([`b15dc25`](https://github.com/docling-project/docling-serve/commit/b15dc2529f78d68a475e5221c37408c3f77d8588))
|
||||
|
||||
## [v1.2.0](https://github.com/docling-project/docling-serve/releases/tag/v1.2.0) - 2025-08-07
|
||||
|
||||
### Feature
|
||||
|
||||
* Workers without shared models and convert params ([#304](https://github.com/docling-project/docling-serve/issues/304)) ([`db3fdb5`](https://github.com/docling-project/docling-serve/commit/db3fdb5bc1a0ae250afd420d737abc4071a7546c))
|
||||
* Add rocm image build support and fix cuda ([#292](https://github.com/docling-project/docling-serve/issues/292)) ([`fd1b987`](https://github.com/docling-project/docling-serve/commit/fd1b987e8dc174f1a6013c003dde33e9acbae39a))
|
||||
|
||||
## [v1.1.0](https://github.com/docling-project/docling-serve/releases/tag/v1.1.0) - 2025-07-30
|
||||
|
||||
### Feature
|
||||
|
||||
* Add docling-mcp in the distribution ([#290](https://github.com/docling-project/docling-serve/issues/290)) ([`ecb1874`](https://github.com/docling-project/docling-serve/commit/ecb1874a507bef83d102e0e031e49fed34298637))
|
||||
* Add 3.0 openapi endpoint ([#287](https://github.com/docling-project/docling-serve/issues/287)) ([`ec594d8`](https://github.com/docling-project/docling-serve/commit/ec594d84fe36df23e7d010a2fcf769856c43600b))
|
||||
* Add new source and target ([#270](https://github.com/docling-project/docling-serve/issues/270)) ([`3771c1b`](https://github.com/docling-project/docling-serve/commit/3771c1b55403bd51966d07d8f760d5c4fbcc1760))
|
||||
|
||||
### Fix
|
||||
|
||||
* Referenced paths relative to zip root ([#289](https://github.com/docling-project/docling-serve/issues/289)) ([`1333f71`](https://github.com/docling-project/docling-serve/commit/1333f71c9c6495342b2169d574e921f828446f15))
|
||||
|
||||
## [v1.0.1](https://github.com/docling-project/docling-serve/releases/tag/v1.0.1) - 2025-07-21
|
||||
|
||||
### Fix
|
||||
|
||||
* Docling update v2.42.0 ([#277](https://github.com/docling-project/docling-serve/issues/277)) ([`8706706`](https://github.com/docling-project/docling-serve/commit/8706706e8797b0a06ec4baa7cf87988311be68b6))
|
||||
|
||||
### Documentation
|
||||
|
||||
* Typo in README ([#276](https://github.com/docling-project/docling-serve/issues/276)) ([`766adb2`](https://github.com/docling-project/docling-serve/commit/766adb248113c7bd5144d14b3c82929a2ad29f8e))
|
||||
|
||||
## [v1.0.0](https://github.com/docling-project/docling-serve/releases/tag/v1.0.0) - 2025-07-14
|
||||
|
||||
### Feature
|
||||
|
||||
* V1 api with list of sources and target ([#249](https://github.com/docling-project/docling-serve/issues/249)) ([`56e328b`](https://github.com/docling-project/docling-serve/commit/56e328baf76b4bb0476fc6ca820b52034e4f97bf))
|
||||
* Use orchestrators from jobkit ([#248](https://github.com/docling-project/docling-serve/issues/248)) ([`daa924a`](https://github.com/docling-project/docling-serve/commit/daa924a77e56d063ef17347dfd8a838872a70529))
|
||||
|
||||
### Breaking
|
||||
|
||||
* v1 api with list of sources and target ([#249](https://github.com/docling-project/docling-serve/issues/249)) ([`56e328b`](https://github.com/docling-project/docling-serve/commit/56e328baf76b4bb0476fc6ca820b52034e4f97bf))
|
||||
* use orchestrators from jobkit ([#248](https://github.com/docling-project/docling-serve/issues/248)) ([`daa924a`](https://github.com/docling-project/docling-serve/commit/daa924a77e56d063ef17347dfd8a838872a70529))
|
||||
|
||||
## [v0.16.1](https://github.com/docling-project/docling-serve/releases/tag/v0.16.1) - 2025-07-07
|
||||
|
||||
### Fix
|
||||
|
||||
* Upgrade deps including, docling v2.40.0 with locks in models init ([#264](https://github.com/docling-project/docling-serve/issues/264)) ([`bfde1a0`](https://github.com/docling-project/docling-serve/commit/bfde1a0991c2da53b72c4f131ff74fa10f6340de))
|
||||
* Missing tesseract osd ([#263](https://github.com/docling-project/docling-serve/issues/263)) ([`eb3892e`](https://github.com/docling-project/docling-serve/commit/eb3892ee141eb2c941d580b095d8a266f2d2610c))
|
||||
* Properly load models at boot ([#244](https://github.com/docling-project/docling-serve/issues/244)) ([`149a8cb`](https://github.com/docling-project/docling-serve/commit/149a8cb1c0a16c1e0b7d17f40b88b4d6e8f0109d))
|
||||
|
||||
### Documentation
|
||||
|
||||
* Fix typo ([#259](https://github.com/docling-project/docling-serve/issues/259)) ([`93b8471`](https://github.com/docling-project/docling-serve/commit/93b84712b2c6d180908a197847b52b217a7ff05f))
|
||||
* Change the doc example ([#258](https://github.com/docling-project/docling-serve/issues/258)) ([`c45b937`](https://github.com/docling-project/docling-serve/commit/c45b93706466a073ab4a5c75aa8a267110873e26))
|
||||
* Update typo ([#247](https://github.com/docling-project/docling-serve/issues/247)) ([`50e431f`](https://github.com/docling-project/docling-serve/commit/50e431f30fbffa33f43727417fe746d20cbb9d6b))
|
||||
|
||||
## [v0.16.0](https://github.com/docling-project/docling-serve/releases/tag/v0.16.0) - 2025-06-25
|
||||
|
||||
### Feature
|
||||
|
||||
* Package updates and more cuda images ([#229](https://github.com/docling-project/docling-serve/issues/229)) ([`30aca92`](https://github.com/docling-project/docling-serve/commit/30aca92298ab0d86bb4debcfcacb2dd8b9040a27))
|
||||
|
||||
### Documentation
|
||||
|
||||
* Update example resources and improve README ([#231](https://github.com/docling-project/docling-serve/issues/231)) ([`80755a7`](https://github.com/docling-project/docling-serve/commit/80755a7d5955f7d0c53df8e558fdd852dd1f5b75))
|
||||
|
||||
## [v0.15.0](https://github.com/docling-project/docling-serve/releases/tag/v0.15.0) - 2025-06-17
|
||||
|
||||
### Feature
|
||||
|
||||
* Use redocs and scalar as api docs ([#228](https://github.com/docling-project/docling-serve/issues/228)) ([`873d05a`](https://github.com/docling-project/docling-serve/commit/873d05aefe141c63b9c1cf53b23b4fa8c96de05d))
|
||||
|
||||
### Fix
|
||||
|
||||
* "tesserocr" instead of "tesseract_cli" in usage docs ([#223](https://github.com/docling-project/docling-serve/issues/223)) ([`196c5ce`](https://github.com/docling-project/docling-serve/commit/196c5ce42a04d77234a4212c3d9b9772d2c2073e))
|
||||
|
||||
## [v0.14.0](https://github.com/docling-project/docling-serve/releases/tag/v0.14.0) - 2025-06-17
|
||||
|
||||
### Feature
|
||||
|
||||
* Read supported file extensions from docling ([#214](https://github.com/docling-project/docling-serve/issues/214)) ([`524f6a8`](https://github.com/docling-project/docling-serve/commit/524f6a8997b86d2f869ca491ec8fb40585b42ca4))
|
||||
|
||||
### Fix
|
||||
|
||||
* Typo in Headline ([#220](https://github.com/docling-project/docling-serve/issues/220)) ([`d5455b7`](https://github.com/docling-project/docling-serve/commit/d5455b7f66de39ea1f8b8927b5968d2baa23ca88))
|
||||
|
||||
## [v0.13.0](https://github.com/docling-project/docling-serve/releases/tag/v0.13.0) - 2025-06-04
|
||||
|
||||
### Feature
|
||||
|
||||
* Upgrade docling to 2.36 ([#212](https://github.com/docling-project/docling-serve/issues/212)) ([`ffea347`](https://github.com/docling-project/docling-serve/commit/ffea34732b24fdd438fabd6df02d3d9ce66b4534))
|
||||
|
||||
## [v0.12.0](https://github.com/docling-project/docling-serve/releases/tag/v0.12.0) - 2025-06-03
|
||||
|
||||
### Feature
|
||||
|
||||
* Export annotations in markdown and html (Docling upgrade) ([#202](https://github.com/docling-project/docling-serve/issues/202)) ([`c4c41f1`](https://github.com/docling-project/docling-serve/commit/c4c41f16dff83c5d2a0b8a4c625b5de19b36b7c5))
|
||||
|
||||
### Fix
|
||||
|
||||
* Processing complex params in multipart-form ([#210](https://github.com/docling-project/docling-serve/issues/210)) ([`7066f35`](https://github.com/docling-project/docling-serve/commit/7066f3520a88c07df1c80a0cc6c4339eaac4d6a7))
|
||||
|
||||
### Documentation
|
||||
|
||||
* Add openshift replicasets examples ([#209](https://github.com/docling-project/docling-serve/issues/209)) ([`6a8190c`](https://github.com/docling-project/docling-serve/commit/6a8190c315792bd1e0e2b0af310656baaa5551e5))
|
||||
|
||||
## [v0.11.0](https://github.com/docling-project/docling-serve/releases/tag/v0.11.0) - 2025-05-23
|
||||
|
||||
### Feature
|
||||
|
||||
* Page break placeholder in markdown exports options ([#194](https://github.com/docling-project/docling-serve/issues/194)) ([`32b8a80`](https://github.com/docling-project/docling-serve/commit/32b8a809f348bf9fbde657f93589a56935d3749d))
|
||||
* Clear results registry ([#192](https://github.com/docling-project/docling-serve/issues/192)) ([`de002df`](https://github.com/docling-project/docling-serve/commit/de002dfcdc111c942a08b156c84b7fa22b3fbaf3))
|
||||
* Upgrade to Docling 2.33.0 ([#198](https://github.com/docling-project/docling-serve/issues/198)) ([`abe5aa0`](https://github.com/docling-project/docling-serve/commit/abe5aa03f54d44ecf5c6d76e3258028997a53e68))
|
||||
* Api to trigger offloading the models ([#188](https://github.com/docling-project/docling-serve/issues/188)) ([`00be428`](https://github.com/docling-project/docling-serve/commit/00be4284904d55b78c75c5475578ef11c2ade94c))
|
||||
* Figure annotations @ docling components 0.0.7 ([#181](https://github.com/docling-project/docling-serve/issues/181)) ([`3ff1b2f`](https://github.com/docling-project/docling-serve/commit/3ff1b2f9834aca37472a895a0e3da47560457d77))
|
||||
|
||||
### Fix
|
||||
|
||||
* Usage of hashlib for FIPS ([#171](https://github.com/docling-project/docling-serve/issues/171)) ([`8406fb9`](https://github.com/docling-project/docling-serve/commit/8406fb9b59d83247b8379974cabed497703dfc4d))
|
||||
|
||||
### Documentation
|
||||
|
||||
* Example and instructions on how to load model weights to persistent volume ([#197](https://github.com/docling-project/docling-serve/issues/197)) ([`3f090b7`](https://github.com/docling-project/docling-serve/commit/3f090b7d15eaf696611d89bbbba5b98569610828))
|
||||
* Async api usage and fixes ([#195](https://github.com/docling-project/docling-serve/issues/195)) ([`21c1791`](https://github.com/docling-project/docling-serve/commit/21c1791e427f5b1946ed46c68dfda03c957dca8f))
|
||||
|
||||
## [v0.10.1](https://github.com/docling-project/docling-serve/releases/tag/v0.10.1) - 2025-04-30
|
||||
|
||||
### Fix
|
||||
|
||||
* Avoid missing specialized keys in the options hash ([#166](https://github.com/docling-project/docling-serve/issues/166)) ([`36787bc`](https://github.com/docling-project/docling-serve/commit/36787bc0616356a6199da618d8646de51636b34e))
|
||||
* Allow users to set the area threshold for picture descriptions ([#165](https://github.com/docling-project/docling-serve/issues/165)) ([`509f488`](https://github.com/docling-project/docling-serve/commit/509f4889f8ed4c0f0ce25bec4126ef1f1199797c))
|
||||
* Expose max wait time in sync endpoints ([#164](https://github.com/docling-project/docling-serve/issues/164)) ([`919cf5c`](https://github.com/docling-project/docling-serve/commit/919cf5c0414f2f11eb8012f451fed7a8f582b7ad))
|
||||
* Add flash-attn for cuda images ([#161](https://github.com/docling-project/docling-serve/issues/161)) ([`35c2630`](https://github.com/docling-project/docling-serve/commit/35c2630c613cf229393fc67b6938152b063ff498))
|
||||
|
||||
## [v0.10.0](https://github.com/docling-project/docling-serve/releases/tag/v0.10.0) - 2025-04-28
|
||||
|
||||
### Feature
|
||||
|
||||
@@ -1,13 +1,17 @@
|
||||
ARG BASE_IMAGE=quay.io/sclorg/python-312-c9s:c9s
|
||||
|
||||
FROM ${BASE_IMAGE}
|
||||
ARG UV_VERSION=0.8.3
|
||||
|
||||
USER 0
|
||||
ARG UV_SYNC_EXTRA_ARGS=""
|
||||
|
||||
FROM ${BASE_IMAGE} AS docling-base
|
||||
|
||||
###################################################################################################
|
||||
# OS Layer #
|
||||
###################################################################################################
|
||||
|
||||
USER 0
|
||||
|
||||
RUN --mount=type=bind,source=os-packages.txt,target=/tmp/os-packages.txt \
|
||||
dnf -y install --best --nodocs --setopt=install_weak_deps=False dnf-plugins-core && \
|
||||
dnf config-manager --best --nodocs --setopt=install_weak_deps=False --save && \
|
||||
@@ -21,16 +25,19 @@ RUN /usr/bin/fix-permissions /opt/app-root/src/.cache
|
||||
|
||||
ENV TESSDATA_PREFIX=/usr/share/tesseract/tessdata/
|
||||
|
||||
FROM ghcr.io/astral-sh/uv:${UV_VERSION} AS uv_stage
|
||||
|
||||
###################################################################################################
|
||||
# Docling layer #
|
||||
###################################################################################################
|
||||
|
||||
FROM docling-base
|
||||
|
||||
USER 1001
|
||||
|
||||
WORKDIR /opt/app-root/src
|
||||
|
||||
ENV \
|
||||
# On container environments, always set a thread budget to avoid undesired thread congestion.
|
||||
OMP_NUM_THREADS=4 \
|
||||
LANG=en_US.UTF-8 \
|
||||
LC_ALL=en_US.UTF-8 \
|
||||
@@ -40,13 +47,16 @@ ENV \
|
||||
UV_PROJECT_ENVIRONMENT=/opt/app-root \
|
||||
DOCLING_SERVE_ARTIFACTS_PATH=/opt/app-root/src/.cache/docling/models
|
||||
|
||||
ARG UV_SYNC_EXTRA_ARGS=""
|
||||
ARG UV_SYNC_EXTRA_ARGS
|
||||
|
||||
RUN --mount=from=ghcr.io/astral-sh/uv:0.6.1,source=/uv,target=/bin/uv \
|
||||
RUN --mount=from=uv_stage,source=/uv,target=/bin/uv \
|
||||
--mount=type=cache,target=/opt/app-root/src/.cache/uv,uid=1001 \
|
||||
--mount=type=bind,source=uv.lock,target=uv.lock \
|
||||
--mount=type=bind,source=pyproject.toml,target=pyproject.toml \
|
||||
umask 002 && uv sync --frozen --no-install-project --no-dev --all-extras ${UV_SYNC_EXTRA_ARGS}
|
||||
umask 002 && \
|
||||
UV_SYNC_ARGS="--frozen --no-install-project --no-dev --all-extras" && \
|
||||
uv sync ${UV_SYNC_ARGS} ${UV_SYNC_EXTRA_ARGS} --no-extra flash-attn && \
|
||||
FLASH_ATTENTION_SKIP_CUDA_BUILD=TRUE uv sync ${UV_SYNC_ARGS} ${UV_SYNC_EXTRA_ARGS} --no-build-isolation-package=flash-attn
|
||||
|
||||
ARG MODELS_LIST="layout tableformer picture_classifier easyocr"
|
||||
|
||||
@@ -58,7 +68,8 @@ RUN echo "Downloading models..." && \
|
||||
chmod -R g=u ${DOCLING_SERVE_ARTIFACTS_PATH}
|
||||
|
||||
COPY --chown=1001:0 ./docling_serve ./docling_serve
|
||||
RUN --mount=from=ghcr.io/astral-sh/uv:0.6.1,source=/uv,target=/bin/uv \
|
||||
|
||||
RUN --mount=from=uv_stage,source=/uv,target=/bin/uv \
|
||||
--mount=type=cache,target=/opt/app-root/src/.cache/uv,uid=1001 \
|
||||
--mount=type=bind,source=uv.lock,target=uv.lock \
|
||||
--mount=type=bind,source=pyproject.toml,target=pyproject.toml \
|
||||
|
||||
@@ -1,11 +1,11 @@
|
||||
# MAINTAINERS
|
||||
|
||||
- Christoph Auer - [@cau-git](https://github.com/cau-git)
|
||||
- Michele Dolfi - [@dolfim-ibm](https://github.com/dolfim-ibm)
|
||||
- Maxim Lysak - [@maxmnemonic](https://github.com/maxmnemonic)
|
||||
- Nikos Livathinos - [@nikos-livathinos](https://github.com/nikos-livathinos)
|
||||
- Ahmed Nassar - [@nassarofficial](https://github.com/nassarofficial)
|
||||
- Panos Vagenas - [@vagenas](https://github.com/vagenas)
|
||||
- Peter Staar - [@PeterStaar-IBM](https://github.com/PeterStaar-IBM)
|
||||
- Christoph Auer - [`@cau-git`](https://github.com/cau-git)
|
||||
- Michele Dolfi - [`@dolfim-ibm`](https://github.com/dolfim-ibm)
|
||||
- Maxim Lysak - [`@maxmnemonic`](https://github.com/maxmnemonic)
|
||||
- Nikos Livathinos - [`@nikos-livathinos`](https://github.com/nikos-livathinos)
|
||||
- Ahmed Nassar - [`@nassarofficial`](https://github.com/nassarofficial)
|
||||
- Panos Vagenas - [`@vagenas`](https://github.com/vagenas)
|
||||
- Peter Staar - [`@PeterStaar-IBM`](https://github.com/PeterStaar-IBM)
|
||||
|
||||
Maintainers can be contacted at [deepsearch-core@zurich.ibm.com](mailto:deepsearch-core@zurich.ibm.com).
|
||||
|
||||
62
Makefile
62
Makefile
@@ -26,26 +26,47 @@ md-lint-file:
|
||||
$(CMD_PREFIX) touch .markdown-lint
|
||||
|
||||
.PHONY: docling-serve-image
|
||||
docling-serve-image: Containerfile
|
||||
docling-serve-image: Containerfile ## Build docling-serve container image
|
||||
$(ECHO_PREFIX) printf " %-12s Containerfile\n" "[docling-serve]"
|
||||
$(CMD_PREFIX) docker build --load --build-arg "UV_SYNC_EXTRA_ARGS=--no-extra cu124 --no-extra cpu" -f Containerfile -t ghcr.io/docling-project/docling-serve:$(TAG) .
|
||||
$(CMD_PREFIX) docker build --load -f Containerfile -t ghcr.io/docling-project/docling-serve:$(TAG) .
|
||||
$(CMD_PREFIX) docker tag ghcr.io/docling-project/docling-serve:$(TAG) ghcr.io/docling-project/docling-serve:$(BRANCH_TAG)
|
||||
$(CMD_PREFIX) docker tag ghcr.io/docling-project/docling-serve:$(TAG) quay.io/docling-project/docling-serve:$(BRANCH_TAG)
|
||||
|
||||
.PHONY: docling-serve-cpu-image
|
||||
docling-serve-cpu-image: Containerfile ## Build docling-serve "cpu only" container image
|
||||
$(ECHO_PREFIX) printf " %-12s Containerfile\n" "[docling-serve CPU]"
|
||||
$(CMD_PREFIX) docker build --load --build-arg "UV_SYNC_EXTRA_ARGS=--no-extra cu124" -f Containerfile -t ghcr.io/docling-project/docling-serve-cpu:$(TAG) .
|
||||
$(CMD_PREFIX) docker build --load --build-arg "UV_SYNC_EXTRA_ARGS=--no-group pypi --group cpu --no-extra flash-attn" -f Containerfile -t ghcr.io/docling-project/docling-serve-cpu:$(TAG) .
|
||||
$(CMD_PREFIX) docker tag ghcr.io/docling-project/docling-serve-cpu:$(TAG) ghcr.io/docling-project/docling-serve-cpu:$(BRANCH_TAG)
|
||||
$(CMD_PREFIX) docker tag ghcr.io/docling-project/docling-serve-cpu:$(TAG) quay.io/docling-project/docling-serve-cpu:$(BRANCH_TAG)
|
||||
|
||||
.PHONY: docling-serve-cu124-image
|
||||
docling-serve-cu124-image: Containerfile ## Build docling-serve container image with GPU support
|
||||
docling-serve-cu124-image: Containerfile ## Build docling-serve container image with CUDA 12.4 support
|
||||
$(ECHO_PREFIX) printf " %-12s Containerfile\n" "[docling-serve with Cuda 12.4]"
|
||||
$(CMD_PREFIX) docker build --load --build-arg "UV_SYNC_EXTRA_ARGS=--no-extra cpu" -f Containerfile --platform linux/amd64 -t ghcr.io/docling-project/docling-serve-cu124:$(TAG) .
|
||||
$(CMD_PREFIX) docker build --load --build-arg "UV_SYNC_EXTRA_ARGS=--no-group pypi --group cu124" -f Containerfile --platform linux/amd64 -t ghcr.io/docling-project/docling-serve-cu124:$(TAG) .
|
||||
$(CMD_PREFIX) docker tag ghcr.io/docling-project/docling-serve-cu124:$(TAG) ghcr.io/docling-project/docling-serve-cu124:$(BRANCH_TAG)
|
||||
$(CMD_PREFIX) docker tag ghcr.io/docling-project/docling-serve-cu124:$(TAG) quay.io/docling-project/docling-serve-cu124:$(BRANCH_TAG)
|
||||
|
||||
.PHONY: docling-serve-cu126-image
|
||||
docling-serve-cu126-image: Containerfile ## Build docling-serve container image with CUDA 12.6 support
|
||||
$(ECHO_PREFIX) printf " %-12s Containerfile\n" "[docling-serve with Cuda 12.6]"
|
||||
$(CMD_PREFIX) docker build --load --build-arg "UV_SYNC_EXTRA_ARGS=--no-group pypi --group cu126" -f Containerfile --platform linux/amd64 -t ghcr.io/docling-project/docling-serve-cu126:$(TAG) .
|
||||
$(CMD_PREFIX) docker tag ghcr.io/docling-project/docling-serve-cu126:$(TAG) ghcr.io/docling-project/docling-serve-cu126:$(BRANCH_TAG)
|
||||
$(CMD_PREFIX) docker tag ghcr.io/docling-project/docling-serve-cu126:$(TAG) quay.io/docling-project/docling-serve-cu126:$(BRANCH_TAG)
|
||||
|
||||
.PHONY: docling-serve-cu128-image
|
||||
docling-serve-cu128-image: Containerfile ## Build docling-serve container image with CUDA 12.8 support
|
||||
$(ECHO_PREFIX) printf " %-12s Containerfile\n" "[docling-serve with Cuda 12.8]"
|
||||
$(CMD_PREFIX) docker build --load --build-arg "UV_SYNC_EXTRA_ARGS=--no-group pypi --group cu128" -f Containerfile --platform linux/amd64 -t ghcr.io/docling-project/docling-serve-cu128:$(TAG) .
|
||||
$(CMD_PREFIX) docker tag ghcr.io/docling-project/docling-serve-cu128:$(TAG) ghcr.io/docling-project/docling-serve-cu128:$(BRANCH_TAG)
|
||||
$(CMD_PREFIX) docker tag ghcr.io/docling-project/docling-serve-cu128:$(TAG) quay.io/docling-project/docling-serve-cu128:$(BRANCH_TAG)
|
||||
|
||||
.PHONY: docling-serve-rocm-image
|
||||
docling-serve-rocm-image: Containerfile ## Build docling-serve container image with ROCm support
|
||||
$(ECHO_PREFIX) printf " %-12s Containerfile\n" "[docling-serve with ROCm 6.3]"
|
||||
$(CMD_PREFIX) docker build --load --build-arg "UV_SYNC_EXTRA_ARGS=--no-group pypi --group rocm --no-extra flash-attn" -f Containerfile --platform linux/amd64 -t ghcr.io/docling-project/docling-serve-rocm:$(TAG) .
|
||||
$(CMD_PREFIX) docker tag ghcr.io/docling-project/docling-serve-rocm:$(TAG) ghcr.io/docling-project/docling-serve-rocm:$(BRANCH_TAG)
|
||||
$(CMD_PREFIX) docker tag ghcr.io/docling-project/docling-serve-rocm:$(TAG) quay.io/docling-project/docling-serve-rocm:$(BRANCH_TAG)
|
||||
|
||||
.PHONY: action-lint
|
||||
action-lint: .action-lint ## Lint GitHub Action workflows
|
||||
.action-lint: $(shell find .github -type f) | action-lint-file
|
||||
@@ -87,9 +108,30 @@ run-docling-cpu: ## Run the docling-serve container with CPU support and assign
|
||||
$(ECHO_PREFIX) printf " %-12s Running docling-serve container with CPU support on port 5001...\n" "[RUN CPU]"
|
||||
$(CMD_PREFIX) docker run -it --name docling-serve-cpu -p 5001:5001 ghcr.io/docling-project/docling-serve-cpu:main
|
||||
|
||||
.PHONY: run-docling-gpu
|
||||
run-docling-gpu: ## Run the docling-serve container with GPU support and assign a container name
|
||||
.PHONY: run-docling-cu124
|
||||
run-docling-cu124: ## Run the docling-serve container with GPU support and assign a container name
|
||||
$(ECHO_PREFIX) printf " %-12s Removing existing container if it exists...\n" "[CLEANUP]"
|
||||
$(CMD_PREFIX) docker rm -f docling-serve-gpu 2>/dev/null || true
|
||||
$(ECHO_PREFIX) printf " %-12s Running docling-serve container with GPU support on port 5001...\n" "[RUN GPU]"
|
||||
$(CMD_PREFIX) docker run -it --name docling-serve-gpu -p 5001:5001 ghcr.io/docling-project/docling-serve:main
|
||||
$(CMD_PREFIX) docker rm -f docling-serve-cu124 2>/dev/null || true
|
||||
$(ECHO_PREFIX) printf " %-12s Running docling-serve container with GPU support on port 5001...\n" "[RUN CUDA 12.4]"
|
||||
$(CMD_PREFIX) docker run -it --name docling-serve-cu124 -p 5001:5001 ghcr.io/docling-project/docling-serve-cu124:main
|
||||
|
||||
.PHONY: run-docling-cu126
|
||||
run-docling-cu126: ## Run the docling-serve container with GPU support and assign a container name
|
||||
$(ECHO_PREFIX) printf " %-12s Removing existing container if it exists...\n" "[CLEANUP]"
|
||||
$(CMD_PREFIX) docker rm -f docling-serve-cu126 2>/dev/null || true
|
||||
$(ECHO_PREFIX) printf " %-12s Running docling-serve container with GPU support on port 5001...\n" "[RUN CUDA 12.6]"
|
||||
$(CMD_PREFIX) docker run -it --name docling-serve-cu126 -p 5001:5001 ghcr.io/docling-project/docling-serve-cu126:main
|
||||
|
||||
.PHONY: run-docling-cu128
|
||||
run-docling-cu128: ## Run the docling-serve container with GPU support and assign a container name
|
||||
$(ECHO_PREFIX) printf " %-12s Removing existing container if it exists...\n" "[CLEANUP]"
|
||||
$(CMD_PREFIX) docker rm -f docling-serve-cu128 2>/dev/null || true
|
||||
$(ECHO_PREFIX) printf " %-12s Running docling-serve container with GPU support on port 5001...\n" "[RUN CUDA 12.8]"
|
||||
$(CMD_PREFIX) docker run -it --name docling-serve-cu128 -p 5001:5001 ghcr.io/docling-project/docling-serve-cu128:main
|
||||
|
||||
.PHONY: run-docling-rocm
|
||||
run-docling-rocm: ## Run the docling-serve container with GPU support and assign a container name
|
||||
$(ECHO_PREFIX) printf " %-12s Removing existing container if it exists...\n" "[CLEANUP]"
|
||||
$(CMD_PREFIX) docker rm -f docling-serve-rocm 2>/dev/null || true
|
||||
$(ECHO_PREFIX) printf " %-12s Running docling-serve container with GPU support on port 5001...\n" "[RUN ROCm 6.3]"
|
||||
$(CMD_PREFIX) docker run -it --name docling-serve-rocm -p 5001:5001 ghcr.io/docling-project/docling-serve-rocm:main
|
||||
|
||||
72
README.md
72
README.md
@@ -8,69 +8,85 @@
|
||||
|
||||
Running [Docling](https://github.com/docling-project/docling) as an API service.
|
||||
|
||||
📚 [Docling Serve documentation](./docs/README.md)
|
||||
|
||||
- Learning how to [configure the webserver](./docs/configuration.md)
|
||||
- Get to know all [runtime options](./docs/usage.md) of the API
|
||||
- Explore useful [deployment examples](./docs/deployment.md)
|
||||
- And more
|
||||
|
||||
> [!NOTE]
|
||||
> **Migration to the `v1` API.** Docling Serve now has a stable v1 API. Read more on the [migration to v1](./docs/v1_migration.md).
|
||||
|
||||
## Getting started
|
||||
|
||||
Install the `docling-serve` package and run the server.
|
||||
|
||||
```bash
|
||||
# Using the python package
|
||||
pip install "docling-serve"
|
||||
docling-serve run
|
||||
pip install "docling-serve[ui]"
|
||||
docling-serve run --enable-ui
|
||||
|
||||
# Using container images, e.g. with Podman
|
||||
podman run -p 5001:5001 quay.io/docling-project/docling-serve
|
||||
podman run -p 5001:5001 -e DOCLING_SERVE_ENABLE_UI=1 quay.io/docling-project/docling-serve
|
||||
```
|
||||
|
||||
The server is available at
|
||||
|
||||
- API <http://127.0.0.1:5001>
|
||||
- API documentation <http://127.0.0.1:5001/docs>
|
||||

|
||||
- UI playground <http://127.0.0.1:5001/ui>
|
||||
|
||||

|
||||
|
||||
Try it out with a simple conversion:
|
||||
|
||||
```bash
|
||||
curl -X 'POST' \
|
||||
'http://localhost:5001/v1alpha/convert/source' \
|
||||
'http://localhost:5001/v1/convert/source' \
|
||||
-H 'accept: application/json' \
|
||||
-H 'Content-Type: application/json' \
|
||||
-d '{
|
||||
"http_sources": [{"url": "https://arxiv.org/pdf/2501.17887"}]
|
||||
"sources": [{"kind": "http", "url": "https://arxiv.org/pdf/2501.17887"}]
|
||||
}'
|
||||
```
|
||||
|
||||
### Container images
|
||||
### Container Images
|
||||
|
||||
Available container images:
|
||||
The following container images are available for running **Docling Serve** with different hardware and PyTorch configurations:
|
||||
|
||||
| Name | Description | Arch | Size |
|
||||
| -----|-------------|------|------|
|
||||
| [`ghcr.io/docling-project/docling-serve`](https://github.com/docling-project/docling-serve/pkgs/container/docling-serve) <br /> [`quay.io/docling-project/docling-serve`](https://quay.io/repository/docling-project/docling-serve) | Simple image for Docling Serve, installing all packages from the official pypi.org index. | `linux/amd64`, `linux/arm64` | 3.6 GB |
|
||||
| [`ghcr.io/docling-project/docling-serve-cpu`](https://github.com/docling-project/docling-serve/pkgs/container/docling-serve-cpu) <br /> [`quay.io/docling-project/docling-serve-cpu`](https://quay.io/repository/docling-project/docling-serve-cpu) | Cpu-only image which installs `torch` from the pytorch cpu index. | `linux/amd64`, `linux/arm64` | 3.6 GB |
|
||||
| [`ghcr.io/docling-project/docling-serve-cu124`](https://github.com/docling-project/docling-serve/pkgs/container/docling-serve-cu124) <br /> [`quay.io/docling-project/docling-serve-cu124`](https://quay.io/repository/docling-project/docling-serve-cu124) | Cuda 12.4 image which installs `torch` from the pytorch cu124 index. | `linux/amd64` | 8.7 GB |
|
||||
#### 📦 Distributed Images
|
||||
|
||||
| Image | Description | Architectures | Size |
|
||||
|-------|-------------|----------------|------|
|
||||
| [`ghcr.io/docling-project/docling-serve`](https://github.com/docling-project/docling-serve/pkgs/container/docling-serve) <br> [`quay.io/docling-project/docling-serve`](https://quay.io/repository/docling-project/docling-serve) | Base image with all packages installed from the official PyPI index. | `linux/amd64`, `linux/arm64` | 4.4 GB (arm64) <br> 8.7 GB (amd64) |
|
||||
| [`ghcr.io/docling-project/docling-serve-cpu`](https://github.com/docling-project/docling-serve/pkgs/container/docling-serve-cpu) <br> [`quay.io/docling-project/docling-serve-cpu`](https://quay.io/repository/docling-project/docling-serve-cpu) | CPU-only variant, using `torch` from the PyTorch CPU index. | `linux/amd64`, `linux/arm64` | 4.4 GB |
|
||||
| [`ghcr.io/docling-project/docling-serve-cu126`](https://github.com/docling-project/docling-serve/pkgs/container/docling-serve-cu126) <br> [`quay.io/docling-project/docling-serve-cu126`](https://quay.io/repository/docling-project/docling-serve-cu126) | CUDA 12.6 build with `torch` from the cu126 index. | `linux/amd64` | 10.0 GB |
|
||||
| [`ghcr.io/docling-project/docling-serve-cu128`](https://github.com/docling-project/docling-serve/pkgs/container/docling-serve-cu128) <br> [`quay.io/docling-project/docling-serve-cu128`](https://quay.io/repository/docling-project/docling-serve-cu128) | CUDA 12.8 build with `torch` from the cu128 index. | `linux/amd64` | 11.4 GB |
|
||||
|
||||
#### 🚫 Not Distributed
|
||||
|
||||
An image for AMD ROCm 6.3 (`docling-serve-rocm`) is supported but **not published** due to its large size.
|
||||
|
||||
To build it locally:
|
||||
|
||||
```bash
|
||||
git clone --branch main git@github.com:docling-project/docling-serve.git
|
||||
cd docling-serve/
|
||||
make docling-serve-rocm-image
|
||||
```
|
||||
|
||||
For deployment using Docker Compose, see [docs/deployment.md](docs/deployment.md).
|
||||
|
||||
Coming soon: `docling-serve-slim` images will reduce the size by skipping the model weights download.
|
||||
|
||||
### Demonstration UI
|
||||
|
||||
```bash
|
||||
# Install the Python package with the extra dependencies
|
||||
pip install "docling-serve[ui]"
|
||||
docling-serve run --enable-ui
|
||||
|
||||
# Run the container image with the extra env parameters
|
||||
podman run -p 5001:5001 -e DOCLING_SERVE_ENABLE_UI=true quay.io/docling-project/docling-serve
|
||||
```
|
||||
|
||||
An easy to use UI is available at the `/ui` endpoint.
|
||||
|
||||

|
||||

|
||||
|
||||

|
||||
|
||||
## Documentation and advance usages
|
||||
|
||||
Visit the [Docling Serve documentation](./docs/README.md) for learning how to [configure the webserver](./docs/configuration.md), use all the [runtime options](./docs/usage.md) of the API and [deployment examples](./docs/deployment.md).
|
||||

|
||||
|
||||
## Get help and support
|
||||
|
||||
|
||||
@@ -30,6 +30,7 @@ logger = logging.getLogger(__name__)
|
||||
def version_callback(value: bool) -> None:
|
||||
if value:
|
||||
docling_serve_version = importlib.metadata.version("docling_serve")
|
||||
docling_jobkit_version = importlib.metadata.version("docling-jobkit")
|
||||
docling_version = importlib.metadata.version("docling")
|
||||
docling_core_version = importlib.metadata.version("docling-core")
|
||||
docling_ibm_models_version = importlib.metadata.version("docling-ibm-models")
|
||||
@@ -38,6 +39,7 @@ def version_callback(value: bool) -> None:
|
||||
py_impl_version = sys.implementation.cache_tag
|
||||
py_lang_version = platform.python_version()
|
||||
console.print(f"Docling Serve version: {docling_serve_version}")
|
||||
console.print(f"Docling Jobkit version: {docling_jobkit_version}")
|
||||
console.print(f"Docling version: {docling_version}")
|
||||
console.print(f"Docling Core version: {docling_core_version}")
|
||||
console.print(f"Docling IBM Models version: {docling_ibm_models_version}")
|
||||
@@ -113,11 +115,13 @@ def _run(
|
||||
protocol = "https" if run_ssl else "http"
|
||||
url = f"{protocol}://{uvicorn_settings.host}:{uvicorn_settings.port}"
|
||||
url_docs = f"{url}/docs"
|
||||
url_scalar = f"{url}/scalar"
|
||||
url_ui = f"{url}/ui"
|
||||
|
||||
console.print("")
|
||||
console.print(f"Server started at [link={url}]{url}[/]")
|
||||
console.print(f"Documentation at [link={url_docs}]{url_docs}[/]")
|
||||
console.print(f"Scalar docs at [link={url_docs}]{url_scalar}[/]")
|
||||
if docling_serve_settings.enable_ui:
|
||||
console.print(f"UI at [link={url_ui}]{url_ui}[/]")
|
||||
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
import asyncio
|
||||
import copy
|
||||
import importlib.metadata
|
||||
import logging
|
||||
import shutil
|
||||
@@ -11,6 +12,7 @@ from fastapi import (
|
||||
BackgroundTasks,
|
||||
Depends,
|
||||
FastAPI,
|
||||
Form,
|
||||
HTTPException,
|
||||
Query,
|
||||
UploadFile,
|
||||
@@ -23,38 +25,52 @@ from fastapi.openapi.docs import (
|
||||
get_swagger_ui_html,
|
||||
get_swagger_ui_oauth2_redirect_html,
|
||||
)
|
||||
from fastapi.responses import RedirectResponse
|
||||
from fastapi.responses import JSONResponse, RedirectResponse
|
||||
from fastapi.staticfiles import StaticFiles
|
||||
from scalar_fastapi import get_scalar_api_reference
|
||||
|
||||
from docling.datamodel.base_models import DocumentStream
|
||||
|
||||
from docling_serve.datamodel.callback import (
|
||||
from docling_jobkit.datamodel.callback import (
|
||||
ProgressCallbackRequest,
|
||||
ProgressCallbackResponse,
|
||||
)
|
||||
from docling_serve.datamodel.convert import ConvertDocumentsOptions
|
||||
from docling_jobkit.datamodel.http_inputs import FileSource, HttpSource
|
||||
from docling_jobkit.datamodel.s3_coords import S3Coordinates
|
||||
from docling_jobkit.datamodel.task import Task, TaskSource
|
||||
from docling_jobkit.datamodel.task_targets import (
|
||||
InBodyTarget,
|
||||
TaskTarget,
|
||||
ZipTarget,
|
||||
)
|
||||
from docling_jobkit.orchestrators.base_orchestrator import (
|
||||
BaseOrchestrator,
|
||||
ProgressInvalid,
|
||||
TaskNotFoundError,
|
||||
)
|
||||
|
||||
from docling_serve.datamodel.convert import ConvertDocumentsRequestOptions
|
||||
from docling_serve.datamodel.requests import (
|
||||
ConvertDocumentFileSourcesRequest,
|
||||
ConvertDocumentHttpSourcesRequest,
|
||||
ConvertDocumentsRequest,
|
||||
FileSourceRequest,
|
||||
HttpSourceRequest,
|
||||
S3SourceRequest,
|
||||
TargetName,
|
||||
)
|
||||
from docling_serve.datamodel.responses import (
|
||||
ClearResponse,
|
||||
ConvertDocumentResponse,
|
||||
HealthCheckResponse,
|
||||
MessageKind,
|
||||
PresignedUrlConvertDocumentResponse,
|
||||
TaskStatusResponse,
|
||||
WebsocketMessage,
|
||||
)
|
||||
from docling_serve.datamodel.task import Task, TaskSource
|
||||
from docling_serve.engines.async_orchestrator import (
|
||||
BaseAsyncOrchestrator,
|
||||
ProgressInvalid,
|
||||
)
|
||||
from docling_serve.engines.async_orchestrator_factory import get_async_orchestrator
|
||||
from docling_serve.engines.base_orchestrator import TaskNotFoundError
|
||||
from docling_serve.helper_functions import FormDepends
|
||||
from docling_serve.orchestrator_factory import get_async_orchestrator
|
||||
from docling_serve.response_preparation import prepare_response
|
||||
from docling_serve.settings import docling_serve_settings
|
||||
from docling_serve.storage import get_scratch
|
||||
from docling_serve.websocket_notifier import WebsocketNotifier
|
||||
|
||||
|
||||
# Set up custom logging as we'll be intermixes with FastAPI/Uvicorn's logging
|
||||
@@ -92,11 +108,15 @@ _log = logging.getLogger(__name__)
|
||||
# Context manager to initialize and clean up the lifespan of the FastAPI app
|
||||
@asynccontextmanager
|
||||
async def lifespan(app: FastAPI):
|
||||
orchestrator = get_async_orchestrator()
|
||||
scratch_dir = get_scratch()
|
||||
|
||||
orchestrator = get_async_orchestrator()
|
||||
notifier = WebsocketNotifier(orchestrator)
|
||||
orchestrator.bind_notifier(notifier)
|
||||
|
||||
# Warm up processing cache
|
||||
await orchestrator.warm_up_caches()
|
||||
if docling_serve_settings.load_models_at_boot:
|
||||
await orchestrator.warm_up_caches()
|
||||
|
||||
# Start the background queue processor
|
||||
queue_task = asyncio.create_task(orchestrator.process_queue())
|
||||
@@ -138,8 +158,8 @@ def create_app(): # noqa: C901
|
||||
|
||||
app = FastAPI(
|
||||
title="Docling Serve",
|
||||
docs_url=None if offline_docs_assets else "/docs",
|
||||
redoc_url=None if offline_docs_assets else "/redocs",
|
||||
docs_url=None if offline_docs_assets else "/swagger",
|
||||
redoc_url=None if offline_docs_assets else "/docs",
|
||||
lifespan=lifespan,
|
||||
version=version,
|
||||
)
|
||||
@@ -190,7 +210,7 @@ def create_app(): # noqa: C901
|
||||
name="static",
|
||||
)
|
||||
|
||||
@app.get("/docs", include_in_schema=False)
|
||||
@app.get("/swagger", include_in_schema=False)
|
||||
async def custom_swagger_ui_html():
|
||||
return get_swagger_ui_html(
|
||||
openapi_url=app.openapi_url,
|
||||
@@ -204,7 +224,7 @@ def create_app(): # noqa: C901
|
||||
async def swagger_ui_redirect():
|
||||
return get_swagger_ui_oauth2_redirect_html()
|
||||
|
||||
@app.get("/redoc", include_in_schema=False)
|
||||
@app.get("/docs", include_in_schema=False)
|
||||
async def redoc_html():
|
||||
return get_redoc_html(
|
||||
openapi_url=app.openapi_url,
|
||||
@@ -212,28 +232,43 @@ def create_app(): # noqa: C901
|
||||
redoc_js_url="/static/redoc.standalone.js",
|
||||
)
|
||||
|
||||
@app.get("/scalar", include_in_schema=False)
|
||||
async def scalar_html():
|
||||
return get_scalar_api_reference(
|
||||
openapi_url=app.openapi_url,
|
||||
title=app.title,
|
||||
scalar_favicon_url="https://raw.githubusercontent.com/docling-project/docling/refs/heads/main/docs/assets/logo.svg",
|
||||
# hide_client_button=True, # not yet released but in main
|
||||
)
|
||||
|
||||
########################
|
||||
# Async / Sync helpers #
|
||||
########################
|
||||
|
||||
async def _enque_source(
|
||||
orchestrator: BaseAsyncOrchestrator, conversion_request: ConvertDocumentsRequest
|
||||
orchestrator: BaseOrchestrator, conversion_request: ConvertDocumentsRequest
|
||||
) -> Task:
|
||||
sources: list[TaskSource] = []
|
||||
if isinstance(conversion_request, ConvertDocumentFileSourcesRequest):
|
||||
sources.extend(conversion_request.file_sources)
|
||||
if isinstance(conversion_request, ConvertDocumentHttpSourcesRequest):
|
||||
sources.extend(conversion_request.http_sources)
|
||||
for s in conversion_request.sources:
|
||||
if isinstance(s, FileSourceRequest):
|
||||
sources.append(FileSource.model_validate(s))
|
||||
elif isinstance(s, HttpSourceRequest):
|
||||
sources.append(HttpSource.model_validate(s))
|
||||
elif isinstance(s, S3SourceRequest):
|
||||
sources.append(S3Coordinates.model_validate(s))
|
||||
|
||||
task = await orchestrator.enqueue(
|
||||
sources=sources, options=conversion_request.options
|
||||
sources=sources,
|
||||
options=conversion_request.options,
|
||||
target=conversion_request.target,
|
||||
)
|
||||
return task
|
||||
|
||||
async def _enque_file(
|
||||
orchestrator: BaseAsyncOrchestrator,
|
||||
orchestrator: BaseOrchestrator,
|
||||
files: list[UploadFile],
|
||||
options: ConvertDocumentsOptions,
|
||||
options: ConvertDocumentsRequestOptions,
|
||||
target: TaskTarget,
|
||||
) -> Task:
|
||||
_log.info(f"Received {len(files)} files for processing.")
|
||||
|
||||
@@ -245,13 +280,12 @@ def create_app(): # noqa: C901
|
||||
name = file.filename if file.filename else f"file{suffix}.pdf"
|
||||
file_sources.append(DocumentStream(name=name, stream=buf))
|
||||
|
||||
task = await orchestrator.enqueue(sources=file_sources, options=options)
|
||||
task = await orchestrator.enqueue(
|
||||
sources=file_sources, options=options, target=target
|
||||
)
|
||||
return task
|
||||
|
||||
async def _wait_task_complete(
|
||||
orchestrator: BaseAsyncOrchestrator, task_id: str
|
||||
) -> bool:
|
||||
MAX_WAIT = 120
|
||||
async def _wait_task_complete(orchestrator: BaseOrchestrator, task_id: str) -> bool:
|
||||
start_time = time.monotonic()
|
||||
while True:
|
||||
task = await orchestrator.task_status(task_id=task_id)
|
||||
@@ -259,13 +293,82 @@ def create_app(): # noqa: C901
|
||||
return True
|
||||
await asyncio.sleep(5)
|
||||
elapsed_time = time.monotonic() - start_time
|
||||
if elapsed_time > MAX_WAIT:
|
||||
if elapsed_time > docling_serve_settings.max_sync_wait:
|
||||
return False
|
||||
|
||||
##########################################
|
||||
# Downgrade openapi 3.1 to 3.0.x helpers #
|
||||
##########################################
|
||||
|
||||
def ensure_array_items(schema):
|
||||
"""Ensure that array items are defined."""
|
||||
if "type" in schema and schema["type"] == "array":
|
||||
if "items" not in schema or schema["items"] is None:
|
||||
schema["items"] = {"type": "string"}
|
||||
elif isinstance(schema["items"], dict):
|
||||
if "type" not in schema["items"]:
|
||||
schema["items"]["type"] = "string"
|
||||
|
||||
def handle_discriminators(schema):
|
||||
"""Ensure that discriminator properties are included in required."""
|
||||
if "discriminator" in schema and "propertyName" in schema["discriminator"]:
|
||||
prop = schema["discriminator"]["propertyName"]
|
||||
if "properties" in schema and prop in schema["properties"]:
|
||||
if "required" not in schema:
|
||||
schema["required"] = []
|
||||
if prop not in schema["required"]:
|
||||
schema["required"].append(prop)
|
||||
|
||||
def handle_properties(schema):
|
||||
"""Ensure that property 'kind' is included in required."""
|
||||
if "properties" in schema and "kind" in schema["properties"]:
|
||||
if "required" not in schema:
|
||||
schema["required"] = []
|
||||
if "kind" not in schema["required"]:
|
||||
schema["required"].append("kind")
|
||||
|
||||
# Downgrade openapi 3.1 to 3.0.x
|
||||
def downgrade_openapi31_to_30(spec):
|
||||
def strip_unsupported(obj):
|
||||
if isinstance(obj, dict):
|
||||
obj = {
|
||||
k: strip_unsupported(v)
|
||||
for k, v in obj.items()
|
||||
if k not in ("const", "examples", "prefixItems")
|
||||
}
|
||||
|
||||
handle_discriminators(obj)
|
||||
ensure_array_items(obj)
|
||||
|
||||
# Check for oneOf and anyOf to handle nested schemas
|
||||
for key in ["oneOf", "anyOf"]:
|
||||
if key in obj:
|
||||
for sub in obj[key]:
|
||||
handle_discriminators(sub)
|
||||
ensure_array_items(sub)
|
||||
|
||||
return obj
|
||||
elif isinstance(obj, list):
|
||||
return [strip_unsupported(i) for i in obj]
|
||||
return obj
|
||||
|
||||
if "components" in spec and "schemas" in spec["components"]:
|
||||
for schema_name, schema in spec["components"]["schemas"].items():
|
||||
handle_properties(schema)
|
||||
|
||||
return strip_unsupported(copy.deepcopy(spec))
|
||||
|
||||
#############################
|
||||
# API Endpoints definitions #
|
||||
#############################
|
||||
|
||||
@app.get("/openapi-3.0.json")
|
||||
def openapi_30():
|
||||
spec = app.openapi()
|
||||
downgraded = downgrade_openapi31_to_30(spec)
|
||||
downgraded["openapi"] = "3.0.3"
|
||||
return JSONResponse(downgraded)
|
||||
|
||||
# Favicon
|
||||
@app.get("/favicon.ico", include_in_schema=False)
|
||||
async def favicon():
|
||||
@@ -286,8 +389,8 @@ def create_app(): # noqa: C901
|
||||
|
||||
# Convert a document from URL(s)
|
||||
@app.post(
|
||||
"/v1alpha/convert/source",
|
||||
response_model=ConvertDocumentResponse,
|
||||
"/v1/convert/source",
|
||||
response_model=ConvertDocumentResponse | PresignedUrlConvertDocumentResponse,
|
||||
responses={
|
||||
200: {
|
||||
"content": {"application/zip": {}},
|
||||
@@ -297,36 +400,33 @@ def create_app(): # noqa: C901
|
||||
)
|
||||
async def process_url(
|
||||
background_tasks: BackgroundTasks,
|
||||
orchestrator: Annotated[BaseAsyncOrchestrator, Depends(get_async_orchestrator)],
|
||||
orchestrator: Annotated[BaseOrchestrator, Depends(get_async_orchestrator)],
|
||||
conversion_request: ConvertDocumentsRequest,
|
||||
):
|
||||
task = await _enque_source(
|
||||
orchestrator=orchestrator, conversion_request=conversion_request
|
||||
)
|
||||
success = await _wait_task_complete(
|
||||
completed = await _wait_task_complete(
|
||||
orchestrator=orchestrator, task_id=task.task_id
|
||||
)
|
||||
|
||||
if not success:
|
||||
if not completed:
|
||||
# TODO: abort task!
|
||||
return HTTPException(
|
||||
status_code=504, detail="Conversion is taking too long."
|
||||
status_code=504,
|
||||
detail=f"Conversion is taking too long. The maximum wait time is configure as DOCLING_SERVE_MAX_SYNC_WAIT={docling_serve_settings.max_sync_wait}.",
|
||||
)
|
||||
|
||||
result = await orchestrator.task_result(
|
||||
task_id=task.task_id, background_tasks=background_tasks
|
||||
task = await orchestrator.get_raw_task(task_id=task.task_id)
|
||||
response = await prepare_response(
|
||||
task=task, orchestrator=orchestrator, background_tasks=background_tasks
|
||||
)
|
||||
if result is None:
|
||||
raise HTTPException(
|
||||
status_code=404,
|
||||
detail="Task result not found. Please wait for a completion status.",
|
||||
)
|
||||
return result
|
||||
return response
|
||||
|
||||
# Convert a document from file(s)
|
||||
@app.post(
|
||||
"/v1alpha/convert/file",
|
||||
response_model=ConvertDocumentResponse,
|
||||
"/v1/convert/file",
|
||||
response_model=ConvertDocumentResponse | PresignedUrlConvertDocumentResponse,
|
||||
responses={
|
||||
200: {
|
||||
"content": {"application/zip": {}},
|
||||
@@ -335,42 +435,41 @@ def create_app(): # noqa: C901
|
||||
)
|
||||
async def process_file(
|
||||
background_tasks: BackgroundTasks,
|
||||
orchestrator: Annotated[BaseAsyncOrchestrator, Depends(get_async_orchestrator)],
|
||||
orchestrator: Annotated[BaseOrchestrator, Depends(get_async_orchestrator)],
|
||||
files: list[UploadFile],
|
||||
options: Annotated[
|
||||
ConvertDocumentsOptions, FormDepends(ConvertDocumentsOptions)
|
||||
ConvertDocumentsRequestOptions, FormDepends(ConvertDocumentsRequestOptions)
|
||||
],
|
||||
target_type: Annotated[TargetName, Form()] = TargetName.INBODY,
|
||||
):
|
||||
target = InBodyTarget() if target_type == TargetName.INBODY else ZipTarget()
|
||||
task = await _enque_file(
|
||||
orchestrator=orchestrator, files=files, options=options
|
||||
orchestrator=orchestrator, files=files, options=options, target=target
|
||||
)
|
||||
success = await _wait_task_complete(
|
||||
completed = await _wait_task_complete(
|
||||
orchestrator=orchestrator, task_id=task.task_id
|
||||
)
|
||||
|
||||
if not success:
|
||||
if not completed:
|
||||
# TODO: abort task!
|
||||
return HTTPException(
|
||||
status_code=504, detail="Conversion is taking too long."
|
||||
status_code=504,
|
||||
detail=f"Conversion is taking too long. The maximum wait time is configure as DOCLING_SERVE_MAX_SYNC_WAIT={docling_serve_settings.max_sync_wait}.",
|
||||
)
|
||||
|
||||
result = await orchestrator.task_result(
|
||||
task_id=task.task_id, background_tasks=background_tasks
|
||||
task = await orchestrator.get_raw_task(task_id=task.task_id)
|
||||
response = await prepare_response(
|
||||
task=task, orchestrator=orchestrator, background_tasks=background_tasks
|
||||
)
|
||||
if result is None:
|
||||
raise HTTPException(
|
||||
status_code=404,
|
||||
detail="Task result not found. Please wait for a completion status.",
|
||||
)
|
||||
return result
|
||||
return response
|
||||
|
||||
# Convert a document from URL(s) using the async api
|
||||
@app.post(
|
||||
"/v1alpha/convert/source/async",
|
||||
"/v1/convert/source/async",
|
||||
response_model=TaskStatusResponse,
|
||||
)
|
||||
async def process_url_async(
|
||||
orchestrator: Annotated[BaseAsyncOrchestrator, Depends(get_async_orchestrator)],
|
||||
orchestrator: Annotated[BaseOrchestrator, Depends(get_async_orchestrator)],
|
||||
conversion_request: ConvertDocumentsRequest,
|
||||
):
|
||||
task = await _enque_source(
|
||||
@@ -388,19 +487,21 @@ def create_app(): # noqa: C901
|
||||
|
||||
# Convert a document from file(s) using the async api
|
||||
@app.post(
|
||||
"/v1alpha/convert/file/async",
|
||||
"/v1/convert/file/async",
|
||||
response_model=TaskStatusResponse,
|
||||
)
|
||||
async def process_file_async(
|
||||
orchestrator: Annotated[BaseAsyncOrchestrator, Depends(get_async_orchestrator)],
|
||||
orchestrator: Annotated[BaseOrchestrator, Depends(get_async_orchestrator)],
|
||||
background_tasks: BackgroundTasks,
|
||||
files: list[UploadFile],
|
||||
options: Annotated[
|
||||
ConvertDocumentsOptions, FormDepends(ConvertDocumentsOptions)
|
||||
ConvertDocumentsRequestOptions, FormDepends(ConvertDocumentsRequestOptions)
|
||||
],
|
||||
target_type: Annotated[TargetName, Form()] = TargetName.INBODY,
|
||||
):
|
||||
target = InBodyTarget() if target_type == TargetName.INBODY else ZipTarget()
|
||||
task = await _enque_file(
|
||||
orchestrator=orchestrator, files=files, options=options
|
||||
orchestrator=orchestrator, files=files, options=options, target=target
|
||||
)
|
||||
task_queue_position = await orchestrator.get_queue_position(
|
||||
task_id=task.task_id
|
||||
@@ -414,14 +515,15 @@ def create_app(): # noqa: C901
|
||||
|
||||
# Task status poll
|
||||
@app.get(
|
||||
"/v1alpha/status/poll/{task_id}",
|
||||
"/v1/status/poll/{task_id}",
|
||||
response_model=TaskStatusResponse,
|
||||
)
|
||||
async def task_status_poll(
|
||||
orchestrator: Annotated[BaseAsyncOrchestrator, Depends(get_async_orchestrator)],
|
||||
orchestrator: Annotated[BaseOrchestrator, Depends(get_async_orchestrator)],
|
||||
task_id: str,
|
||||
wait: Annotated[
|
||||
float, Query(help="Number of seconds to wait for a completed status.")
|
||||
float,
|
||||
Query(description="Number of seconds to wait for a completed status."),
|
||||
] = 0.0,
|
||||
):
|
||||
try:
|
||||
@@ -438,13 +540,14 @@ def create_app(): # noqa: C901
|
||||
|
||||
# Task status websocket
|
||||
@app.websocket(
|
||||
"/v1alpha/status/ws/{task_id}",
|
||||
"/v1/status/ws/{task_id}",
|
||||
)
|
||||
async def task_status_ws(
|
||||
websocket: WebSocket,
|
||||
orchestrator: Annotated[BaseAsyncOrchestrator, Depends(get_async_orchestrator)],
|
||||
orchestrator: Annotated[BaseOrchestrator, Depends(get_async_orchestrator)],
|
||||
task_id: str,
|
||||
):
|
||||
assert isinstance(orchestrator.notifier, WebsocketNotifier)
|
||||
await websocket.accept()
|
||||
|
||||
if task_id not in orchestrator.tasks:
|
||||
@@ -459,7 +562,7 @@ def create_app(): # noqa: C901
|
||||
task = orchestrator.tasks[task_id]
|
||||
|
||||
# Track active WebSocket connections for this job
|
||||
orchestrator.task_subscribers[task_id].add(websocket)
|
||||
orchestrator.notifier.task_subscribers[task_id].add(websocket)
|
||||
|
||||
try:
|
||||
task_queue_position = await orchestrator.get_queue_position(task_id=task_id)
|
||||
@@ -497,12 +600,12 @@ def create_app(): # noqa: C901
|
||||
_log.info(f"WebSocket disconnected for job {task_id}")
|
||||
|
||||
finally:
|
||||
orchestrator.task_subscribers[task_id].remove(websocket)
|
||||
orchestrator.notifier.task_subscribers[task_id].remove(websocket)
|
||||
|
||||
# Task result
|
||||
@app.get(
|
||||
"/v1alpha/result/{task_id}",
|
||||
response_model=ConvertDocumentResponse,
|
||||
"/v1/result/{task_id}",
|
||||
response_model=ConvertDocumentResponse | PresignedUrlConvertDocumentResponse,
|
||||
responses={
|
||||
200: {
|
||||
"content": {"application/zip": {}},
|
||||
@@ -510,27 +613,26 @@ def create_app(): # noqa: C901
|
||||
},
|
||||
)
|
||||
async def task_result(
|
||||
orchestrator: Annotated[BaseAsyncOrchestrator, Depends(get_async_orchestrator)],
|
||||
orchestrator: Annotated[BaseOrchestrator, Depends(get_async_orchestrator)],
|
||||
background_tasks: BackgroundTasks,
|
||||
task_id: str,
|
||||
):
|
||||
result = await orchestrator.task_result(
|
||||
task_id=task_id, background_tasks=background_tasks
|
||||
)
|
||||
if result is None:
|
||||
raise HTTPException(
|
||||
status_code=404,
|
||||
detail="Task result not found. Please wait for a completion status.",
|
||||
try:
|
||||
task = await orchestrator.get_raw_task(task_id=task_id)
|
||||
response = await prepare_response(
|
||||
task=task, orchestrator=orchestrator, background_tasks=background_tasks
|
||||
)
|
||||
return result
|
||||
return response
|
||||
except TaskNotFoundError:
|
||||
raise HTTPException(status_code=404, detail="Task not found.")
|
||||
|
||||
# Update task progress
|
||||
@app.post(
|
||||
"/v1alpha/callback/task/progress",
|
||||
"/v1/callback/task/progress",
|
||||
response_model=ProgressCallbackResponse,
|
||||
)
|
||||
async def callback_task_progress(
|
||||
orchestrator: Annotated[BaseAsyncOrchestrator, Depends(get_async_orchestrator)],
|
||||
orchestrator: Annotated[BaseOrchestrator, Depends(get_async_orchestrator)],
|
||||
request: ProgressCallbackRequest,
|
||||
):
|
||||
try:
|
||||
@@ -543,4 +645,29 @@ def create_app(): # noqa: C901
|
||||
status_code=400, detail=f"Invalid progress payload: {err}"
|
||||
)
|
||||
|
||||
#### Clear requests
|
||||
|
||||
# Offload models
|
||||
@app.get(
|
||||
"/v1/clear/converters",
|
||||
response_model=ClearResponse,
|
||||
)
|
||||
async def clear_converters(
|
||||
orchestrator: Annotated[BaseOrchestrator, Depends(get_async_orchestrator)],
|
||||
):
|
||||
await orchestrator.clear_converters()
|
||||
return ClearResponse()
|
||||
|
||||
# Clean results
|
||||
@app.get(
|
||||
"/v1/clear/results",
|
||||
response_model=ClearResponse,
|
||||
)
|
||||
async def clear_results(
|
||||
orchestrator: Annotated[BaseOrchestrator, Depends(get_async_orchestrator)],
|
||||
older_then: float = 3600,
|
||||
):
|
||||
await orchestrator.clear_results(older_than=older_then)
|
||||
return ClearResponse()
|
||||
|
||||
return app
|
||||
|
||||
@@ -1,50 +0,0 @@
|
||||
import enum
|
||||
from typing import Annotated, Literal
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class ProgressKind(str, enum.Enum):
|
||||
SET_NUM_DOCS = "set_num_docs"
|
||||
UPDATE_PROCESSED = "update_processed"
|
||||
|
||||
|
||||
class BaseProgress(BaseModel):
|
||||
kind: ProgressKind
|
||||
|
||||
|
||||
class ProgressSetNumDocs(BaseProgress):
|
||||
kind: Literal[ProgressKind.SET_NUM_DOCS] = ProgressKind.SET_NUM_DOCS
|
||||
|
||||
num_docs: int
|
||||
|
||||
|
||||
class SucceededDocsItem(BaseModel):
|
||||
source: str
|
||||
|
||||
|
||||
class FailedDocsItem(BaseModel):
|
||||
source: str
|
||||
error: str
|
||||
|
||||
|
||||
class ProgressUpdateProcessed(BaseProgress):
|
||||
kind: Literal[ProgressKind.UPDATE_PROCESSED] = ProgressKind.UPDATE_PROCESSED
|
||||
|
||||
num_processed: int
|
||||
num_succeeded: int
|
||||
num_failed: int
|
||||
|
||||
docs_succeeded: list[SucceededDocsItem]
|
||||
docs_failed: list[FailedDocsItem]
|
||||
|
||||
|
||||
class ProgressCallbackRequest(BaseModel):
|
||||
task_id: str
|
||||
progress: Annotated[
|
||||
ProgressSetNumDocs | ProgressUpdateProcessed, Field(discriminator="kind")
|
||||
]
|
||||
|
||||
|
||||
class ProgressCallbackResponse(BaseModel):
|
||||
status: Literal["ack"] = "ack"
|
||||
@@ -1,23 +1,13 @@
|
||||
# Define the input options for the API
|
||||
from typing import Annotated, Any, Optional
|
||||
from typing import Annotated
|
||||
|
||||
from pydantic import AnyUrl, BaseModel, Field, model_validator
|
||||
from typing_extensions import Self
|
||||
from pydantic import Field
|
||||
|
||||
from docling.datamodel.base_models import InputFormat, OutputFormat
|
||||
from docling.datamodel.pipeline_options import (
|
||||
EasyOcrOptions,
|
||||
PdfBackend,
|
||||
PdfPipeline,
|
||||
TableFormerMode,
|
||||
TableStructureOptions,
|
||||
)
|
||||
from docling.datamodel.settings import (
|
||||
DEFAULT_PAGE_RANGE,
|
||||
PageRange,
|
||||
)
|
||||
from docling.models.factories import get_ocr_factory
|
||||
from docling_core.types.doc import ImageRefMode
|
||||
from docling_jobkit.datamodel.convert import ConvertDocumentsOptions
|
||||
|
||||
from docling_serve.settings import docling_serve_settings
|
||||
|
||||
@@ -27,150 +17,7 @@ ocr_factory = get_ocr_factory(
|
||||
ocr_engines_enum = ocr_factory.get_enum()
|
||||
|
||||
|
||||
class PictureDescriptionLocal(BaseModel):
|
||||
repo_id: Annotated[
|
||||
str,
|
||||
Field(
|
||||
description="Repository id from the Hugging Face Hub.",
|
||||
examples=[
|
||||
"HuggingFaceTB/SmolVLM-256M-Instruct",
|
||||
"ibm-granite/granite-vision-3.2-2b",
|
||||
],
|
||||
),
|
||||
]
|
||||
prompt: Annotated[
|
||||
str,
|
||||
Field(
|
||||
description="Prompt used when calling the vision-language model.",
|
||||
examples=[
|
||||
"Describe this image in a few sentences.",
|
||||
"This is a figure from a document. Provide a detailed description of it.",
|
||||
],
|
||||
),
|
||||
] = "Describe this image in a few sentences."
|
||||
generation_config: Annotated[
|
||||
dict[str, Any],
|
||||
Field(
|
||||
description="Config from https://huggingface.co/docs/transformers/en/main_classes/text_generation#transformers.GenerationConfig",
|
||||
examples=[{"max_new_tokens": 200, "do_sample": False}],
|
||||
),
|
||||
] = {"max_new_tokens": 200, "do_sample": False}
|
||||
|
||||
|
||||
class PictureDescriptionApi(BaseModel):
|
||||
url: Annotated[
|
||||
AnyUrl,
|
||||
Field(
|
||||
description="Endpoint which accepts openai-api compatible requests.",
|
||||
examples=[
|
||||
AnyUrl(
|
||||
"http://localhost:8000/v1/chat/completions"
|
||||
), # example of a local vllm api
|
||||
AnyUrl(
|
||||
"http://localhost:11434/v1/chat/completions"
|
||||
), # example of ollama
|
||||
],
|
||||
),
|
||||
]
|
||||
headers: Annotated[
|
||||
dict[str, str],
|
||||
Field(
|
||||
description="Headers used for calling the API endpoint. For example, it could include authentication headers."
|
||||
),
|
||||
] = {}
|
||||
params: Annotated[
|
||||
dict[str, Any],
|
||||
Field(
|
||||
description="Model parameters.",
|
||||
examples=[
|
||||
{ # on vllm
|
||||
"model": "HuggingFaceTB/SmolVLM-256M-Instruct",
|
||||
"max_completion_tokens": 200,
|
||||
},
|
||||
{ # on vllm
|
||||
"model": "ibm-granite/granite-vision-3.2-2b",
|
||||
"max_completion_tokens": 200,
|
||||
},
|
||||
{ # on ollama
|
||||
"model": "granite3.2-vision:2b"
|
||||
},
|
||||
],
|
||||
),
|
||||
] = {}
|
||||
timeout: Annotated[float, Field(description="Timeout for the API request.")] = 20
|
||||
prompt: Annotated[
|
||||
str,
|
||||
Field(
|
||||
description="Prompt used when calling the vision-language model.",
|
||||
examples=[
|
||||
"Describe this image in a few sentences.",
|
||||
"This is a figures from a document. Provide a detailed description of it.",
|
||||
],
|
||||
),
|
||||
] = "Describe this image in a few sentences."
|
||||
|
||||
|
||||
class ConvertDocumentsOptions(BaseModel):
|
||||
from_formats: Annotated[
|
||||
list[InputFormat],
|
||||
Field(
|
||||
description=(
|
||||
"Input format(s) to convert from. String or list of strings. "
|
||||
f"Allowed values: {', '.join([v.value for v in InputFormat])}. "
|
||||
"Optional, defaults to all formats."
|
||||
),
|
||||
examples=[[v.value for v in InputFormat]],
|
||||
),
|
||||
] = list(InputFormat)
|
||||
|
||||
to_formats: Annotated[
|
||||
list[OutputFormat],
|
||||
Field(
|
||||
description=(
|
||||
"Output format(s) to convert to. String or list of strings. "
|
||||
f"Allowed values: {', '.join([v.value for v in OutputFormat])}. "
|
||||
"Optional, defaults to Markdown."
|
||||
),
|
||||
examples=[[OutputFormat.MARKDOWN]],
|
||||
),
|
||||
] = [OutputFormat.MARKDOWN]
|
||||
|
||||
image_export_mode: Annotated[
|
||||
ImageRefMode,
|
||||
Field(
|
||||
description=(
|
||||
"Image export mode for the document (in case of JSON,"
|
||||
" Markdown or HTML). "
|
||||
f"Allowed values: {', '.join([v.value for v in ImageRefMode])}. "
|
||||
"Optional, defaults to Embedded."
|
||||
),
|
||||
examples=[ImageRefMode.EMBEDDED.value],
|
||||
# pattern="embedded|placeholder|referenced",
|
||||
),
|
||||
] = ImageRefMode.EMBEDDED
|
||||
|
||||
do_ocr: Annotated[
|
||||
bool,
|
||||
Field(
|
||||
description=(
|
||||
"If enabled, the bitmap content will be processed using OCR. "
|
||||
"Boolean. Optional, defaults to true"
|
||||
),
|
||||
# examples=[True],
|
||||
),
|
||||
] = True
|
||||
|
||||
force_ocr: Annotated[
|
||||
bool,
|
||||
Field(
|
||||
description=(
|
||||
"If enabled, replace existing text with OCR-generated "
|
||||
"text over content. Boolean. Optional, defaults to false."
|
||||
),
|
||||
# examples=[False],
|
||||
),
|
||||
] = False
|
||||
|
||||
class ConvertDocumentsRequestOptions(ConvertDocumentsOptions):
|
||||
ocr_engine: Annotated[ # type: ignore
|
||||
ocr_engines_enum,
|
||||
Field(
|
||||
@@ -183,57 +30,6 @@ class ConvertDocumentsOptions(BaseModel):
|
||||
),
|
||||
] = ocr_engines_enum(EasyOcrOptions.kind) # type: ignore
|
||||
|
||||
ocr_lang: Annotated[
|
||||
Optional[list[str]],
|
||||
Field(
|
||||
description=(
|
||||
"List of languages used by the OCR engine. "
|
||||
"Note that each OCR engine has "
|
||||
"different values for the language names. String or list of strings. "
|
||||
"Optional, defaults to empty."
|
||||
),
|
||||
examples=[["fr", "de", "es", "en"]],
|
||||
),
|
||||
] = None
|
||||
|
||||
pdf_backend: Annotated[
|
||||
PdfBackend,
|
||||
Field(
|
||||
description=(
|
||||
"The PDF backend to use. String. "
|
||||
f"Allowed values: {', '.join([v.value for v in PdfBackend])}. "
|
||||
f"Optional, defaults to {PdfBackend.DLPARSE_V4.value}."
|
||||
),
|
||||
examples=[PdfBackend.DLPARSE_V4],
|
||||
),
|
||||
] = PdfBackend.DLPARSE_V4
|
||||
|
||||
table_mode: Annotated[
|
||||
TableFormerMode,
|
||||
Field(
|
||||
description=(
|
||||
"Mode to use for table structure, String. "
|
||||
f"Allowed values: {', '.join([v.value for v in TableFormerMode])}. "
|
||||
"Optional, defaults to fast."
|
||||
),
|
||||
examples=[TableStructureOptions().mode],
|
||||
# pattern="fast|accurate",
|
||||
),
|
||||
] = TableStructureOptions().mode
|
||||
|
||||
pipeline: Annotated[
|
||||
PdfPipeline,
|
||||
Field(description="Choose the pipeline to process PDF or image files."),
|
||||
] = PdfPipeline.STANDARD
|
||||
|
||||
page_range: Annotated[
|
||||
PageRange,
|
||||
Field(
|
||||
description="Only convert a range of pages. The page number starts at 1.",
|
||||
examples=[(1, 4)],
|
||||
),
|
||||
] = DEFAULT_PAGE_RANGE
|
||||
|
||||
document_timeout: Annotated[
|
||||
float,
|
||||
Field(
|
||||
@@ -242,126 +38,3 @@ class ConvertDocumentsOptions(BaseModel):
|
||||
le=docling_serve_settings.max_document_timeout,
|
||||
),
|
||||
] = docling_serve_settings.max_document_timeout
|
||||
|
||||
abort_on_error: Annotated[
|
||||
bool,
|
||||
Field(
|
||||
description=(
|
||||
"Abort on error if enabled. Boolean. Optional, defaults to false."
|
||||
),
|
||||
# examples=[False],
|
||||
),
|
||||
] = False
|
||||
|
||||
return_as_file: Annotated[
|
||||
bool,
|
||||
Field(
|
||||
description=(
|
||||
"Return the output as a zip file "
|
||||
"(will happen anyway if multiple files are generated). "
|
||||
"Boolean. Optional, defaults to false."
|
||||
),
|
||||
examples=[False],
|
||||
),
|
||||
] = False
|
||||
|
||||
do_table_structure: Annotated[
|
||||
bool,
|
||||
Field(
|
||||
description=(
|
||||
"If enabled, the table structure will be extracted. "
|
||||
"Boolean. Optional, defaults to true."
|
||||
),
|
||||
examples=[True],
|
||||
),
|
||||
] = True
|
||||
|
||||
include_images: Annotated[
|
||||
bool,
|
||||
Field(
|
||||
description=(
|
||||
"If enabled, images will be extracted from the document. "
|
||||
"Boolean. Optional, defaults to true."
|
||||
),
|
||||
examples=[True],
|
||||
),
|
||||
] = True
|
||||
|
||||
images_scale: Annotated[
|
||||
float,
|
||||
Field(
|
||||
description="Scale factor for images. Float. Optional, defaults to 2.0.",
|
||||
examples=[2.0],
|
||||
),
|
||||
] = 2.0
|
||||
|
||||
do_code_enrichment: Annotated[
|
||||
bool,
|
||||
Field(
|
||||
description=(
|
||||
"If enabled, perform OCR code enrichment. "
|
||||
"Boolean. Optional, defaults to false."
|
||||
),
|
||||
examples=[False],
|
||||
),
|
||||
] = False
|
||||
|
||||
do_formula_enrichment: Annotated[
|
||||
bool,
|
||||
Field(
|
||||
description=(
|
||||
"If enabled, perform formula OCR, return LaTeX code. "
|
||||
"Boolean. Optional, defaults to false."
|
||||
),
|
||||
examples=[False],
|
||||
),
|
||||
] = False
|
||||
|
||||
do_picture_classification: Annotated[
|
||||
bool,
|
||||
Field(
|
||||
description=(
|
||||
"If enabled, classify pictures in documents. "
|
||||
"Boolean. Optional, defaults to false."
|
||||
),
|
||||
examples=[False],
|
||||
),
|
||||
] = False
|
||||
|
||||
do_picture_description: Annotated[
|
||||
bool,
|
||||
Field(
|
||||
description=(
|
||||
"If enabled, describe pictures in documents. "
|
||||
"Boolean. Optional, defaults to false."
|
||||
),
|
||||
examples=[False],
|
||||
),
|
||||
] = False
|
||||
|
||||
picture_description_local: Annotated[
|
||||
Optional[PictureDescriptionLocal],
|
||||
Field(
|
||||
description="Options for running a local vision-language model in the picture description. The parameters refer to a model hosted on Hugging Face. This parameter is mutually exclusive with picture_description_api."
|
||||
),
|
||||
] = None
|
||||
|
||||
picture_description_api: Annotated[
|
||||
Optional[PictureDescriptionApi],
|
||||
Field(
|
||||
description="API details for using a vision-language model in the picture description. This parameter is mutually exclusive with picture_description_local."
|
||||
),
|
||||
] = None
|
||||
|
||||
@model_validator(mode="after")
|
||||
def picture_description_exclusivity(self) -> Self:
|
||||
# Validate picture description options
|
||||
if (
|
||||
self.picture_description_local is not None
|
||||
and self.picture_description_api is not None
|
||||
):
|
||||
raise ValueError(
|
||||
"The parameters picture_description_local and picture_description_api are mutually exclusive, only one of them can be set."
|
||||
)
|
||||
|
||||
return self
|
||||
|
||||
@@ -1,13 +0,0 @@
|
||||
import enum
|
||||
|
||||
|
||||
class TaskStatus(str, enum.Enum):
|
||||
SUCCESS = "success"
|
||||
PENDING = "pending"
|
||||
STARTED = "started"
|
||||
FAILURE = "failure"
|
||||
|
||||
|
||||
class AsyncEngine(str, enum.Enum):
|
||||
LOCAL = "local"
|
||||
KFP = "kfp"
|
||||
@@ -1,7 +0,0 @@
|
||||
from pydantic import AnyUrl, BaseModel
|
||||
|
||||
|
||||
class CallbackSpec(BaseModel):
|
||||
url: AnyUrl
|
||||
headers: dict[str, str] = {}
|
||||
ca_cert: str = ""
|
||||
@@ -1,62 +1,72 @@
|
||||
import base64
|
||||
from io import BytesIO
|
||||
from typing import Annotated, Any, Union
|
||||
import enum
|
||||
from typing import Annotated, Literal
|
||||
|
||||
from pydantic import AnyHttpUrl, BaseModel, Field
|
||||
from pydantic import BaseModel, Field, model_validator
|
||||
from pydantic_core import PydanticCustomError
|
||||
from typing_extensions import Self
|
||||
|
||||
from docling.datamodel.base_models import DocumentStream
|
||||
from docling_jobkit.datamodel.http_inputs import FileSource, HttpSource
|
||||
from docling_jobkit.datamodel.s3_coords import S3Coordinates
|
||||
from docling_jobkit.datamodel.task_targets import (
|
||||
InBodyTarget,
|
||||
S3Target,
|
||||
TaskTarget,
|
||||
ZipTarget,
|
||||
)
|
||||
|
||||
from docling_serve.datamodel.convert import ConvertDocumentsOptions
|
||||
from docling_serve.datamodel.convert import ConvertDocumentsRequestOptions
|
||||
from docling_serve.settings import AsyncEngine, docling_serve_settings
|
||||
|
||||
## Sources
|
||||
|
||||
|
||||
class DocumentsConvertBase(BaseModel):
|
||||
options: ConvertDocumentsOptions = ConvertDocumentsOptions()
|
||||
class FileSourceRequest(FileSource):
|
||||
kind: Literal["file"] = "file"
|
||||
|
||||
|
||||
class HttpSource(BaseModel):
|
||||
url: Annotated[
|
||||
AnyHttpUrl,
|
||||
Field(
|
||||
description="HTTP url to process",
|
||||
examples=["https://arxiv.org/pdf/2206.01062"],
|
||||
),
|
||||
]
|
||||
headers: Annotated[
|
||||
dict[str, Any],
|
||||
Field(
|
||||
description="Additional headers used to fetch the urls, "
|
||||
"e.g. authorization, agent, etc"
|
||||
),
|
||||
] = {}
|
||||
class HttpSourceRequest(HttpSource):
|
||||
kind: Literal["http"] = "http"
|
||||
|
||||
|
||||
class FileSource(BaseModel):
|
||||
base64_string: Annotated[
|
||||
str,
|
||||
Field(
|
||||
description="Content of the file serialized in base64. "
|
||||
"For example it can be obtained via "
|
||||
"`base64 -w 0 /path/to/file/pdf-to-convert.pdf`."
|
||||
),
|
||||
]
|
||||
filename: Annotated[
|
||||
str,
|
||||
Field(description="Filename of the uploaded document", examples=["file.pdf"]),
|
||||
]
|
||||
|
||||
def to_document_stream(self) -> DocumentStream:
|
||||
buf = BytesIO(base64.b64decode(self.base64_string))
|
||||
return DocumentStream(stream=buf, name=self.filename)
|
||||
class S3SourceRequest(S3Coordinates):
|
||||
kind: Literal["s3"] = "s3"
|
||||
|
||||
|
||||
class ConvertDocumentHttpSourcesRequest(DocumentsConvertBase):
|
||||
http_sources: list[HttpSource]
|
||||
## Multipart targets
|
||||
class TargetName(str, enum.Enum):
|
||||
INBODY = InBodyTarget().kind
|
||||
ZIP = ZipTarget().kind
|
||||
|
||||
|
||||
class ConvertDocumentFileSourcesRequest(DocumentsConvertBase):
|
||||
file_sources: list[FileSource]
|
||||
|
||||
|
||||
ConvertDocumentsRequest = Union[
|
||||
ConvertDocumentFileSourcesRequest, ConvertDocumentHttpSourcesRequest
|
||||
## Aliases
|
||||
SourceRequestItem = Annotated[
|
||||
FileSourceRequest | HttpSourceRequest | S3SourceRequest, Field(discriminator="kind")
|
||||
]
|
||||
|
||||
|
||||
## Complete Source request
|
||||
class ConvertDocumentsRequest(BaseModel):
|
||||
options: ConvertDocumentsRequestOptions = ConvertDocumentsRequestOptions()
|
||||
sources: list[SourceRequestItem]
|
||||
target: TaskTarget = InBodyTarget()
|
||||
|
||||
@model_validator(mode="after")
|
||||
def validate_s3_source_and_target(self) -> Self:
|
||||
for source in self.sources:
|
||||
if isinstance(source, S3SourceRequest):
|
||||
if docling_serve_settings.eng_kind != AsyncEngine.KFP:
|
||||
raise PydanticCustomError(
|
||||
"error source", 'source kind "s3" requires engine kind "KFP"'
|
||||
)
|
||||
if self.target.kind != "s3":
|
||||
raise PydanticCustomError(
|
||||
"error source", 'source kind "s3" requires target kind "s3"'
|
||||
)
|
||||
if isinstance(self.target, S3Target):
|
||||
for source in self.sources:
|
||||
if isinstance(source, S3SourceRequest):
|
||||
return self
|
||||
raise PydanticCustomError(
|
||||
"error target", 'target kind "s3" requires source kind "s3"'
|
||||
)
|
||||
return self
|
||||
|
||||
@@ -6,8 +6,7 @@ from pydantic import BaseModel
|
||||
from docling.datamodel.document import ConversionStatus, ErrorItem
|
||||
from docling.utils.profiling import ProfilingItem
|
||||
from docling_core.types.doc import DoclingDocument
|
||||
|
||||
from docling_serve.datamodel.task_meta import TaskProcessingMeta
|
||||
from docling_jobkit.datamodel.task_meta import TaskProcessingMeta
|
||||
|
||||
|
||||
# Status
|
||||
@@ -15,6 +14,10 @@ class HealthCheckResponse(BaseModel):
|
||||
status: str = "ok"
|
||||
|
||||
|
||||
class ClearResponse(BaseModel):
|
||||
status: str = "ok"
|
||||
|
||||
|
||||
class DocumentResponse(BaseModel):
|
||||
filename: str
|
||||
md_content: Optional[str] = None
|
||||
@@ -32,6 +35,11 @@ class ConvertDocumentResponse(BaseModel):
|
||||
timings: dict[str, ProfilingItem] = {}
|
||||
|
||||
|
||||
class PresignedUrlConvertDocumentResponse(BaseModel):
|
||||
status: ConversionStatus
|
||||
processing_time: float
|
||||
|
||||
|
||||
class ConvertDocumentErrorResponse(BaseModel):
|
||||
status: ConversionStatus
|
||||
|
||||
|
||||
@@ -1,32 +0,0 @@
|
||||
from pathlib import Path
|
||||
from typing import Optional, Union
|
||||
|
||||
from fastapi.responses import FileResponse
|
||||
from pydantic import BaseModel, ConfigDict
|
||||
|
||||
from docling.datamodel.base_models import DocumentStream
|
||||
|
||||
from docling_serve.datamodel.convert import ConvertDocumentsOptions
|
||||
from docling_serve.datamodel.engines import TaskStatus
|
||||
from docling_serve.datamodel.requests import FileSource, HttpSource
|
||||
from docling_serve.datamodel.responses import ConvertDocumentResponse
|
||||
from docling_serve.datamodel.task_meta import TaskProcessingMeta
|
||||
|
||||
TaskSource = Union[HttpSource, FileSource, DocumentStream]
|
||||
|
||||
|
||||
class Task(BaseModel):
|
||||
model_config = ConfigDict(arbitrary_types_allowed=True)
|
||||
|
||||
task_id: str
|
||||
task_status: TaskStatus = TaskStatus.PENDING
|
||||
sources: list[TaskSource] = []
|
||||
options: Optional[ConvertDocumentsOptions]
|
||||
result: Optional[Union[ConvertDocumentResponse, FileResponse]] = None
|
||||
scratch_dir: Optional[Path] = None
|
||||
processing_meta: Optional[TaskProcessingMeta] = None
|
||||
|
||||
def is_completed(self) -> bool:
|
||||
if self.task_status in [TaskStatus.SUCCESS, TaskStatus.FAILURE]:
|
||||
return True
|
||||
return False
|
||||
@@ -1,8 +0,0 @@
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class TaskProcessingMeta(BaseModel):
|
||||
num_docs: int
|
||||
num_processed: int = 0
|
||||
num_succeeded: int = 0
|
||||
num_failed: int = 0
|
||||
@@ -1,260 +0,0 @@
|
||||
import hashlib
|
||||
import json
|
||||
import logging
|
||||
import sys
|
||||
from collections.abc import Iterable, Iterator
|
||||
from functools import lru_cache
|
||||
from pathlib import Path
|
||||
from typing import Any, Optional, Union
|
||||
|
||||
from fastapi import HTTPException
|
||||
|
||||
from docling.backend.docling_parse_backend import DoclingParseDocumentBackend
|
||||
from docling.backend.docling_parse_v2_backend import DoclingParseV2DocumentBackend
|
||||
from docling.backend.docling_parse_v4_backend import DoclingParseV4DocumentBackend
|
||||
from docling.backend.pdf_backend import PdfDocumentBackend
|
||||
from docling.backend.pypdfium2_backend import PyPdfiumDocumentBackend
|
||||
from docling.datamodel.base_models import DocumentStream, InputFormat
|
||||
from docling.datamodel.document import ConversionResult
|
||||
from docling.datamodel.pipeline_options import (
|
||||
OcrOptions,
|
||||
PdfBackend,
|
||||
PdfPipeline,
|
||||
PdfPipelineOptions,
|
||||
PictureDescriptionApiOptions,
|
||||
PictureDescriptionVlmOptions,
|
||||
TableFormerMode,
|
||||
VlmPipelineOptions,
|
||||
smoldocling_vlm_conversion_options,
|
||||
smoldocling_vlm_mlx_conversion_options,
|
||||
)
|
||||
from docling.document_converter import DocumentConverter, FormatOption, PdfFormatOption
|
||||
from docling.pipeline.vlm_pipeline import VlmPipeline
|
||||
from docling_core.types.doc import ImageRefMode
|
||||
|
||||
from docling_serve.datamodel.convert import ConvertDocumentsOptions, ocr_factory
|
||||
from docling_serve.helper_functions import _to_list_of_strings
|
||||
from docling_serve.settings import docling_serve_settings
|
||||
|
||||
_log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
# Custom serializer for PdfFormatOption
|
||||
# (model_dump_json does not work with some classes)
|
||||
def _hash_pdf_format_option(pdf_format_option: PdfFormatOption) -> bytes:
|
||||
data = pdf_format_option.model_dump()
|
||||
|
||||
# pipeline_options are not fully serialized by model_dump, dedicated pass
|
||||
if pdf_format_option.pipeline_options:
|
||||
data["pipeline_options"] = pdf_format_option.pipeline_options.model_dump()
|
||||
|
||||
# Replace `artifacts_path` with a string representation
|
||||
data["pipeline_options"]["artifacts_path"] = repr(
|
||||
data["pipeline_options"]["artifacts_path"]
|
||||
)
|
||||
|
||||
# Replace `pipeline_cls` with a string representation
|
||||
data["pipeline_cls"] = repr(data["pipeline_cls"])
|
||||
|
||||
# Replace `backend` with a string representation
|
||||
data["backend"] = repr(data["backend"])
|
||||
|
||||
# Handle `device` in `accelerator_options`
|
||||
if "accelerator_options" in data and "device" in data["accelerator_options"]:
|
||||
data["accelerator_options"]["device"] = repr(
|
||||
data["accelerator_options"]["device"]
|
||||
)
|
||||
|
||||
# Serialize the dictionary to JSON with sorted keys to have consistent hashes
|
||||
serialized_data = json.dumps(data, sort_keys=True)
|
||||
options_hash = hashlib.sha1(serialized_data.encode()).digest()
|
||||
return options_hash
|
||||
|
||||
|
||||
# Cache of DocumentConverter objects
|
||||
_options_map: dict[bytes, PdfFormatOption] = {}
|
||||
|
||||
|
||||
@lru_cache(maxsize=docling_serve_settings.options_cache_size)
|
||||
def _get_converter_from_hash(options_hash: bytes) -> DocumentConverter:
|
||||
pdf_format_option = _options_map[options_hash]
|
||||
format_options: dict[InputFormat, FormatOption] = {
|
||||
InputFormat.PDF: pdf_format_option,
|
||||
InputFormat.IMAGE: pdf_format_option,
|
||||
}
|
||||
|
||||
return DocumentConverter(format_options=format_options)
|
||||
|
||||
|
||||
def get_converter(pdf_format_option: PdfFormatOption) -> DocumentConverter:
|
||||
options_hash = _hash_pdf_format_option(pdf_format_option)
|
||||
_options_map[options_hash] = pdf_format_option
|
||||
return _get_converter_from_hash(options_hash)
|
||||
|
||||
|
||||
def _parse_standard_pdf_opts(
|
||||
request: ConvertDocumentsOptions, artifacts_path: Optional[Path]
|
||||
) -> PdfPipelineOptions:
|
||||
try:
|
||||
ocr_options: OcrOptions = ocr_factory.create_options(
|
||||
kind=request.ocr_engine.value, # type: ignore
|
||||
force_full_page_ocr=request.force_ocr,
|
||||
)
|
||||
except ImportError as err:
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail="The requested OCR engine"
|
||||
f" (ocr_engine={request.ocr_engine.value})" # type: ignore
|
||||
" is not available on this system. Please choose another OCR engine "
|
||||
"or contact your system administrator.\n"
|
||||
f"{err}",
|
||||
)
|
||||
|
||||
if request.ocr_lang is not None:
|
||||
if isinstance(request.ocr_lang, str):
|
||||
ocr_options.lang = _to_list_of_strings(request.ocr_lang)
|
||||
else:
|
||||
ocr_options.lang = request.ocr_lang
|
||||
|
||||
pipeline_options = PdfPipelineOptions(
|
||||
artifacts_path=artifacts_path,
|
||||
enable_remote_services=docling_serve_settings.enable_remote_services,
|
||||
document_timeout=request.document_timeout,
|
||||
do_ocr=request.do_ocr,
|
||||
ocr_options=ocr_options,
|
||||
do_table_structure=request.do_table_structure,
|
||||
do_code_enrichment=request.do_code_enrichment,
|
||||
do_formula_enrichment=request.do_formula_enrichment,
|
||||
do_picture_classification=request.do_picture_classification,
|
||||
do_picture_description=request.do_picture_description,
|
||||
)
|
||||
pipeline_options.table_structure_options.mode = TableFormerMode(request.table_mode)
|
||||
|
||||
if request.image_export_mode != ImageRefMode.PLACEHOLDER:
|
||||
pipeline_options.generate_page_images = True
|
||||
if request.image_export_mode == ImageRefMode.REFERENCED:
|
||||
pipeline_options.generate_picture_images = True
|
||||
if request.images_scale:
|
||||
pipeline_options.images_scale = request.images_scale
|
||||
|
||||
if request.picture_description_local is not None:
|
||||
pipeline_options.picture_description_options = (
|
||||
PictureDescriptionVlmOptions.model_validate(
|
||||
request.picture_description_local.model_dump()
|
||||
)
|
||||
)
|
||||
|
||||
if request.picture_description_api is not None:
|
||||
pipeline_options.picture_description_options = (
|
||||
PictureDescriptionApiOptions.model_validate(
|
||||
request.picture_description_api.model_dump()
|
||||
)
|
||||
)
|
||||
|
||||
return pipeline_options
|
||||
|
||||
|
||||
def _parse_backend(request: ConvertDocumentsOptions) -> type[PdfDocumentBackend]:
|
||||
if request.pdf_backend == PdfBackend.DLPARSE_V1:
|
||||
backend: type[PdfDocumentBackend] = DoclingParseDocumentBackend
|
||||
elif request.pdf_backend == PdfBackend.DLPARSE_V2:
|
||||
backend = DoclingParseV2DocumentBackend
|
||||
elif request.pdf_backend == PdfBackend.DLPARSE_V4:
|
||||
backend = DoclingParseV4DocumentBackend
|
||||
elif request.pdf_backend == PdfBackend.PYPDFIUM2:
|
||||
backend = PyPdfiumDocumentBackend
|
||||
else:
|
||||
raise RuntimeError(f"Unexpected PDF backend type {request.pdf_backend}")
|
||||
|
||||
return backend
|
||||
|
||||
|
||||
def _parse_vlm_pdf_opts(
|
||||
request: ConvertDocumentsOptions, artifacts_path: Optional[Path]
|
||||
) -> VlmPipelineOptions:
|
||||
pipeline_options = VlmPipelineOptions(
|
||||
artifacts_path=artifacts_path,
|
||||
document_timeout=request.document_timeout,
|
||||
)
|
||||
pipeline_options.vlm_options = smoldocling_vlm_conversion_options
|
||||
if sys.platform == "darwin":
|
||||
try:
|
||||
import mlx_vlm # noqa: F401
|
||||
|
||||
pipeline_options.vlm_options = smoldocling_vlm_mlx_conversion_options
|
||||
except ImportError:
|
||||
_log.warning(
|
||||
"To run SmolDocling faster, please install mlx-vlm:\n"
|
||||
"pip install mlx-vlm"
|
||||
)
|
||||
return pipeline_options
|
||||
|
||||
|
||||
# Computes the PDF pipeline options and returns the PdfFormatOption and its hash
|
||||
def get_pdf_pipeline_opts(
|
||||
request: ConvertDocumentsOptions,
|
||||
) -> PdfFormatOption:
|
||||
artifacts_path: Optional[Path] = None
|
||||
if docling_serve_settings.artifacts_path is not None:
|
||||
if str(docling_serve_settings.artifacts_path.absolute()) == "":
|
||||
_log.info(
|
||||
"artifacts_path is an empty path, model weights will be downloaded "
|
||||
"at runtime."
|
||||
)
|
||||
artifacts_path = None
|
||||
elif docling_serve_settings.artifacts_path.is_dir():
|
||||
_log.info(
|
||||
"artifacts_path is set to a valid directory. "
|
||||
"No model weights will be downloaded at runtime."
|
||||
)
|
||||
artifacts_path = docling_serve_settings.artifacts_path
|
||||
else:
|
||||
_log.warning(
|
||||
"artifacts_path is set to an invalid directory. "
|
||||
"The system will download the model weights at runtime."
|
||||
)
|
||||
artifacts_path = None
|
||||
else:
|
||||
_log.info(
|
||||
"artifacts_path is unset. "
|
||||
"The system will download the model weights at runtime."
|
||||
)
|
||||
|
||||
pipeline_options: Union[PdfPipelineOptions, VlmPipelineOptions]
|
||||
if request.pipeline == PdfPipeline.STANDARD:
|
||||
pipeline_options = _parse_standard_pdf_opts(request, artifacts_path)
|
||||
backend = _parse_backend(request)
|
||||
pdf_format_option = PdfFormatOption(
|
||||
pipeline_options=pipeline_options,
|
||||
backend=backend,
|
||||
)
|
||||
|
||||
elif request.pipeline == PdfPipeline.VLM:
|
||||
pipeline_options = _parse_vlm_pdf_opts(request, artifacts_path)
|
||||
pdf_format_option = PdfFormatOption(
|
||||
pipeline_cls=VlmPipeline, pipeline_options=pipeline_options
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
f"The pipeline {request.pipeline} is not implemented."
|
||||
)
|
||||
|
||||
return pdf_format_option
|
||||
|
||||
|
||||
def convert_documents(
|
||||
sources: Iterable[Union[Path, str, DocumentStream]],
|
||||
options: ConvertDocumentsOptions,
|
||||
headers: Optional[dict[str, Any]] = None,
|
||||
):
|
||||
pdf_format_option = get_pdf_pipeline_opts(options)
|
||||
converter = get_converter(pdf_format_option)
|
||||
results: Iterator[ConversionResult] = converter.convert_all(
|
||||
sources,
|
||||
headers=headers,
|
||||
page_range=options.page_range,
|
||||
max_file_size=docling_serve_settings.max_file_size,
|
||||
max_num_pages=docling_serve_settings.max_num_pages,
|
||||
)
|
||||
|
||||
return results
|
||||
@@ -1,137 +0,0 @@
|
||||
# ruff: noqa: E402, UP006, UP035
|
||||
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from kfp import dsl
|
||||
|
||||
PYTHON_BASE_IMAGE = "python:3.12"
|
||||
|
||||
|
||||
@dsl.component(
|
||||
base_image=PYTHON_BASE_IMAGE,
|
||||
packages_to_install=[
|
||||
"pydantic",
|
||||
"docling-serve @ git+https://github.com/docling-project/docling-serve@feat-kfp-engine",
|
||||
],
|
||||
pip_index_urls=["https://download.pytorch.org/whl/cpu", "https://pypi.org/simple"],
|
||||
)
|
||||
def generate_chunks(
|
||||
run_name: str,
|
||||
request: Dict[str, Any],
|
||||
batch_size: int,
|
||||
callbacks: List[Dict[str, Any]],
|
||||
) -> List[List[Dict[str, Any]]]:
|
||||
from pydantic import TypeAdapter
|
||||
|
||||
from docling_serve.datamodel.callback import (
|
||||
ProgressCallbackRequest,
|
||||
ProgressSetNumDocs,
|
||||
)
|
||||
from docling_serve.datamodel.kfp import CallbackSpec
|
||||
from docling_serve.engines.async_kfp.notify import notify_callbacks
|
||||
|
||||
CallbacksListType = TypeAdapter(list[CallbackSpec])
|
||||
|
||||
sources = request["http_sources"]
|
||||
splits = [sources[i : i + batch_size] for i in range(0, len(sources), batch_size)]
|
||||
|
||||
total = sum(len(chunk) for chunk in splits)
|
||||
payload = ProgressCallbackRequest(
|
||||
task_id=run_name, progress=ProgressSetNumDocs(num_docs=total)
|
||||
)
|
||||
notify_callbacks(
|
||||
payload=payload,
|
||||
callbacks=CallbacksListType.validate_python(callbacks),
|
||||
)
|
||||
|
||||
return splits
|
||||
|
||||
|
||||
@dsl.component(
|
||||
base_image=PYTHON_BASE_IMAGE,
|
||||
packages_to_install=[
|
||||
"pydantic",
|
||||
"docling-serve @ git+https://github.com/docling-project/docling-serve@feat-kfp-engine",
|
||||
],
|
||||
pip_index_urls=["https://download.pytorch.org/whl/cpu", "https://pypi.org/simple"],
|
||||
)
|
||||
def convert_batch(
|
||||
run_name: str,
|
||||
data_splits: List[Dict[str, Any]],
|
||||
request: Dict[str, Any],
|
||||
callbacks: List[Dict[str, Any]],
|
||||
output_path: dsl.OutputPath("Directory"), # type: ignore
|
||||
):
|
||||
from pathlib import Path
|
||||
|
||||
from pydantic import AnyUrl, TypeAdapter
|
||||
|
||||
from docling_serve.datamodel.callback import (
|
||||
FailedDocsItem,
|
||||
ProgressCallbackRequest,
|
||||
ProgressUpdateProcessed,
|
||||
SucceededDocsItem,
|
||||
)
|
||||
from docling_serve.datamodel.convert import ConvertDocumentsOptions
|
||||
from docling_serve.datamodel.kfp import CallbackSpec
|
||||
from docling_serve.datamodel.requests import HttpSource
|
||||
from docling_serve.engines.async_kfp.notify import notify_callbacks
|
||||
|
||||
CallbacksListType = TypeAdapter(list[CallbackSpec])
|
||||
|
||||
convert_options = ConvertDocumentsOptions.model_validate(request["options"])
|
||||
print(convert_options)
|
||||
|
||||
output_dir = Path(output_path)
|
||||
output_dir.mkdir(exist_ok=True, parents=True)
|
||||
docs_succeeded: list[SucceededDocsItem] = []
|
||||
docs_failed: list[FailedDocsItem] = []
|
||||
for source_dict in data_splits:
|
||||
source = HttpSource.model_validate(source_dict)
|
||||
filename = Path(str(AnyUrl(source.url).path)).name
|
||||
output_filename = output_dir / filename
|
||||
print(f"Writing {output_filename}")
|
||||
with output_filename.open("w") as f:
|
||||
f.write(source.model_dump_json())
|
||||
docs_succeeded.append(SucceededDocsItem(source=source.url))
|
||||
|
||||
payload = ProgressCallbackRequest(
|
||||
task_id=run_name,
|
||||
progress=ProgressUpdateProcessed(
|
||||
num_failed=len(docs_failed),
|
||||
num_processed=len(docs_succeeded) + len(docs_failed),
|
||||
num_succeeded=len(docs_succeeded),
|
||||
docs_succeeded=docs_succeeded,
|
||||
docs_failed=docs_failed,
|
||||
),
|
||||
)
|
||||
|
||||
print(payload)
|
||||
notify_callbacks(
|
||||
payload=payload,
|
||||
callbacks=CallbacksListType.validate_python(callbacks),
|
||||
)
|
||||
|
||||
|
||||
@dsl.pipeline()
|
||||
def process(
|
||||
batch_size: int,
|
||||
request: Dict[str, Any],
|
||||
callbacks: List[Dict[str, Any]] = [],
|
||||
run_name: str = "",
|
||||
):
|
||||
chunks_task = generate_chunks(
|
||||
run_name=run_name,
|
||||
request=request,
|
||||
batch_size=batch_size,
|
||||
callbacks=callbacks,
|
||||
)
|
||||
chunks_task.set_caching_options(False)
|
||||
|
||||
with dsl.ParallelFor(chunks_task.output, parallelism=4) as data_splits:
|
||||
convert_batch(
|
||||
run_name=run_name,
|
||||
data_splits=data_splits,
|
||||
request=request,
|
||||
callbacks=callbacks,
|
||||
)
|
||||
@@ -1,32 +0,0 @@
|
||||
import ssl
|
||||
|
||||
import certifi
|
||||
import httpx
|
||||
|
||||
from docling_serve.datamodel.callback import ProgressCallbackRequest
|
||||
from docling_serve.datamodel.kfp import CallbackSpec
|
||||
|
||||
|
||||
def notify_callbacks(
|
||||
payload: ProgressCallbackRequest,
|
||||
callbacks: list[CallbackSpec],
|
||||
):
|
||||
if len(callbacks) == 0:
|
||||
return
|
||||
|
||||
for callback in callbacks:
|
||||
# https://www.python-httpx.org/advanced/ssl/#configuring-client-instances
|
||||
if callback.ca_cert:
|
||||
ctx = ssl.create_default_context(cadata=callback.ca_cert)
|
||||
else:
|
||||
ctx = ssl.create_default_context(cafile=certifi.where())
|
||||
|
||||
try:
|
||||
httpx.post(
|
||||
str(callback.url),
|
||||
headers=callback.headers,
|
||||
json=payload.model_dump(mode="json"),
|
||||
verify=ctx,
|
||||
)
|
||||
except httpx.HTTPError as err:
|
||||
print(f"Error notifying callback {callback.url}: {err}")
|
||||
@@ -1,235 +0,0 @@
|
||||
import datetime
|
||||
import json
|
||||
import logging
|
||||
import uuid
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
from kfp_server_api.models import V2beta1RuntimeState
|
||||
from pydantic import BaseModel, TypeAdapter
|
||||
from pydantic_settings import SettingsConfigDict
|
||||
|
||||
from docling_serve.datamodel.callback import (
|
||||
ProgressCallbackRequest,
|
||||
ProgressSetNumDocs,
|
||||
ProgressUpdateProcessed,
|
||||
)
|
||||
from docling_serve.datamodel.convert import ConvertDocumentsOptions
|
||||
from docling_serve.datamodel.engines import TaskStatus
|
||||
from docling_serve.datamodel.kfp import CallbackSpec
|
||||
from docling_serve.datamodel.requests import HttpSource
|
||||
from docling_serve.datamodel.task import Task, TaskSource
|
||||
from docling_serve.datamodel.task_meta import TaskProcessingMeta
|
||||
from docling_serve.engines.async_kfp.kfp_pipeline import process
|
||||
from docling_serve.engines.async_orchestrator import (
|
||||
BaseAsyncOrchestrator,
|
||||
ProgressInvalid,
|
||||
)
|
||||
from docling_serve.settings import docling_serve_settings
|
||||
|
||||
_log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class _RunItem(BaseModel):
|
||||
model_config = SettingsConfigDict(arbitrary_types_allowed=True)
|
||||
|
||||
run_id: str
|
||||
state: str
|
||||
created_at: datetime.datetime
|
||||
scheduled_at: datetime.datetime
|
||||
finished_at: datetime.datetime
|
||||
|
||||
|
||||
class AsyncKfpOrchestrator(BaseAsyncOrchestrator):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
import kfp
|
||||
|
||||
kfp_endpoint = docling_serve_settings.eng_kfp_endpoint
|
||||
if kfp_endpoint is None:
|
||||
raise ValueError("KFP endpoint is required when using the KFP engine.")
|
||||
|
||||
kube_sa_token_path = Path("/run/secrets/kubernetes.io/serviceaccount/token")
|
||||
kube_sa_ca_cert_path = Path(
|
||||
"/run/secrets/kubernetes.io/serviceaccount/service-ca.crt"
|
||||
)
|
||||
|
||||
ssl_ca_cert = docling_serve_settings.eng_kfp_ca_cert_path
|
||||
token = docling_serve_settings.eng_kfp_token
|
||||
if (
|
||||
ssl_ca_cert is None
|
||||
and ".svc" in kfp_endpoint.host
|
||||
and kube_sa_ca_cert_path.exists()
|
||||
):
|
||||
ssl_ca_cert = str(kube_sa_ca_cert_path)
|
||||
if token is None and kube_sa_token_path.exists():
|
||||
token = kube_sa_token_path.read_text()
|
||||
|
||||
self._client = kfp.Client(
|
||||
host=str(kfp_endpoint),
|
||||
existing_token=token,
|
||||
ssl_ca_cert=ssl_ca_cert,
|
||||
# verify_ssl=False,
|
||||
)
|
||||
|
||||
async def enqueue(
|
||||
self, sources: list[TaskSource], options: ConvertDocumentsOptions
|
||||
) -> Task:
|
||||
callbacks = []
|
||||
if docling_serve_settings.eng_kfp_self_callback_endpoint is not None:
|
||||
headers = {}
|
||||
if docling_serve_settings.eng_kfp_self_callback_token_path is not None:
|
||||
token = (
|
||||
docling_serve_settings.eng_kfp_self_callback_token_path.read_text()
|
||||
)
|
||||
headers["Authorization"] = f"Bearer {token}"
|
||||
ca_cert = ""
|
||||
if docling_serve_settings.eng_kfp_self_callback_ca_cert_path is not None:
|
||||
ca_cert = docling_serve_settings.eng_kfp_self_callback_ca_cert_path.read_text()
|
||||
callbacks.append(
|
||||
CallbackSpec(
|
||||
url=docling_serve_settings.eng_kfp_self_callback_endpoint,
|
||||
headers=headers,
|
||||
ca_cert=ca_cert,
|
||||
)
|
||||
)
|
||||
|
||||
CallbacksType = TypeAdapter(list[CallbackSpec])
|
||||
SourcesListType = TypeAdapter(list[HttpSource])
|
||||
http_sources = [s for s in sources if isinstance(s, HttpSource)]
|
||||
# hack: since the current kfp backend is not resolving the job_id placeholder,
|
||||
# we set the run_name and pass it as argument to the job itself.
|
||||
run_name = f"docling-job-{uuid.uuid4()}"
|
||||
kfp_run = self._client.create_run_from_pipeline_func(
|
||||
process,
|
||||
arguments={
|
||||
"batch_size": 10,
|
||||
"sources": SourcesListType.dump_python(http_sources, mode="json"),
|
||||
"options": options.model_dump(mode="json"),
|
||||
"callbacks": CallbacksType.dump_python(callbacks, mode="json"),
|
||||
"run_name": run_name,
|
||||
},
|
||||
run_name=run_name,
|
||||
)
|
||||
task_id = kfp_run.run_id
|
||||
|
||||
task = Task(task_id=task_id, sources=sources, options=options)
|
||||
await self.init_task_tracking(task)
|
||||
return task
|
||||
|
||||
async def _update_task_from_run(self, task_id: str, wait: float = 0.0):
|
||||
run_info = self._client.get_run(run_id=task_id)
|
||||
task = await self.get_raw_task(task_id=task_id)
|
||||
# RUNTIME_STATE_UNSPECIFIED = "RUNTIME_STATE_UNSPECIFIED"
|
||||
# PENDING = "PENDING"
|
||||
# RUNNING = "RUNNING"
|
||||
# SUCCEEDED = "SUCCEEDED"
|
||||
# SKIPPED = "SKIPPED"
|
||||
# FAILED = "FAILED"
|
||||
# CANCELING = "CANCELING"
|
||||
# CANCELED = "CANCELED"
|
||||
# PAUSED = "PAUSED"
|
||||
if run_info.state == V2beta1RuntimeState.SUCCEEDED:
|
||||
task.task_status = TaskStatus.SUCCESS
|
||||
elif run_info.state == V2beta1RuntimeState.PENDING:
|
||||
task.task_status = TaskStatus.PENDING
|
||||
elif run_info.state == V2beta1RuntimeState.RUNNING:
|
||||
task.task_status = TaskStatus.STARTED
|
||||
else:
|
||||
task.task_status = TaskStatus.FAILURE
|
||||
|
||||
async def task_status(self, task_id: str, wait: float = 0.0) -> Task:
|
||||
await self._update_task_from_run(task_id=task_id, wait=wait)
|
||||
return await self.get_raw_task(task_id=task_id)
|
||||
|
||||
async def _get_pending(self) -> list[_RunItem]:
|
||||
runs: list[_RunItem] = []
|
||||
next_page: Optional[str] = None
|
||||
while True:
|
||||
res = self._client.list_runs(
|
||||
page_token=next_page,
|
||||
page_size=20,
|
||||
filter=json.dumps(
|
||||
{
|
||||
"predicates": [
|
||||
{
|
||||
"operation": "EQUALS",
|
||||
"key": "state",
|
||||
"stringValue": "PENDING",
|
||||
}
|
||||
]
|
||||
}
|
||||
),
|
||||
)
|
||||
if res.runs is not None:
|
||||
for run in res.runs:
|
||||
runs.append(
|
||||
_RunItem(
|
||||
run_id=run.run_id,
|
||||
state=run.state,
|
||||
created_at=run.created_at,
|
||||
scheduled_at=run.scheduled_at,
|
||||
finished_at=run.finished_at,
|
||||
)
|
||||
)
|
||||
if res.next_page_token is None:
|
||||
break
|
||||
next_page = res.next_page_token
|
||||
return runs
|
||||
|
||||
async def queue_size(self) -> int:
|
||||
runs = await self._get_pending()
|
||||
return len(runs)
|
||||
|
||||
async def get_queue_position(self, task_id: str) -> Optional[int]:
|
||||
runs = await self._get_pending()
|
||||
for pos, run in enumerate(runs, start=1):
|
||||
if run.run_id == task_id:
|
||||
return pos
|
||||
return None
|
||||
|
||||
async def process_queue(self):
|
||||
return
|
||||
|
||||
async def warm_up_caches(self):
|
||||
return
|
||||
|
||||
async def _get_run_id(self, run_name: str) -> str:
|
||||
res = self._client.list_runs(
|
||||
filter=json.dumps(
|
||||
{
|
||||
"predicates": [
|
||||
{
|
||||
"operation": "EQUALS",
|
||||
"key": "name",
|
||||
"stringValue": run_name,
|
||||
}
|
||||
]
|
||||
}
|
||||
),
|
||||
)
|
||||
if res.runs is not None and len(res.runs) > 0:
|
||||
return res.runs[0].run_id
|
||||
raise RuntimeError(f"Run with {run_name=} not found.")
|
||||
|
||||
async def receive_task_progress(self, request: ProgressCallbackRequest):
|
||||
task_id = await self._get_run_id(run_name=request.task_id)
|
||||
progress = request.progress
|
||||
task = await self.get_raw_task(task_id=task_id)
|
||||
|
||||
if isinstance(progress, ProgressSetNumDocs):
|
||||
task.processing_meta = TaskProcessingMeta(num_docs=progress.num_docs)
|
||||
task.task_status = TaskStatus.STARTED
|
||||
|
||||
elif isinstance(progress, ProgressUpdateProcessed):
|
||||
if task.processing_meta is None:
|
||||
raise ProgressInvalid(
|
||||
"UpdateProcessed was called before setting the expected number of documents."
|
||||
)
|
||||
task.processing_meta.num_processed += progress.num_processed
|
||||
task.processing_meta.num_succeeded += progress.num_succeeded
|
||||
task.processing_meta.num_failed += progress.num_failed
|
||||
task.task_status = TaskStatus.STARTED
|
||||
|
||||
# TODO: could be moved to BackgroundTask
|
||||
await self.notify_task_subscribers(task_id=task_id)
|
||||
@@ -1,57 +0,0 @@
|
||||
import asyncio
|
||||
import logging
|
||||
import uuid
|
||||
from typing import Optional
|
||||
|
||||
from docling_serve.datamodel.convert import ConvertDocumentsOptions
|
||||
from docling_serve.datamodel.task import Task, TaskSource
|
||||
from docling_serve.docling_conversion import get_converter, get_pdf_pipeline_opts
|
||||
from docling_serve.engines.async_local.worker import AsyncLocalWorker
|
||||
from docling_serve.engines.async_orchestrator import BaseAsyncOrchestrator
|
||||
from docling_serve.settings import docling_serve_settings
|
||||
|
||||
_log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class AsyncLocalOrchestrator(BaseAsyncOrchestrator):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.task_queue = asyncio.Queue()
|
||||
self.queue_list: list[str] = []
|
||||
|
||||
async def enqueue(
|
||||
self, sources: list[TaskSource], options: ConvertDocumentsOptions
|
||||
) -> Task:
|
||||
task_id = str(uuid.uuid4())
|
||||
task = Task(task_id=task_id, sources=sources, options=options)
|
||||
await self.init_task_tracking(task)
|
||||
|
||||
self.queue_list.append(task_id)
|
||||
await self.task_queue.put(task_id)
|
||||
return task
|
||||
|
||||
async def queue_size(self) -> int:
|
||||
return self.task_queue.qsize()
|
||||
|
||||
async def get_queue_position(self, task_id: str) -> Optional[int]:
|
||||
return (
|
||||
self.queue_list.index(task_id) + 1 if task_id in self.queue_list else None
|
||||
)
|
||||
|
||||
async def process_queue(self):
|
||||
# Create a pool of workers
|
||||
workers = []
|
||||
for i in range(docling_serve_settings.eng_loc_num_workers):
|
||||
_log.debug(f"Starting worker {i}")
|
||||
w = AsyncLocalWorker(i, self)
|
||||
worker_task = asyncio.create_task(w.loop())
|
||||
workers.append(worker_task)
|
||||
|
||||
# Wait for all workers to complete (they won't, as they run indefinitely)
|
||||
await asyncio.gather(*workers)
|
||||
_log.debug("All workers completed.")
|
||||
|
||||
async def warm_up_caches(self):
|
||||
# Converter with default options
|
||||
pdf_format_option = get_pdf_pipeline_opts(ConvertDocumentsOptions())
|
||||
get_converter(pdf_format_option)
|
||||
@@ -1,124 +0,0 @@
|
||||
import asyncio
|
||||
import logging
|
||||
import shutil
|
||||
import time
|
||||
from typing import TYPE_CHECKING, Any, Optional, Union
|
||||
|
||||
from fastapi.responses import FileResponse
|
||||
|
||||
from docling.datamodel.base_models import DocumentStream
|
||||
|
||||
from docling_serve.datamodel.engines import TaskStatus
|
||||
from docling_serve.datamodel.requests import FileSource, HttpSource
|
||||
from docling_serve.docling_conversion import convert_documents
|
||||
from docling_serve.response_preparation import process_results
|
||||
from docling_serve.storage import get_scratch
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from docling_serve.engines.async_local.orchestrator import AsyncLocalOrchestrator
|
||||
|
||||
_log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class AsyncLocalWorker:
|
||||
def __init__(self, worker_id: int, orchestrator: "AsyncLocalOrchestrator"):
|
||||
self.worker_id = worker_id
|
||||
self.orchestrator = orchestrator
|
||||
|
||||
async def loop(self):
|
||||
_log.debug(f"Starting loop for worker {self.worker_id}")
|
||||
while True:
|
||||
task_id: str = await self.orchestrator.task_queue.get()
|
||||
self.orchestrator.queue_list.remove(task_id)
|
||||
|
||||
if task_id not in self.orchestrator.tasks:
|
||||
raise RuntimeError(f"Task {task_id} not found.")
|
||||
task = self.orchestrator.tasks[task_id]
|
||||
|
||||
try:
|
||||
task.task_status = TaskStatus.STARTED
|
||||
_log.info(f"Worker {self.worker_id} processing task {task_id}")
|
||||
|
||||
# Notify clients about task updates
|
||||
await self.orchestrator.notify_task_subscribers(task_id)
|
||||
|
||||
# Notify clients about queue updates
|
||||
await self.orchestrator.notify_queue_positions()
|
||||
|
||||
# Define a callback function to send progress updates to the client.
|
||||
# TODO: send partial updates, e.g. when a document in the batch is done
|
||||
def run_conversion():
|
||||
convert_sources: list[Union[str, DocumentStream]] = []
|
||||
headers: Optional[dict[str, Any]] = None
|
||||
for source in task.sources:
|
||||
if isinstance(source, DocumentStream):
|
||||
convert_sources.append(source)
|
||||
elif isinstance(source, FileSource):
|
||||
convert_sources.append(source.to_document_stream())
|
||||
elif isinstance(source, HttpSource):
|
||||
convert_sources.append(str(source.url))
|
||||
if headers is None and source.headers:
|
||||
headers = source.headers
|
||||
|
||||
# Note: results are only an iterator->lazy evaluation
|
||||
results = convert_documents(
|
||||
sources=convert_sources,
|
||||
options=task.options,
|
||||
headers=headers,
|
||||
)
|
||||
|
||||
# The real processing will happen here
|
||||
work_dir = get_scratch() / task_id
|
||||
response = process_results(
|
||||
conversion_options=task.options,
|
||||
conv_results=results,
|
||||
work_dir=work_dir,
|
||||
)
|
||||
|
||||
if work_dir.exists():
|
||||
task.scratch_dir = work_dir
|
||||
if not isinstance(response, FileResponse):
|
||||
_log.warning(
|
||||
f"Task {task_id=} produced content in {work_dir=} but the response is not a file."
|
||||
)
|
||||
shutil.rmtree(work_dir, ignore_errors=True)
|
||||
|
||||
return response
|
||||
|
||||
start_time = time.monotonic()
|
||||
|
||||
# Run the prediction in a thread to avoid blocking the event loop.
|
||||
# Get the current event loop
|
||||
# loop = asyncio.get_event_loop()
|
||||
# future = asyncio.run_coroutine_threadsafe(
|
||||
# run_conversion(),
|
||||
# loop=loop
|
||||
# )
|
||||
# response = future.result()
|
||||
|
||||
# Run in a thread
|
||||
response = await asyncio.to_thread(
|
||||
run_conversion,
|
||||
)
|
||||
processing_time = time.monotonic() - start_time
|
||||
|
||||
task.result = response
|
||||
task.sources = []
|
||||
task.options = None
|
||||
|
||||
task.task_status = TaskStatus.SUCCESS
|
||||
_log.info(
|
||||
f"Worker {self.worker_id} completed job {task_id} "
|
||||
f"in {processing_time:.2f} seconds"
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
_log.error(
|
||||
f"Worker {self.worker_id} failed to process job {task_id}: {e}"
|
||||
)
|
||||
task.task_status = TaskStatus.FAILURE
|
||||
|
||||
finally:
|
||||
await self.orchestrator.notify_task_subscribers(task_id)
|
||||
self.orchestrator.task_queue.task_done()
|
||||
_log.debug(f"Worker {self.worker_id} completely done with {task_id}")
|
||||
@@ -1,85 +0,0 @@
|
||||
import shutil
|
||||
from typing import Union
|
||||
|
||||
from fastapi import BackgroundTasks, WebSocket
|
||||
from fastapi.responses import FileResponse
|
||||
|
||||
from docling_serve.datamodel.callback import ProgressCallbackRequest
|
||||
from docling_serve.datamodel.engines import TaskStatus
|
||||
from docling_serve.datamodel.responses import (
|
||||
ConvertDocumentResponse,
|
||||
MessageKind,
|
||||
TaskStatusResponse,
|
||||
WebsocketMessage,
|
||||
)
|
||||
from docling_serve.datamodel.task import Task
|
||||
from docling_serve.engines.base_orchestrator import (
|
||||
BaseOrchestrator,
|
||||
OrchestratorError,
|
||||
TaskNotFoundError,
|
||||
)
|
||||
from docling_serve.settings import docling_serve_settings
|
||||
|
||||
|
||||
class ProgressInvalid(OrchestratorError):
|
||||
pass
|
||||
|
||||
|
||||
class BaseAsyncOrchestrator(BaseOrchestrator):
|
||||
def __init__(self):
|
||||
self.tasks: dict[str, Task] = {}
|
||||
self.task_subscribers: dict[str, set[WebSocket]] = {}
|
||||
|
||||
async def init_task_tracking(self, task: Task):
|
||||
task_id = task.task_id
|
||||
self.tasks[task.task_id] = task
|
||||
self.task_subscribers[task_id] = set()
|
||||
|
||||
async def get_raw_task(self, task_id: str) -> Task:
|
||||
if task_id not in self.tasks:
|
||||
raise TaskNotFoundError()
|
||||
return self.tasks[task_id]
|
||||
|
||||
async def task_status(self, task_id: str, wait: float = 0.0) -> Task:
|
||||
return await self.get_raw_task(task_id=task_id)
|
||||
|
||||
async def task_result(
|
||||
self, task_id: str, background_tasks: BackgroundTasks
|
||||
) -> Union[ConvertDocumentResponse, FileResponse, None]:
|
||||
task = await self.get_raw_task(task_id=task_id)
|
||||
if task.is_completed() and task.scratch_dir is not None:
|
||||
if docling_serve_settings.single_use_results:
|
||||
background_tasks.add_task(
|
||||
shutil.rmtree, task.scratch_dir, ignore_errors=True
|
||||
)
|
||||
return task.result
|
||||
|
||||
async def notify_task_subscribers(self, task_id: str):
|
||||
if task_id not in self.task_subscribers:
|
||||
raise RuntimeError(f"Task {task_id} does not have a subscribers list.")
|
||||
|
||||
task = await self.get_raw_task(task_id=task_id)
|
||||
task_queue_position = await self.get_queue_position(task_id)
|
||||
msg = TaskStatusResponse(
|
||||
task_id=task.task_id,
|
||||
task_status=task.task_status,
|
||||
task_position=task_queue_position,
|
||||
task_meta=task.processing_meta,
|
||||
)
|
||||
for websocket in self.task_subscribers[task_id]:
|
||||
await websocket.send_text(
|
||||
WebsocketMessage(message=MessageKind.UPDATE, task=msg).model_dump_json()
|
||||
)
|
||||
if task.is_completed():
|
||||
await websocket.close()
|
||||
|
||||
async def notify_queue_positions(self):
|
||||
for task_id in self.task_subscribers.keys():
|
||||
# notify only pending tasks
|
||||
if self.tasks[task_id].task_status != TaskStatus.PENDING:
|
||||
continue
|
||||
|
||||
await self.notify_task_subscribers(task_id)
|
||||
|
||||
async def receive_task_progress(self, request: ProgressCallbackRequest):
|
||||
raise NotImplementedError()
|
||||
@@ -1,21 +0,0 @@
|
||||
from functools import lru_cache
|
||||
|
||||
from docling_serve.datamodel.engines import AsyncEngine
|
||||
from docling_serve.engines.async_orchestrator import BaseAsyncOrchestrator
|
||||
from docling_serve.settings import docling_serve_settings
|
||||
|
||||
|
||||
@lru_cache
|
||||
def get_async_orchestrator() -> BaseAsyncOrchestrator:
|
||||
if docling_serve_settings.eng_kind == AsyncEngine.LOCAL:
|
||||
from docling_serve.engines.async_local.orchestrator import (
|
||||
AsyncLocalOrchestrator,
|
||||
)
|
||||
|
||||
return AsyncLocalOrchestrator()
|
||||
elif docling_serve_settings.eng_kind == AsyncEngine.KFP:
|
||||
from docling_serve.engines.async_kfp.orchestrator import AsyncKfpOrchestrator
|
||||
|
||||
return AsyncKfpOrchestrator()
|
||||
|
||||
raise RuntimeError(f"Engine {docling_serve_settings.eng_kind} not recognized.")
|
||||
@@ -1,51 +0,0 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Optional, Union
|
||||
|
||||
from fastapi import BackgroundTasks
|
||||
from fastapi.responses import FileResponse
|
||||
|
||||
from docling_serve.datamodel.convert import ConvertDocumentsOptions
|
||||
from docling_serve.datamodel.responses import ConvertDocumentResponse
|
||||
from docling_serve.datamodel.task import Task, TaskSource
|
||||
|
||||
|
||||
class OrchestratorError(Exception):
|
||||
pass
|
||||
|
||||
|
||||
class TaskNotFoundError(OrchestratorError):
|
||||
pass
|
||||
|
||||
|
||||
class BaseOrchestrator(ABC):
|
||||
@abstractmethod
|
||||
async def enqueue(
|
||||
self, sources: list[TaskSource], options: ConvertDocumentsOptions
|
||||
) -> Task:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
async def queue_size(self) -> int:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
async def get_queue_position(self, task_id: str) -> Optional[int]:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
async def task_status(self, task_id: str, wait: float = 0.0) -> Task:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
async def task_result(
|
||||
self, task_id: str, background_tasks: BackgroundTasks
|
||||
) -> Union[ConvertDocumentResponse, FileResponse, None]:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
async def process_queue(self):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
async def warm_up_caches(self):
|
||||
pass
|
||||
@@ -1,5 +1,6 @@
|
||||
import base64
|
||||
import importlib
|
||||
import itertools
|
||||
import json
|
||||
import logging
|
||||
import ssl
|
||||
@@ -12,9 +13,10 @@ import certifi
|
||||
import gradio as gr
|
||||
import httpx
|
||||
|
||||
from docling.datamodel.base_models import FormatToExtensions
|
||||
from docling.datamodel.pipeline_options import (
|
||||
PdfBackend,
|
||||
PdfPipeline,
|
||||
ProcessingPipeline,
|
||||
TableFormerMode,
|
||||
TableStructureOptions,
|
||||
)
|
||||
@@ -29,7 +31,7 @@ logger = logging.getLogger(__name__)
|
||||
############################
|
||||
|
||||
logo_path = "https://raw.githubusercontent.com/docling-project/docling/refs/heads/main/docs/assets/logo.svg"
|
||||
js_components_url = "https://unpkg.com/@docling/docling-components@0.0.6"
|
||||
js_components_url = "https://unpkg.com/@docling/docling-components@0.0.7"
|
||||
if (
|
||||
docling_serve_settings.static_path is not None
|
||||
and docling_serve_settings.static_path.is_dir()
|
||||
@@ -83,7 +85,7 @@ css = """
|
||||
height: 140px;
|
||||
}
|
||||
|
||||
docling-img::part(pages) {
|
||||
docling-img {
|
||||
gap: 1rem;
|
||||
}
|
||||
|
||||
@@ -239,7 +241,7 @@ def wait_task_finish(task_id: str, return_as_file: bool):
|
||||
while not task_finished:
|
||||
try:
|
||||
response = httpx.get(
|
||||
f"{get_api_endpoint()}/v1alpha/status/poll/{task_id}?wait=5",
|
||||
f"{get_api_endpoint()}/v1/status/poll/{task_id}?wait=5",
|
||||
verify=ssl_ctx,
|
||||
timeout=15,
|
||||
)
|
||||
@@ -262,7 +264,7 @@ def wait_task_finish(task_id: str, return_as_file: bool):
|
||||
if conversion_sucess:
|
||||
try:
|
||||
response = httpx.get(
|
||||
f"{get_api_endpoint()}/v1alpha/result/{task_id}",
|
||||
f"{get_api_endpoint()}/v1/result/{task_id}",
|
||||
timeout=15,
|
||||
verify=ssl_ctx,
|
||||
)
|
||||
@@ -294,8 +296,11 @@ def process_url(
|
||||
do_picture_classification,
|
||||
do_picture_description,
|
||||
):
|
||||
target = {"kind": "zip" if return_as_file else "inbody"}
|
||||
parameters = {
|
||||
"http_sources": [{"url": source} for source in input_sources.split(",")],
|
||||
"sources": [
|
||||
{"kind": "http", "url": source} for source in input_sources.split(",")
|
||||
],
|
||||
"options": {
|
||||
"to_formats": to_formats,
|
||||
"image_export_mode": image_export_mode,
|
||||
@@ -307,24 +312,24 @@ def process_url(
|
||||
"pdf_backend": pdf_backend,
|
||||
"table_mode": table_mode,
|
||||
"abort_on_error": abort_on_error,
|
||||
"return_as_file": return_as_file,
|
||||
"do_code_enrichment": do_code_enrichment,
|
||||
"do_formula_enrichment": do_formula_enrichment,
|
||||
"do_picture_classification": do_picture_classification,
|
||||
"do_picture_description": do_picture_description,
|
||||
},
|
||||
"target": target,
|
||||
}
|
||||
if (
|
||||
not parameters["http_sources"]
|
||||
or len(parameters["http_sources"]) == 0
|
||||
or parameters["http_sources"][0]["url"] == ""
|
||||
not parameters["sources"]
|
||||
or len(parameters["sources"]) == 0
|
||||
or parameters["sources"][0]["url"] == ""
|
||||
):
|
||||
logger.error("No input sources provided.")
|
||||
raise gr.Error("No input sources provided.", print_exception=False)
|
||||
try:
|
||||
ssl_ctx = get_ssl_context()
|
||||
response = httpx.post(
|
||||
f"{get_api_endpoint()}/v1alpha/convert/source/async",
|
||||
f"{get_api_endpoint()}/v1/convert/source/async",
|
||||
json=parameters,
|
||||
verify=ssl_ctx,
|
||||
timeout=60,
|
||||
@@ -370,11 +375,13 @@ def process_file(
|
||||
logger.error("No files provided.")
|
||||
raise gr.Error("No files provided.", print_exception=False)
|
||||
files_data = [
|
||||
{"base64_string": file_to_base64(file), "filename": file.name} for file in files
|
||||
{"kind": "file", "base64_string": file_to_base64(file), "filename": file.name}
|
||||
for file in files
|
||||
]
|
||||
target = {"kind": "zip" if return_as_file else "inbody"}
|
||||
|
||||
parameters = {
|
||||
"file_sources": files_data,
|
||||
"sources": files_data,
|
||||
"options": {
|
||||
"to_formats": to_formats,
|
||||
"image_export_mode": image_export_mode,
|
||||
@@ -392,12 +399,13 @@ def process_file(
|
||||
"do_picture_classification": do_picture_classification,
|
||||
"do_picture_description": do_picture_description,
|
||||
},
|
||||
"target": target,
|
||||
}
|
||||
|
||||
try:
|
||||
ssl_ctx = get_ssl_context()
|
||||
response = httpx.post(
|
||||
f"{get_api_endpoint()}/v1alpha/convert/source/async",
|
||||
f"{get_api_endpoint()}/v1/convert/source/async",
|
||||
json=parameters,
|
||||
verify=ssl_ctx,
|
||||
timeout=60,
|
||||
@@ -443,7 +451,7 @@ def response_to_output(response, return_as_file):
|
||||
)
|
||||
# Embed document JSON and trigger load at client via an image.
|
||||
json_rendered_content = f"""
|
||||
<docling-img id="dclimg" pagenumbers tooltip="parsed"></docling-img>
|
||||
<docling-img id="dclimg" pagenumbers><docling-tooltip></docling-tooltip></docling-img>
|
||||
<script id="dcljson" type="application/json" onload="document.getElementById('dclimg').src = JSON.parse(document.getElementById('dcljson').textContent);">{json_content}</script>
|
||||
<img src onerror="document.getElementById('dclimg').src = JSON.parse(document.getElementById('dcljson').textContent);" />
|
||||
"""
|
||||
@@ -545,19 +553,10 @@ with gr.Blocks(
|
||||
elem_id="file_input_zone",
|
||||
label="Upload File",
|
||||
file_types=[
|
||||
".pdf",
|
||||
".docx",
|
||||
".pptx",
|
||||
".html",
|
||||
".xlsx",
|
||||
".json",
|
||||
".asciidoc",
|
||||
".txt",
|
||||
".md",
|
||||
".jpg",
|
||||
".jpeg",
|
||||
".png",
|
||||
".gif",
|
||||
f".{v}"
|
||||
for v in itertools.chain.from_iterable(
|
||||
FormatToExtensions.values()
|
||||
)
|
||||
],
|
||||
file_count="multiple",
|
||||
scale=4,
|
||||
@@ -594,9 +593,9 @@ with gr.Blocks(
|
||||
with gr.Row():
|
||||
with gr.Column(scale=1, min_width=200):
|
||||
pipeline = gr.Radio(
|
||||
[(v.value.capitalize(), v.value) for v in PdfPipeline],
|
||||
[(v.value.capitalize(), v.value) for v in ProcessingPipeline],
|
||||
label="Pipeline type",
|
||||
value=PdfPipeline.STANDARD.value,
|
||||
value=ProcessingPipeline.STANDARD.value,
|
||||
)
|
||||
with gr.Row():
|
||||
with gr.Column(scale=1, min_width=200):
|
||||
|
||||
@@ -1,9 +1,30 @@
|
||||
import inspect
|
||||
import json
|
||||
import re
|
||||
from typing import Union
|
||||
from typing import Union, get_args, get_origin
|
||||
|
||||
from fastapi import Depends, Form
|
||||
from pydantic import BaseModel
|
||||
from pydantic import BaseModel, TypeAdapter
|
||||
|
||||
|
||||
def is_pydantic_model(type_):
|
||||
try:
|
||||
if inspect.isclass(type_) and issubclass(type_, BaseModel):
|
||||
return True
|
||||
|
||||
origin = get_origin(type_)
|
||||
if origin is Union:
|
||||
args = get_args(type_)
|
||||
return any(
|
||||
inspect.isclass(arg) and issubclass(arg, BaseModel)
|
||||
for arg in args
|
||||
if arg is not type(None)
|
||||
)
|
||||
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
return False
|
||||
|
||||
|
||||
# Adapted from
|
||||
@@ -12,25 +33,62 @@ def FormDepends(cls: type[BaseModel]):
|
||||
new_parameters = []
|
||||
|
||||
for field_name, model_field in cls.model_fields.items():
|
||||
annotation = model_field.annotation
|
||||
description = model_field.description
|
||||
default = (
|
||||
Form(..., description=description, examples=model_field.examples)
|
||||
if model_field.is_required()
|
||||
else Form(
|
||||
model_field.default,
|
||||
examples=model_field.examples,
|
||||
description=description,
|
||||
)
|
||||
)
|
||||
|
||||
# Flatten nested Pydantic models by accepting them as JSON strings
|
||||
if is_pydantic_model(annotation):
|
||||
annotation = str
|
||||
default = Form(
|
||||
None
|
||||
if model_field.default is None
|
||||
else json.dumps(model_field.default.model_dump(mode="json")),
|
||||
description=description,
|
||||
examples=None
|
||||
if not model_field.examples
|
||||
else [
|
||||
json.dumps(ex.model_dump(mode="json"))
|
||||
for ex in model_field.examples
|
||||
],
|
||||
)
|
||||
|
||||
new_parameters.append(
|
||||
inspect.Parameter(
|
||||
name=field_name,
|
||||
kind=inspect.Parameter.POSITIONAL_ONLY,
|
||||
default=(
|
||||
Form(...)
|
||||
if model_field.is_required()
|
||||
else Form(model_field.default)
|
||||
),
|
||||
annotation=model_field.annotation,
|
||||
default=default,
|
||||
annotation=annotation,
|
||||
)
|
||||
)
|
||||
|
||||
async def as_form_func(**data):
|
||||
for field_name, model_field in cls.model_fields.items():
|
||||
value = data.get(field_name)
|
||||
annotation = model_field.annotation
|
||||
|
||||
# Parse nested models from JSON string
|
||||
if value is not None and is_pydantic_model(annotation):
|
||||
try:
|
||||
validator = TypeAdapter(annotation)
|
||||
data[field_name] = validator.validate_json(value)
|
||||
except Exception as e:
|
||||
raise ValueError(f"Invalid JSON for field '{field_name}': {e}")
|
||||
|
||||
return cls(**data)
|
||||
|
||||
sig = inspect.signature(as_form_func)
|
||||
sig = sig.replace(parameters=new_parameters)
|
||||
as_form_func.__signature__ = sig # type: ignore
|
||||
|
||||
return Depends(as_form_func)
|
||||
|
||||
|
||||
|
||||
53
docling_serve/orchestrator_factory.py
Normal file
53
docling_serve/orchestrator_factory.py
Normal file
@@ -0,0 +1,53 @@
|
||||
from functools import lru_cache
|
||||
|
||||
from docling_jobkit.orchestrators.base_orchestrator import BaseOrchestrator
|
||||
|
||||
from docling_serve.settings import AsyncEngine, docling_serve_settings
|
||||
|
||||
|
||||
@lru_cache
|
||||
def get_async_orchestrator() -> BaseOrchestrator:
|
||||
if docling_serve_settings.eng_kind == AsyncEngine.LOCAL:
|
||||
from docling_jobkit.convert.manager import (
|
||||
DoclingConverterManager,
|
||||
DoclingConverterManagerConfig,
|
||||
)
|
||||
from docling_jobkit.orchestrators.local.orchestrator import (
|
||||
LocalOrchestrator,
|
||||
LocalOrchestratorConfig,
|
||||
)
|
||||
|
||||
local_config = LocalOrchestratorConfig(
|
||||
num_workers=docling_serve_settings.eng_loc_num_workers,
|
||||
shared_models=docling_serve_settings.eng_loc_share_models,
|
||||
)
|
||||
|
||||
cm_config = DoclingConverterManagerConfig(
|
||||
artifacts_path=docling_serve_settings.artifacts_path,
|
||||
options_cache_size=docling_serve_settings.options_cache_size,
|
||||
enable_remote_services=docling_serve_settings.enable_remote_services,
|
||||
allow_external_plugins=docling_serve_settings.allow_external_plugins,
|
||||
max_num_pages=docling_serve_settings.max_num_pages,
|
||||
max_file_size=docling_serve_settings.max_file_size,
|
||||
)
|
||||
cm = DoclingConverterManager(config=cm_config)
|
||||
|
||||
return LocalOrchestrator(config=local_config, converter_manager=cm)
|
||||
elif docling_serve_settings.eng_kind == AsyncEngine.KFP:
|
||||
from docling_jobkit.orchestrators.kfp.orchestrator import (
|
||||
KfpOrchestrator,
|
||||
KfpOrchestratorConfig,
|
||||
)
|
||||
|
||||
kfp_config = KfpOrchestratorConfig(
|
||||
endpoint=docling_serve_settings.eng_kfp_endpoint,
|
||||
token=docling_serve_settings.eng_kfp_token,
|
||||
ca_cert_path=docling_serve_settings.eng_kfp_ca_cert_path,
|
||||
self_callback_endpoint=docling_serve_settings.eng_kfp_self_callback_endpoint,
|
||||
self_callback_token_path=docling_serve_settings.eng_kfp_self_callback_token_path,
|
||||
self_callback_ca_cert_path=docling_serve_settings.eng_kfp_self_callback_ca_cert_path,
|
||||
)
|
||||
|
||||
return KfpOrchestrator(config=kfp_config)
|
||||
|
||||
raise RuntimeError(f"Engine {docling_serve_settings.eng_kind} not recognized.")
|
||||
@@ -1,3 +1,4 @@
|
||||
import asyncio
|
||||
import logging
|
||||
import os
|
||||
import shutil
|
||||
@@ -6,15 +7,27 @@ from collections.abc import Iterable
|
||||
from pathlib import Path
|
||||
from typing import Union
|
||||
|
||||
from fastapi import HTTPException
|
||||
import httpx
|
||||
from fastapi import BackgroundTasks, HTTPException
|
||||
from fastapi.responses import FileResponse
|
||||
|
||||
from docling.datamodel.base_models import OutputFormat
|
||||
from docling.datamodel.document import ConversionResult, ConversionStatus
|
||||
from docling_core.types.doc import ImageRefMode
|
||||
from docling_jobkit.datamodel.convert import ConvertDocumentsOptions
|
||||
from docling_jobkit.datamodel.task import Task
|
||||
from docling_jobkit.datamodel.task_targets import InBodyTarget, PutTarget, TaskTarget
|
||||
from docling_jobkit.orchestrators.base_orchestrator import (
|
||||
BaseOrchestrator,
|
||||
)
|
||||
|
||||
from docling_serve.datamodel.convert import ConvertDocumentsOptions
|
||||
from docling_serve.datamodel.responses import ConvertDocumentResponse, DocumentResponse
|
||||
from docling_serve.datamodel.responses import (
|
||||
ConvertDocumentResponse,
|
||||
DocumentResponse,
|
||||
PresignedUrlConvertDocumentResponse,
|
||||
)
|
||||
from docling_serve.settings import docling_serve_settings
|
||||
from docling_serve.storage import get_scratch
|
||||
|
||||
_log = logging.getLogger(__name__)
|
||||
|
||||
@@ -27,11 +40,14 @@ def _export_document_as_content(
|
||||
export_txt: bool,
|
||||
export_doctags: bool,
|
||||
image_mode: ImageRefMode,
|
||||
md_page_break_placeholder: str,
|
||||
):
|
||||
document = DocumentResponse(filename=conv_res.input.file.name)
|
||||
|
||||
if conv_res.status == ConversionStatus.SUCCESS:
|
||||
new_doc = conv_res.document._make_copy_with_refmode(Path(), image_mode)
|
||||
new_doc = conv_res.document._make_copy_with_refmode(
|
||||
Path(), image_mode, page_no=None
|
||||
)
|
||||
|
||||
# Create the different formats
|
||||
if export_json:
|
||||
@@ -40,10 +56,14 @@ def _export_document_as_content(
|
||||
document.html_content = new_doc.export_to_html(image_mode=image_mode)
|
||||
if export_txt:
|
||||
document.text_content = new_doc.export_to_markdown(
|
||||
strict_text=True, image_mode=image_mode
|
||||
strict_text=True,
|
||||
image_mode=image_mode,
|
||||
)
|
||||
if export_md:
|
||||
document.md_content = new_doc.export_to_markdown(image_mode=image_mode)
|
||||
document.md_content = new_doc.export_to_markdown(
|
||||
image_mode=image_mode,
|
||||
page_break_placeholder=md_page_break_placeholder or None,
|
||||
)
|
||||
if export_doctags:
|
||||
document.doctags_content = new_doc.export_to_doctags()
|
||||
elif conv_res.status == ConversionStatus.SKIPPED:
|
||||
@@ -63,11 +83,18 @@ def _export_documents_as_files(
|
||||
export_txt: bool,
|
||||
export_doctags: bool,
|
||||
image_export_mode: ImageRefMode,
|
||||
):
|
||||
md_page_break_placeholder: str,
|
||||
) -> ConversionStatus:
|
||||
success_count = 0
|
||||
failure_count = 0
|
||||
|
||||
# Default failure in case results is empty
|
||||
conv_result = ConversionStatus.FAILURE
|
||||
|
||||
artifacts_dir = Path("artifacts/") # will be relative to the fname
|
||||
|
||||
for conv_res in conv_results:
|
||||
conv_result = conv_res.status
|
||||
if conv_res.status == ConversionStatus.SUCCESS:
|
||||
success_count += 1
|
||||
doc_filename = conv_res.input.file.stem
|
||||
@@ -77,7 +104,9 @@ def _export_documents_as_files(
|
||||
fname = output_dir / f"{doc_filename}.json"
|
||||
_log.info(f"writing JSON output to {fname}")
|
||||
conv_res.document.save_as_json(
|
||||
filename=fname, image_mode=image_export_mode
|
||||
filename=fname,
|
||||
image_mode=image_export_mode,
|
||||
artifacts_dir=artifacts_dir,
|
||||
)
|
||||
|
||||
# Export HTML format:
|
||||
@@ -85,7 +114,9 @@ def _export_documents_as_files(
|
||||
fname = output_dir / f"{doc_filename}.html"
|
||||
_log.info(f"writing HTML output to {fname}")
|
||||
conv_res.document.save_as_html(
|
||||
filename=fname, image_mode=image_export_mode
|
||||
filename=fname,
|
||||
image_mode=image_export_mode,
|
||||
artifacts_dir=artifacts_dir,
|
||||
)
|
||||
|
||||
# Export Text format:
|
||||
@@ -103,14 +134,17 @@ def _export_documents_as_files(
|
||||
fname = output_dir / f"{doc_filename}.md"
|
||||
_log.info(f"writing Markdown output to {fname}")
|
||||
conv_res.document.save_as_markdown(
|
||||
filename=fname, image_mode=image_export_mode
|
||||
filename=fname,
|
||||
artifacts_dir=artifacts_dir,
|
||||
image_mode=image_export_mode,
|
||||
page_break_placeholder=md_page_break_placeholder or None,
|
||||
)
|
||||
|
||||
# Export Document Tags format:
|
||||
if export_doctags:
|
||||
fname = output_dir / f"{doc_filename}.doctags"
|
||||
_log.info(f"writing Doc Tags output to {fname}")
|
||||
conv_res.document.save_as_document_tokens(filename=fname)
|
||||
conv_res.document.save_as_doctags(filename=fname)
|
||||
|
||||
else:
|
||||
_log.warning(f"Document {conv_res.input.file} failed to convert.")
|
||||
@@ -120,13 +154,15 @@ def _export_documents_as_files(
|
||||
f"Processed {success_count + failure_count} docs, "
|
||||
f"of which {failure_count} failed"
|
||||
)
|
||||
return conv_result
|
||||
|
||||
|
||||
def process_results(
|
||||
conversion_options: ConvertDocumentsOptions,
|
||||
target: TaskTarget,
|
||||
conv_results: Iterable[ConversionResult],
|
||||
work_dir: Path,
|
||||
) -> Union[ConvertDocumentResponse, FileResponse]:
|
||||
) -> Union[ConvertDocumentResponse, FileResponse, PresignedUrlConvertDocumentResponse]:
|
||||
# Let's start by processing the documents
|
||||
try:
|
||||
start_time = time.monotonic()
|
||||
@@ -150,7 +186,9 @@ def process_results(
|
||||
)
|
||||
|
||||
# We have some results, let's prepare the response
|
||||
response: Union[FileResponse, ConvertDocumentResponse]
|
||||
response: Union[
|
||||
FileResponse, ConvertDocumentResponse, PresignedUrlConvertDocumentResponse
|
||||
]
|
||||
|
||||
# Booleans to know what to export
|
||||
export_json = OutputFormat.JSON in conversion_options.to_formats
|
||||
@@ -160,7 +198,7 @@ def process_results(
|
||||
export_doctags = OutputFormat.DOCTAGS in conversion_options.to_formats
|
||||
|
||||
# Only 1 document was processed, and we are not returning it as a file
|
||||
if len(conv_results) == 1 and not conversion_options.return_as_file:
|
||||
if len(conv_results) == 1 and isinstance(target, InBodyTarget):
|
||||
conv_res = conv_results[0]
|
||||
document = _export_document_as_content(
|
||||
conv_res,
|
||||
@@ -170,6 +208,7 @@ def process_results(
|
||||
export_txt=export_txt,
|
||||
export_doctags=export_doctags,
|
||||
image_mode=conversion_options.image_export_mode,
|
||||
md_page_break_placeholder=conversion_options.md_page_break_placeholder,
|
||||
)
|
||||
|
||||
response = ConvertDocumentResponse(
|
||||
@@ -189,7 +228,7 @@ def process_results(
|
||||
os.getpid()
|
||||
|
||||
# Export the documents
|
||||
_export_documents_as_files(
|
||||
conv_result = _export_documents_as_files(
|
||||
conv_results=conv_results,
|
||||
output_dir=output_dir,
|
||||
export_json=export_json,
|
||||
@@ -198,6 +237,7 @@ def process_results(
|
||||
export_txt=export_txt,
|
||||
export_doctags=export_doctags,
|
||||
image_export_mode=conversion_options.image_export_mode,
|
||||
md_page_break_placeholder=conversion_options.md_page_break_placeholder,
|
||||
)
|
||||
|
||||
files = os.listdir(output_dir)
|
||||
@@ -215,8 +255,67 @@ def process_results(
|
||||
# Output directory
|
||||
# background_tasks.add_task(shutil.rmtree, work_dir, ignore_errors=True)
|
||||
|
||||
response = FileResponse(
|
||||
file_path, filename=file_path.name, media_type="application/zip"
|
||||
)
|
||||
if isinstance(target, PutTarget):
|
||||
try:
|
||||
with open(file_path, "rb") as file_data:
|
||||
r = httpx.put(str(target.url), files={"file": file_data})
|
||||
r.raise_for_status()
|
||||
response = PresignedUrlConvertDocumentResponse(
|
||||
status=conv_result,
|
||||
processing_time=processing_time,
|
||||
)
|
||||
except Exception as exc:
|
||||
_log.error("An error occour while uploading zip to s3", exc_info=exc)
|
||||
raise HTTPException(
|
||||
status_code=500, detail="An error occour while uploading zip to s3."
|
||||
)
|
||||
else:
|
||||
response = FileResponse(
|
||||
file_path, filename=file_path.name, media_type="application/zip"
|
||||
)
|
||||
|
||||
return response
|
||||
|
||||
|
||||
async def prepare_response(
|
||||
task: Task, orchestrator: BaseOrchestrator, background_tasks: BackgroundTasks
|
||||
):
|
||||
if task.results is None:
|
||||
raise HTTPException(
|
||||
status_code=404,
|
||||
detail="Task result not found. Please wait for a completion status.",
|
||||
)
|
||||
assert task.options is not None
|
||||
|
||||
work_dir = get_scratch() / task.task_id
|
||||
response = process_results(
|
||||
conversion_options=task.options,
|
||||
target=task.target,
|
||||
conv_results=task.results,
|
||||
work_dir=work_dir,
|
||||
)
|
||||
|
||||
if work_dir.exists():
|
||||
task.scratch_dir = work_dir
|
||||
if not isinstance(response, FileResponse):
|
||||
_log.warning(
|
||||
f"Task {task.task_id=} produced content in {work_dir=} but the response is not a file."
|
||||
)
|
||||
shutil.rmtree(work_dir, ignore_errors=True)
|
||||
|
||||
if docling_serve_settings.single_use_results:
|
||||
if task.scratch_dir is not None:
|
||||
background_tasks.add_task(
|
||||
shutil.rmtree, task.scratch_dir, ignore_errors=True
|
||||
)
|
||||
|
||||
async def _remove_task_impl():
|
||||
await asyncio.sleep(docling_serve_settings.result_removal_delay)
|
||||
await orchestrator.delete_task(task_id=task.task_id)
|
||||
|
||||
async def _remove_task():
|
||||
asyncio.create_task(_remove_task_impl()) # noqa: RUF006
|
||||
|
||||
background_tasks.add_task(_remove_task)
|
||||
|
||||
return response
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
import enum
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Optional, Union
|
||||
@@ -6,8 +7,6 @@ from pydantic import AnyUrl, model_validator
|
||||
from pydantic_settings import BaseSettings, SettingsConfigDict
|
||||
from typing_extensions import Self
|
||||
|
||||
from docling_serve.datamodel.engines import AsyncEngine
|
||||
|
||||
|
||||
class UvicornSettings(BaseSettings):
|
||||
model_config = SettingsConfigDict(
|
||||
@@ -26,6 +25,11 @@ class UvicornSettings(BaseSettings):
|
||||
workers: Union[int, None] = None
|
||||
|
||||
|
||||
class AsyncEngine(str, enum.Enum):
|
||||
LOCAL = "local"
|
||||
KFP = "kfp"
|
||||
|
||||
|
||||
class DoclingServeSettings(BaseSettings):
|
||||
model_config = SettingsConfigDict(
|
||||
env_prefix="DOCLING_SERVE_",
|
||||
@@ -40,6 +44,8 @@ class DoclingServeSettings(BaseSettings):
|
||||
static_path: Optional[Path] = None
|
||||
scratch_path: Optional[Path] = None
|
||||
single_use_results: bool = True
|
||||
result_removal_delay: float = 300 # 5 minutes
|
||||
load_models_at_boot: bool = True
|
||||
options_cache_size: int = 2
|
||||
enable_remote_services: bool = False
|
||||
allow_external_plugins: bool = False
|
||||
@@ -48,6 +54,8 @@ class DoclingServeSettings(BaseSettings):
|
||||
max_num_pages: int = sys.maxsize
|
||||
max_file_size: int = sys.maxsize
|
||||
|
||||
max_sync_wait: int = 120 # 2 minutes
|
||||
|
||||
cors_origins: list[str] = ["*"]
|
||||
cors_methods: list[str] = ["*"]
|
||||
cors_headers: list[str] = ["*"]
|
||||
@@ -55,6 +63,7 @@ class DoclingServeSettings(BaseSettings):
|
||||
eng_kind: AsyncEngine = AsyncEngine.LOCAL
|
||||
# Local engine
|
||||
eng_loc_num_workers: int = 2
|
||||
eng_loc_share_models: bool = False
|
||||
# KFP engine
|
||||
eng_kfp_endpoint: Optional[AnyUrl] = None
|
||||
eng_kfp_token: Optional[str] = None
|
||||
|
||||
54
docling_serve/websocket_notifier.py
Normal file
54
docling_serve/websocket_notifier.py
Normal file
@@ -0,0 +1,54 @@
|
||||
from fastapi import WebSocket
|
||||
|
||||
from docling_jobkit.datamodel.task_meta import TaskStatus
|
||||
from docling_jobkit.orchestrators.base_notifier import BaseNotifier
|
||||
from docling_jobkit.orchestrators.base_orchestrator import BaseOrchestrator
|
||||
|
||||
from docling_serve.datamodel.responses import (
|
||||
MessageKind,
|
||||
TaskStatusResponse,
|
||||
WebsocketMessage,
|
||||
)
|
||||
|
||||
|
||||
class WebsocketNotifier(BaseNotifier):
|
||||
def __init__(self, orchestrator: BaseOrchestrator):
|
||||
super().__init__(orchestrator)
|
||||
self.task_subscribers: dict[str, set[WebSocket]] = {}
|
||||
|
||||
async def add_task(self, task_id: str):
|
||||
self.task_subscribers[task_id] = set()
|
||||
|
||||
async def remove_task(self, task_id: str):
|
||||
if task_id in self.task_subscribers:
|
||||
for websocket in self.task_subscribers[task_id]:
|
||||
await websocket.close()
|
||||
|
||||
del self.task_subscribers[task_id]
|
||||
|
||||
async def notify_task_subscribers(self, task_id: str):
|
||||
if task_id not in self.task_subscribers:
|
||||
raise RuntimeError(f"Task {task_id} does not have a subscribers list.")
|
||||
|
||||
task = await self.orchestrator.get_raw_task(task_id=task_id)
|
||||
task_queue_position = await self.orchestrator.get_queue_position(task_id)
|
||||
msg = TaskStatusResponse(
|
||||
task_id=task.task_id,
|
||||
task_status=task.task_status,
|
||||
task_position=task_queue_position,
|
||||
task_meta=task.processing_meta,
|
||||
)
|
||||
for websocket in self.task_subscribers[task_id]:
|
||||
await websocket.send_text(
|
||||
WebsocketMessage(message=MessageKind.UPDATE, task=msg).model_dump_json()
|
||||
)
|
||||
if task.is_completed():
|
||||
await websocket.close()
|
||||
|
||||
async def notify_queue_positions(self):
|
||||
for task_id in self.task_subscribers.keys():
|
||||
# notify only pending tasks
|
||||
if self.orchestrator.tasks[task_id].task_status != TaskStatus.PENDING:
|
||||
continue
|
||||
|
||||
await self.notify_task_subscribers(task_id)
|
||||
@@ -1,4 +1,4 @@
|
||||
# Dolcing Serve documentation
|
||||
# Docling Serve documentation
|
||||
|
||||
This documentation pages explore the webserver configurations, runtime options, deployment examples as well as development best practices.
|
||||
|
||||
@@ -6,3 +6,4 @@ This documentation pages explore the webserver configurations, runtime options,
|
||||
- [Advance usage](./usage.md)
|
||||
- [Deployment](./deployment.md)
|
||||
- [Development](./development.md)
|
||||
- [`v1` migration](./v1_migration.md)
|
||||
|
||||
@@ -7,7 +7,7 @@ server and the actual app-specific configurations.
|
||||
|
||||
> [!WARNING]
|
||||
> When the server is running with `reload` or with multiple `workers`, uvicorn
|
||||
> will spawn multiple subprocessed. This invalides all the values configured
|
||||
> will spawn multiple subprocesses. This invalidates all the values configured
|
||||
> via the CLI command line options. Please use environment variables in this
|
||||
> type of deployments.
|
||||
|
||||
@@ -36,15 +36,18 @@ THe following table describes the options to configure the Docling Serve app.
|
||||
| CLI option | ENV | Default | Description |
|
||||
| -----------|-----|---------|-------------|
|
||||
| `--artifacts-path` | `DOCLING_SERVE_ARTIFACTS_PATH` | unset | If set to a valid directory, the model weights will be loaded from this path |
|
||||
| | `DOCLING_SERVE_STATIC_PATH` | unset | If set to a valid directory, the static assets for the docs and ui will be loaded from this path |
|
||||
| | `DOCLING_SERVE_STATIC_PATH` | unset | If set to a valid directory, the static assets for the docs and UI will be loaded from this path |
|
||||
| | `DOCLING_SERVE_SCRATCH_PATH` | | If set, this directory will be used as scratch workspace, e.g. storing the results before they get requested. If unset, a temporary created is created for this purpose. |
|
||||
| `--enable-ui` | `DOCLING_SERVE_ENABLE_UI` | `false` | Enable the demonstrator UI. |
|
||||
| | `DOCLING_SERVE_ENABLE_REMOTE_SERVICES` | `false` | Allow pipeline components making remote connections. For example, this is needed when using a vision-language model via APIs. |
|
||||
| | `DOCLING_SERVE_ALLOW_EXTERNAL_PLUGINS` | `false` | Allow the selection of third-party plugins. |
|
||||
| | `DOCLING_SERVE_SINGLE_USE_RESULTS` | `true` | If true, results can be accessed only once. If false, the results accumulate in the scratch directory. |
|
||||
| | `DOCLING_SERVE_RESULT_REMOVAL_DELAY` | `300` | When `DOCLING_SERVE_SINGLE_USE_RESULTS` is active, this is the delay before results are removed from the task registry. |
|
||||
| | `DOCLING_SERVE_MAX_DOCUMENT_TIMEOUT` | `604800` (7 days) | The maximum time for processing a document. |
|
||||
| | `DOCLING_SERVE_MAX_NUM_PAGES` | | The maximum number of pages for a document to be processed. |
|
||||
| | `DOCLING_SERVE_MAX_FILE_SIZE` | | The maximum file size for a document to be processed. |
|
||||
| | `DOCLING_SERVE_MAX_SYNC_WAIT` | `120` | Max number of seconds a synchronous endpoint is waiting for the task completion. |
|
||||
| | `DOCLING_SERVE_LOAD_MODELS_AT_BOOT` | `True` | If enabled, the models for the default options will be loaded at boot. |
|
||||
| | `DOCLING_SERVE_OPTIONS_CACHE_SIZE` | `2` | How many DocumentConveter objects (including their loaded models) to keep in the cache. |
|
||||
| | `DOCLING_SERVE_CORS_ORIGINS` | `["*"]` | A list of origins that should be permitted to make cross-origin requests. |
|
||||
| | `DOCLING_SERVE_CORS_METHODS` | `["*"]` | A list of HTTP methods that should be allowed for cross-origin requests. |
|
||||
@@ -58,11 +61,12 @@ The selected compute engine will be running all the async jobs.
|
||||
|
||||
#### Local engine
|
||||
|
||||
The following table describes the options to configure the Docling Serve KFP engine.
|
||||
The following table describes the options to configure the Docling Serve local engine.
|
||||
|
||||
| ENV | Default | Description |
|
||||
|-----|---------|-------------|
|
||||
| `DOCLING_SERVE_ENG_LOC_NUM_WORKERS` | 2 | Number of workers/threads processing the incoming tasks. |
|
||||
| `DOCLING_SERVE_ENG_LOC_SHARE_MODELS` | False | If true, each process will share the same models among all thread workers. Otherwise, one instance of the models is allocated for each worker thread. |
|
||||
|
||||
#### KFP engine
|
||||
|
||||
@@ -73,6 +77,6 @@ The following table describes the options to configure the Docling Serve KFP eng
|
||||
| `DOCLING_SERVE_ENG_KFP_ENDPOINT` | | Must be set to the Kubeflow Pipeline endpoint. When using the in-cluster deployment, make sure to use the cluster endpoint, e.g. `https://NAME.NAMESPACE.svc.cluster.local:8888` |
|
||||
| `DOCLING_SERVE_ENG_KFP_TOKEN` | | The authentication token for KFP. For in-cluster deployment, the app will load automatically the token of the ServiceAccount. |
|
||||
| `DOCLING_SERVE_ENG_KFP_CA_CERT_PATH` | | Path to the CA certificates for the KFP endpoint. For in-cluster deployment, the app will load automatically the internal CA. |
|
||||
| `DOCLING_SERVE_ENG_KFP_SELF_CALLBACK_ENDPOINT` | | If set, it enables internal callbacks providing status update of the KFP job. Usually something like `https://NAME.NAMESPACE.svc.cluster.local:5001/v1alpha/callback/task/progress`. |
|
||||
| `DOCLING_SERVE_ENG_KFP_SELF_CALLBACK_ENDPOINT` | | If set, it enables internal callbacks providing status update of the KFP job. Usually something like `https://NAME.NAMESPACE.svc.cluster.local:5001/v1/callback/task/progress`. |
|
||||
| `DOCLING_SERVE_ENG_KFP_SELF_CALLBACK_TOKEN_PATH` | | The token used for authenticating the progress callback. For cluster-internal workloads, use `/run/secrets/kubernetes.io/serviceaccount/token`. |
|
||||
| `DOCLING_SERVE_ENG_KFP_SELF_CALLBACK_CA_CERT_PATH` | | The CA certificate for the progress callback. For cluster-inetrnal workloads, use `/var/run/secrets/kubernetes.io/serviceaccount/service-ca.crt`. |
|
||||
|
||||
21
docs/deploy-examples/compose-amd.yaml
Normal file
21
docs/deploy-examples/compose-amd.yaml
Normal file
@@ -0,0 +1,21 @@
|
||||
# AMD ROCm deployment
|
||||
|
||||
services:
|
||||
docling-serve:
|
||||
image: ghcr.io/docling-project/docling-serve-rocm:main
|
||||
container_name: docling-serve
|
||||
ports:
|
||||
- "5001:5001"
|
||||
environment:
|
||||
DOCLING_SERVE_ENABLE_UI: "true"
|
||||
ROCR_VISIBLE_DEVICES: "0" # https://rocm.docs.amd.com/en/latest/conceptual/gpu-isolation.html#rocr-visible-devices
|
||||
## This section is for compatibility with older cards
|
||||
# HSA_OVERRIDE_GFX_VERSION: "11.0.0"
|
||||
# HSA_ENABLE_SDMA: "0"
|
||||
devices:
|
||||
- /dev/kfd:/dev/kfd
|
||||
- /dev/dri:/dev/dri
|
||||
group_add:
|
||||
- 44 # video group GID from host
|
||||
- 992 # render group GID from host
|
||||
restart: always
|
||||
@@ -1,15 +0,0 @@
|
||||
services:
|
||||
docling:
|
||||
image: ghcr.io/docling-project/docling-serve-cu124
|
||||
container_name: docling-serve
|
||||
ports:
|
||||
- 5001:5001
|
||||
environment:
|
||||
- DOCLING_SERVE_ENABLE_UI=true
|
||||
deploy:
|
||||
resources:
|
||||
reservations:
|
||||
devices:
|
||||
- driver: nvidia
|
||||
count: all # nvidia-smi
|
||||
capabilities: [gpu]
|
||||
20
docs/deploy-examples/compose-nvidia.yaml
Normal file
20
docs/deploy-examples/compose-nvidia.yaml
Normal file
@@ -0,0 +1,20 @@
|
||||
# NVIDIA CUDA deployment
|
||||
|
||||
services:
|
||||
docling-serve:
|
||||
image: ghcr.io/docling-project/docling-serve-cu126:main
|
||||
container_name: docling-serve
|
||||
ports:
|
||||
- "5001:5001"
|
||||
environment:
|
||||
DOCLING_SERVE_ENABLE_UI: "true"
|
||||
NVIDIA_VISIBLE_DEVICES: "all" # https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/docker-specialized.html
|
||||
# deploy: # This section is for compatibility with Swarm
|
||||
# resources:
|
||||
# reservations:
|
||||
# devices:
|
||||
# - driver: nvidia
|
||||
# count: all
|
||||
# capabilities: [gpu]
|
||||
runtime: nvidia
|
||||
restart: always
|
||||
47
docs/deploy-examples/docling-model-cache-deployment.yaml
Normal file
47
docs/deploy-examples/docling-model-cache-deployment.yaml
Normal file
@@ -0,0 +1,47 @@
|
||||
kind: Deployment
|
||||
apiVersion: apps/v1
|
||||
metadata:
|
||||
name: docling-serve
|
||||
labels:
|
||||
app: docling-serve
|
||||
component: docling-serve-api
|
||||
spec:
|
||||
replicas: 1
|
||||
selector:
|
||||
matchLabels:
|
||||
app: docling-serve
|
||||
component: docling-serve-api
|
||||
template:
|
||||
metadata:
|
||||
labels:
|
||||
app: docling-serve
|
||||
component: docling-serve-api
|
||||
spec:
|
||||
restartPolicy: Always
|
||||
containers:
|
||||
- name: api
|
||||
resources:
|
||||
limits:
|
||||
cpu: 2
|
||||
memory: 4Gi
|
||||
requests:
|
||||
cpu: 250m
|
||||
memory: 1Gi
|
||||
env:
|
||||
- name: DOCLING_SERVE_ENABLE_UI
|
||||
value: 'true'
|
||||
- name: DOCLING_SERVE_ARTIFACTS_PATH
|
||||
value: '/modelcache'
|
||||
ports:
|
||||
- name: http
|
||||
containerPort: 5001
|
||||
protocol: TCP
|
||||
imagePullPolicy: Always
|
||||
image: 'ghcr.io/docling-project/docling-serve-cpu'
|
||||
volumeMounts:
|
||||
- name: docling-model-cache
|
||||
mountPath: /modelcache
|
||||
volumes:
|
||||
- name: docling-model-cache
|
||||
persistentVolumeClaim:
|
||||
claimName: docling-model-cache-pvc
|
||||
33
docs/deploy-examples/docling-model-cache-job.yaml
Normal file
33
docs/deploy-examples/docling-model-cache-job.yaml
Normal file
@@ -0,0 +1,33 @@
|
||||
apiVersion: batch/v1
|
||||
kind: Job
|
||||
metadata:
|
||||
name: docling-model-cache-load
|
||||
spec:
|
||||
selector: {}
|
||||
template:
|
||||
metadata:
|
||||
name: docling-model-load
|
||||
spec:
|
||||
containers:
|
||||
- name: loader
|
||||
image: ghcr.io/docling-project/docling-serve-cpu:main
|
||||
command:
|
||||
- docling-tools
|
||||
- models
|
||||
- download
|
||||
- '--output-dir=/modelcache'
|
||||
- 'layout'
|
||||
- 'tableformer'
|
||||
- 'code_formula'
|
||||
- 'picture_classifier'
|
||||
- 'smolvlm'
|
||||
- 'granite_vision'
|
||||
- 'easyocr'
|
||||
volumeMounts:
|
||||
- name: docling-model-cache
|
||||
mountPath: /modelcache
|
||||
volumes:
|
||||
- name: docling-model-cache
|
||||
persistentVolumeClaim:
|
||||
claimName: docling-model-cache-pvc
|
||||
restartPolicy: Never
|
||||
11
docs/deploy-examples/docling-model-cache-pvc.yaml
Normal file
11
docs/deploy-examples/docling-model-cache-pvc.yaml
Normal file
@@ -0,0 +1,11 @@
|
||||
apiVersion: v1
|
||||
kind: PersistentVolumeClaim
|
||||
metadata:
|
||||
name: docling-model-cache-pvc
|
||||
spec:
|
||||
accessModes:
|
||||
- ReadWriteOnce
|
||||
volumeMode: Filesystem
|
||||
resources:
|
||||
requests:
|
||||
storage: 10Gi
|
||||
@@ -85,7 +85,7 @@ spec:
|
||||
resources:
|
||||
limits:
|
||||
cpu: 2000m
|
||||
memory: 2Gi
|
||||
memory: 4Gi
|
||||
requests:
|
||||
cpu: 800m
|
||||
memory: 1Gi
|
||||
|
||||
@@ -0,0 +1,76 @@
|
||||
# This example deployment configures Docling Serve with a Route + Sticky sessions, a Service and cpu image
|
||||
---
|
||||
kind: Route
|
||||
apiVersion: route.openshift.io/v1
|
||||
metadata:
|
||||
name: docling-serve
|
||||
labels:
|
||||
app: docling-serve
|
||||
component: docling-serve-api
|
||||
annotations:
|
||||
haproxy.router.openshift.io/disable_cookies: "false" # this annotation enables the sticky sessions
|
||||
spec:
|
||||
path: /
|
||||
to:
|
||||
kind: Service
|
||||
name: docling-serve
|
||||
port:
|
||||
targetPort: http
|
||||
tls:
|
||||
termination: edge
|
||||
insecureEdgeTerminationPolicy: Redirect
|
||||
---
|
||||
apiVersion: v1
|
||||
kind: Service
|
||||
metadata:
|
||||
name: docling-serve
|
||||
labels:
|
||||
app: docling-serve
|
||||
component: docling-serve-api
|
||||
spec:
|
||||
ports:
|
||||
- name: http
|
||||
port: 5001
|
||||
targetPort: http
|
||||
selector:
|
||||
app: docling-serve
|
||||
component: docling-serve-api
|
||||
---
|
||||
kind: Deployment
|
||||
apiVersion: apps/v1
|
||||
metadata:
|
||||
name: docling-serve
|
||||
labels:
|
||||
app: docling-serve
|
||||
component: docling-serve-api
|
||||
spec:
|
||||
replicas: 3
|
||||
selector:
|
||||
matchLabels:
|
||||
app: docling-serve
|
||||
component: docling-serve-api
|
||||
template:
|
||||
metadata:
|
||||
labels:
|
||||
app: docling-serve
|
||||
component: docling-serve-api
|
||||
spec:
|
||||
restartPolicy: Always
|
||||
containers:
|
||||
- name: api
|
||||
resources:
|
||||
limits:
|
||||
cpu: 1
|
||||
memory: 4Gi
|
||||
requests:
|
||||
cpu: 250m
|
||||
memory: 1Gi
|
||||
env:
|
||||
- name: DOCLING_SERVE_ENABLE_UI
|
||||
value: 'true'
|
||||
ports:
|
||||
- name: http
|
||||
containerPort: 5001
|
||||
protocol: TCP
|
||||
imagePullPolicy: Always
|
||||
image: 'ghcr.io/docling-project/docling-serve'
|
||||
@@ -40,8 +40,8 @@ spec:
|
||||
- name: api
|
||||
resources:
|
||||
limits:
|
||||
cpu: 500m
|
||||
memory: 2Gi
|
||||
cpu: 1
|
||||
memory: 4Gi
|
||||
nvidia.com/gpu: 1 # Limit to one GPU
|
||||
requests:
|
||||
cpu: 250m
|
||||
|
||||
@@ -4,16 +4,17 @@ This document provides deployment examples for running the application in differ
|
||||
|
||||
Choose the deployment option that best fits your setup.
|
||||
|
||||
- **[Local GPU](#local-gpu)**: For deploying the application locally on a machine with a NVIDIA GPU (using Docker Compose).
|
||||
- **[Local GPU NVIDIA](#local-gpu-nvidia)**: For deploying the application locally on a machine with a supported NVIDIA GPU (using Docker Compose).
|
||||
- **[Local GPU AMD](#local-gpu-amd)**: For deploying the application locally on a machine with a supported AMD GPU (using Docker Compose).
|
||||
- **[OpenShift](#openshift)**: For deploying the application on an OpenShift cluster, designed for cloud-native environments.
|
||||
|
||||
---
|
||||
|
||||
## Local GPU
|
||||
## Local GPU NVIDIA
|
||||
|
||||
### Docker compose
|
||||
|
||||
Manifest example: [compose-gpu.yaml](./deploy-examples/compose-gpu.yaml)
|
||||
Manifest example: [compose-nvidia.yaml](./deploy-examples/compose-nvidia.yaml)
|
||||
|
||||
This deployment has the following features:
|
||||
|
||||
@@ -22,7 +23,7 @@ This deployment has the following features:
|
||||
Install the app with:
|
||||
|
||||
```sh
|
||||
docker compose -f docs/deploy-examples/compose-gpu.yaml up -d
|
||||
docker compose -f docs/deploy-examples/compose-nvidia.yaml up -d
|
||||
```
|
||||
|
||||
For using the API:
|
||||
@@ -30,11 +31,11 @@ For using the API:
|
||||
```sh
|
||||
# Make a test query
|
||||
curl -X 'POST' \
|
||||
"localhost:5001/v1alpha/convert/source/async" \
|
||||
"localhost:5001/v1/convert/source/async" \
|
||||
-H "accept: application/json" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"http_sources": [{"url": "https://arxiv.org/pdf/2501.17887"}]
|
||||
"sources": [{"kind": "http", "url": "https://arxiv.org/pdf/2501.17887"}]
|
||||
}'
|
||||
```
|
||||
|
||||
@@ -56,7 +57,7 @@ Docs:
|
||||
<details>
|
||||
<summary><b>Steps</b></summary>
|
||||
|
||||
1. Check driver version and which GPU you want to use (0/1/2/3.. and update [compose-gpu.yaml](./deploy-examples/compose-gpu.yaml) file or use `count: all`)
|
||||
1. Check driver version and which GPU you want to use 0/1/2/n (and update [compose-nvidia.yaml](./deploy-examples/compose-nvidia.yaml) file or use `count: all`)
|
||||
|
||||
```sh
|
||||
nvidia-smi
|
||||
@@ -117,7 +118,75 @@ Docs:
|
||||
5. Run the container:
|
||||
|
||||
```sh
|
||||
docker compose -f docs/deploy-examples/compose-gpu.yaml up -d
|
||||
docker compose -f docs/deploy-examples/compose-nvidia.yaml up -d
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
## Local GPU AMD
|
||||
|
||||
### Docker compose
|
||||
|
||||
Manifest example: [compose-amd.yaml](./deploy-examples/compose-amd.yaml)
|
||||
|
||||
This deployment has the following features:
|
||||
|
||||
- AMD rocm enabled
|
||||
|
||||
Install the app with:
|
||||
|
||||
```sh
|
||||
docker compose -f docs/deploy-examples/compose-amd.yaml up -d
|
||||
```
|
||||
|
||||
For using the API:
|
||||
|
||||
```sh
|
||||
# Make a test query
|
||||
curl -X 'POST' \
|
||||
"localhost:5001/v1/convert/source/async" \
|
||||
-H "accept: application/json" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"sources": [{"kind": "http", "url": "https://arxiv.org/pdf/2501.17887"}]
|
||||
}'
|
||||
```
|
||||
|
||||
<details>
|
||||
<summary><b>Requirements</b></summary>
|
||||
|
||||
- debian/ubuntu/rhel/fedora/opensuse
|
||||
- docker
|
||||
- AMDGPU driver >=6.3
|
||||
- AMD ROCm >=6.3
|
||||
|
||||
Docs:
|
||||
|
||||
- [AMD ROCm installation](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/quick-start.html)
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary><b>Steps</b></summary>
|
||||
|
||||
1. Check driver version and which GPU you want to use 0/1/2/n (and update [compose-amd.yaml](./deploy-examples/compose-amd.yaml) file)
|
||||
|
||||
```sh
|
||||
rocm-smi --showdriverversion
|
||||
rocminfo | grep -i "ROCm version"
|
||||
```
|
||||
|
||||
2. Find both video group GID and render group GID from host (and update [compose-amd.yaml](./deploy-examples/compose-amd.yaml) file)
|
||||
|
||||
```sh
|
||||
getent group video
|
||||
getent group render
|
||||
```
|
||||
|
||||
3. Build the image locally (and update [compose-amd.yaml](./deploy-examples/compose-amd.yaml) file)
|
||||
|
||||
```sh
|
||||
make docling-serve-rocm-image
|
||||
```
|
||||
|
||||
</details>
|
||||
@@ -148,11 +217,11 @@ oc port-forward svc/docling-serve 5001:5001
|
||||
|
||||
# Make a test query
|
||||
curl -X 'POST' \
|
||||
"localhost:5001/v1alpha/convert/source/async" \
|
||||
"localhost:5001/v1/convert/source/async" \
|
||||
-H "accept: application/json" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"http_sources": [{"url": "https://arxiv.org/pdf/2501.17887"}]
|
||||
"sources": [{"kind": "http", "url": "https://arxiv.org/pdf/2501.17887"}]
|
||||
}'
|
||||
```
|
||||
|
||||
@@ -184,11 +253,53 @@ OCP_AUTH_TOKEN=$(oc whoami --show-token)
|
||||
|
||||
# Make a test query
|
||||
curl -X 'POST' \
|
||||
"${DOCLING_ROUTE}/v1alpha/convert/source/async" \
|
||||
"${DOCLING_ROUTE}/v1/convert/source/async" \
|
||||
-H "Authorization: Bearer ${OCP_AUTH_TOKEN}" \
|
||||
-H "accept: application/json" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"http_sources": [{"url": "https://arxiv.org/pdf/2501.17887"}]
|
||||
"sources": [{"kind": "http", "url": "https://arxiv.org/pdf/2501.17887"}]
|
||||
}'
|
||||
```
|
||||
|
||||
### ReplicaSets with `sticky sessions`
|
||||
|
||||
Manifest example: [docling-serve-replicas-w-sticky-sessions.yaml](./deploy-examples/docling-serve-replicas-w-sticky-sessions.yaml)
|
||||
|
||||
This deployment has the following features:
|
||||
|
||||
- Deployment configuration with 3 replicas
|
||||
- Service configuration
|
||||
- Expose the service using a OpenShift `Route` and enables sticky sessions
|
||||
|
||||
Install the app with:
|
||||
|
||||
```sh
|
||||
oc apply -f docs/deploy-examples/docling-serve-replicas-w-sticky-sessions.yaml
|
||||
```
|
||||
|
||||
For using the API:
|
||||
|
||||
```sh
|
||||
# Retrieve the endpoint
|
||||
DOCLING_NAME=docling-serve
|
||||
DOCLING_ROUTE="https://$(oc get routes $DOCLING_NAME --template={{.spec.host}})"
|
||||
|
||||
# Make a test query, store the cookie and taskid
|
||||
task_id=$(curl -s -X 'POST' \
|
||||
"${DOCLING_ROUTE}/v1/convert/source/async" \
|
||||
-H "accept: application/json" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"sources": [{"kind": "http", "url": "https://arxiv.org/pdf/2501.17887"}]
|
||||
}' \
|
||||
-c cookies.txt | grep -oP '"task_id":"\K[^"]+')
|
||||
```
|
||||
|
||||
```sh
|
||||
# Grab the taskid and cookie to check the task status
|
||||
curl -v -X 'GET' \
|
||||
"${DOCLING_ROUTE}/v1/status/poll/$task_id?wait=0" \
|
||||
-H "accept: application/json" \
|
||||
-b "cookies.txt"
|
||||
```
|
||||
|
||||
103
docs/pre-loading-models.md
Normal file
103
docs/pre-loading-models.md
Normal file
@@ -0,0 +1,103 @@
|
||||
# Pre-loading models for docling
|
||||
|
||||
This document provides examples for pre-loading docling models to a persistent volume and re-using it for docling-serve deployments.
|
||||
|
||||
1. We need to create a persistent volume that will store models weights:
|
||||
|
||||
```yaml
|
||||
apiVersion: v1
|
||||
kind: PersistentVolumeClaim
|
||||
metadata:
|
||||
name: docling-model-cache-pvc
|
||||
spec:
|
||||
accessModes:
|
||||
- ReadWriteOnce
|
||||
volumeMode: Filesystem
|
||||
resources:
|
||||
requests:
|
||||
storage: 10Gi
|
||||
```
|
||||
|
||||
If you don't want to use default storage class, set your custom storage class with following:
|
||||
|
||||
```yaml
|
||||
spec:
|
||||
...
|
||||
storageClassName: <Storage Class Name>
|
||||
```
|
||||
|
||||
Manifest example: [docling-model-cache-pvc.yaml](./deploy-examples/docling-model-cache-pvc.yaml)
|
||||
|
||||
2. In order to load model weights, we can use docling-toolkit to download them, as this is a one time operation we can use kubernetes job for this:
|
||||
|
||||
```yaml
|
||||
apiVersion: batch/v1
|
||||
kind: Job
|
||||
metadata:
|
||||
name: docling-model-cache-load
|
||||
spec:
|
||||
selector: {}
|
||||
template:
|
||||
metadata:
|
||||
name: docling-model-load
|
||||
spec:
|
||||
containers:
|
||||
- name: loader
|
||||
image: ghcr.io/docling-project/docling-serve-cpu:main
|
||||
command:
|
||||
- docling-tools
|
||||
- models
|
||||
- download
|
||||
- '--output-dir=/modelcache'
|
||||
- 'layout'
|
||||
- 'tableformer'
|
||||
- 'code_formula'
|
||||
- 'picture_classifier'
|
||||
- 'smolvlm'
|
||||
- 'granite_vision'
|
||||
- 'easyocr'
|
||||
volumeMounts:
|
||||
- name: docling-model-cache
|
||||
mountPath: /modelcache
|
||||
volumes:
|
||||
- name: docling-model-cache
|
||||
persistentVolumeClaim:
|
||||
claimName: docling-model-cache-pvc
|
||||
restartPolicy: Never
|
||||
```
|
||||
|
||||
The job will mount previously created persistent volume and execute command similar to how we would load models locally:
|
||||
`docling-tools models download --output-dir <MOUNT-PATH> [LIST_OF_MODELS]`
|
||||
|
||||
In manifest, we specify desired models individually, or we can use `--all` parameter to download all models.
|
||||
|
||||
Manifest example: [docling-model-cache-job.yaml](./deploy-examples/docling-model-cache-job.yaml)
|
||||
|
||||
3. Now we can mount volume in the docling-serve deployment and set env `DOCLING_SERVE_ARTIFACTS_PATH` to point to it.
|
||||
Following additions to deployment should be made:
|
||||
|
||||
```yaml
|
||||
spec:
|
||||
template:
|
||||
spec:
|
||||
containers:
|
||||
- name: api
|
||||
env:
|
||||
...
|
||||
- name: DOCLING_SERVE_ARTIFACTS_PATH
|
||||
value: '/modelcache'
|
||||
volumeMounts:
|
||||
- name: docling-model-cache
|
||||
mountPath: /modelcache
|
||||
...
|
||||
volumes:
|
||||
- name: docling-model-cache
|
||||
persistentVolumeClaim:
|
||||
claimName: docling-model-cache-pvc
|
||||
```
|
||||
|
||||
Make sure that value of `DOCLING_SERVE_ARTIFACTS_PATH` is the same as where models were downloaded and where volume is mounted.
|
||||
|
||||
Now when docling-serve is executing tasks, the underlying docling installation will load model weights from mounted volume.
|
||||
|
||||
Manifest example: [docling-model-cache-deployment.yaml](./deploy-examples/docling-model-cache-deployment.yaml)
|
||||
142
docs/usage.md
142
docs/usage.md
@@ -9,22 +9,24 @@ On top of the source of file (see below), both endpoints support the same parame
|
||||
- `from_formats` (List[str]): Input format(s) to convert from. Allowed values: `docx`, `pptx`, `html`, `image`, `pdf`, `asciidoc`, `md`. Defaults to all formats.
|
||||
- `to_formats` (List[str]): Output format(s) to convert to. Allowed values: `md`, `json`, `html`, `text`, `doctags`. Defaults to `md`.
|
||||
- `pipeline` (str). The choice of which pipeline to use. Allowed values are `standard` and `vlm`. Defaults to `standard`.
|
||||
- `page_range` (tuple). If specified, only convert a range of pages. The page number starts at 1.
|
||||
- `do_ocr` (bool): If enabled, the bitmap content will be processed using OCR. Defaults to `True`.
|
||||
- `image_export_mode`: Image export mode for the document (only in case of JSON, Markdown or HTML). Allowed values: embedded, placeholder, referenced. Optional, defaults to `embedded`.
|
||||
- `force_ocr` (bool): If enabled, replace any existing text with OCR-generated text over the full content. Defaults to `False`.
|
||||
- `ocr_engine` (str): OCR engine to use. Allowed values: `easyocr`, `tesseract_cli`, `tesseract`, `rapidocr`, `ocrmac`. Defaults to `easyocr`.
|
||||
- `ocr_engine` (str): OCR engine to use. Allowed values: `easyocr`, `tesserocr`, `tesseract`, `rapidocr`, `ocrmac`. Defaults to `easyocr`. To use the `tesserocr` engine, `tesserocr` must be installed where docling-serve is running: `pip install tesserocr`
|
||||
- `ocr_lang` (List[str]): List of languages used by the OCR engine. Note that each OCR engine has different values for the language names. Defaults to empty.
|
||||
- `pdf_backend` (str): PDF backend to use. Allowed values: `pypdfium2`, `dlparse_v1`, `dlparse_v2`, `dlparse_v4`. Defaults to `dlparse_v4`.
|
||||
- `table_mode` (str): Table mode to use. Allowed values: `fast`, `accurate`. Defaults to `fast`.
|
||||
- `abort_on_error` (bool): If enabled, abort on error. Defaults to false.
|
||||
- `return_as_file` (boo): If enabled, return the output as a file. Defaults to false.
|
||||
- `md_page_break_placeholder` (str): Add this placeholder between pages in the markdown output.
|
||||
- `do_table_structure` (bool): If enabled, the table structure will be extracted. Defaults to true.
|
||||
- `do_code_enrichment` (bool): If enabled, perform OCR code enrichment. Defaults to false.
|
||||
- `do_formula_enrichment` (bool): If enabled, perform formula OCR, return LaTeX code. Defaults to false.
|
||||
- `do_picture_classification` (bool): If enabled, classify pictures in documents. Defaults to false.
|
||||
- `do_picture_description` (bool): If enabled, describe pictures in documents. Defaults to false.
|
||||
- `picture_description_local` (dict): Options for running a local vision-language model in the picture description. The parameters refer to a model hosted on Hugging Face. This parameter is mutually exclusive with picture_description_api.
|
||||
- `picture_description_api` (dict): API details for using a vision-language model in the picture description. This parameter is mutually exclusive with picture_description_local.
|
||||
- `picture_description_area_threshold` (float): Minimum percentage of the area for a picture to be processed with the models. Defaults to 0.05.
|
||||
- `picture_description_local` (dict): Options for running a local vision-language model in the picture description. The parameters refer to a model hosted on Hugging Face. This parameter is mutually exclusive with `picture_description_api`.
|
||||
- `picture_description_api` (dict): API details for using a vision-language model in the picture description. This parameter is mutually exclusive with `picture_description_local`.
|
||||
- `include_images` (bool): If enabled, images will be extracted from the document. Defaults to false.
|
||||
- `images_scale` (float): Scale factor for images. Defaults to 2.0.
|
||||
|
||||
@@ -32,7 +34,7 @@ On top of the source of file (see below), both endpoints support the same parame
|
||||
|
||||
### Source endpoint
|
||||
|
||||
The endpoint is `/v1alpha/convert/source`, listening for POST requests of JSON payloads.
|
||||
The endpoint is `/v1/convert/source`, listening for POST requests of JSON payloads.
|
||||
|
||||
On top of the above parameters, you must send the URL(s) of the document you want process with either the `http_sources` or `file_sources` fields.
|
||||
The first is fetching URL(s) (optionally using with extra headers), the second allows to provide documents as base64-encoded strings.
|
||||
@@ -63,7 +65,6 @@ Simple payload example:
|
||||
"pdf_backend": "dlparse_v2",
|
||||
"table_mode": "fast",
|
||||
"abort_on_error": false,
|
||||
"return_as_file": false,
|
||||
},
|
||||
"http_sources": [{"url": "https://arxiv.org/pdf/2206.01062"}]
|
||||
}
|
||||
@@ -77,7 +78,7 @@ Simple payload example:
|
||||
|
||||
```sh
|
||||
curl -X 'POST' \
|
||||
'http://localhost:5001/v1alpha/convert/source' \
|
||||
'http://localhost:5001/v1/convert/source' \
|
||||
-H 'accept: application/json' \
|
||||
-H 'Content-Type: application/json' \
|
||||
-d '{
|
||||
@@ -106,7 +107,6 @@ curl -X 'POST' \
|
||||
"pdf_backend": "dlparse_v2",
|
||||
"table_mode": "fast",
|
||||
"abort_on_error": false,
|
||||
"return_as_file": false,
|
||||
"do_table_structure": true,
|
||||
"include_images": true,
|
||||
"images_scale": 2
|
||||
@@ -124,7 +124,7 @@ curl -X 'POST' \
|
||||
import httpx
|
||||
|
||||
async_client = httpx.AsyncClient(timeout=60.0)
|
||||
url = "http://localhost:5001/v1alpha/convert/source"
|
||||
url = "http://localhost:5001/v1/convert/source"
|
||||
payload = {
|
||||
"options": {
|
||||
"from_formats": ["docx", "pptx", "html", "image", "pdf", "asciidoc", "md", "xlsx"],
|
||||
@@ -137,7 +137,6 @@ payload = {
|
||||
"pdf_backend": "dlparse_v2",
|
||||
"table_mode": "fast",
|
||||
"abort_on_error": False,
|
||||
"return_as_file": False,
|
||||
},
|
||||
"http_sources": [{"url": "https://arxiv.org/pdf/2206.01062"}]
|
||||
}
|
||||
@@ -176,7 +175,7 @@ cat <<EOF > /tmp/request_body.json
|
||||
EOF
|
||||
|
||||
# 3. POST the request to the docling service
|
||||
curl -X POST "localhost:5001/v1alpha/convert/source" \
|
||||
curl -X POST "localhost:5001/v1/convert/source" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d @/tmp/request_body.json
|
||||
```
|
||||
@@ -185,14 +184,14 @@ curl -X POST "localhost:5001/v1alpha/convert/source" \
|
||||
|
||||
### File endpoint
|
||||
|
||||
The endpoint is: `/v1alpha/convert/file`, listening for POST requests of Form payloads (necessary as the files are sent as multipart/form data). You can send one or multiple files.
|
||||
The endpoint is: `/v1/convert/file`, listening for POST requests of Form payloads (necessary as the files are sent as multipart/form data). You can send one or multiple files.
|
||||
|
||||
<details>
|
||||
<summary>CURL example:</summary>
|
||||
|
||||
```sh
|
||||
curl -X 'POST' \
|
||||
'http://127.0.0.1:5001/v1alpha/convert/file' \
|
||||
'http://127.0.0.1:5001/v1/convert/file' \
|
||||
-H 'accept: application/json' \
|
||||
-H 'Content-Type: multipart/form-data' \
|
||||
-F 'ocr_engine=easyocr' \
|
||||
@@ -208,7 +207,6 @@ curl -X 'POST' \
|
||||
-F 'abort_on_error=false' \
|
||||
-F 'to_formats=md' \
|
||||
-F 'to_formats=text' \
|
||||
-F 'return_as_file=false' \
|
||||
-F 'do_ocr=true'
|
||||
```
|
||||
|
||||
@@ -221,7 +219,7 @@ curl -X 'POST' \
|
||||
import httpx
|
||||
|
||||
async_client = httpx.AsyncClient(timeout=60.0)
|
||||
url = "http://localhost:5001/v1alpha/convert/file"
|
||||
url = "http://localhost:5001/v1/convert/file"
|
||||
parameters = {
|
||||
"from_formats": ["docx", "pptx", "html", "image", "pdf", "asciidoc", "md", "xlsx"],
|
||||
"to_formats": ["md", "json", "html", "text", "doctags"],
|
||||
@@ -233,7 +231,6 @@ parameters = {
|
||||
"pdf_backend": "dlparse_v2",
|
||||
"table_mode": "fast",
|
||||
"abort_on_error": False,
|
||||
"return_as_file": False
|
||||
}
|
||||
|
||||
current_dir = os.path.dirname(__file__)
|
||||
@@ -243,7 +240,7 @@ files = {
|
||||
'files': ('2206.01062v1.pdf', open(file_path, 'rb'), 'application/pdf'),
|
||||
}
|
||||
|
||||
response = await async_client.post(url, files=files, data={"parameters": json.dumps(parameters)})
|
||||
response = await async_client.post(url, files=files, data=parameters)
|
||||
assert response.status_code == 200, "Response should be 200 OK"
|
||||
|
||||
data = response.json()
|
||||
@@ -285,33 +282,42 @@ The api option is specified with:
|
||||
|
||||
Example URLs are:
|
||||
|
||||
- `http://localhost:8000/v1/chat/completions` for the local vllm api, with example `params`:
|
||||
- `http://localhost:8000/v1/chat/completions` for the local vllm api, with example `picture_description_api`:
|
||||
- the `HuggingFaceTB/SmolVLM-256M-Instruct` model
|
||||
|
||||
```json
|
||||
{
|
||||
"url": "http://localhost:8000/v1/chat/completions",
|
||||
"params": {
|
||||
"model": "HuggingFaceTB/SmolVLM-256M-Instruct",
|
||||
"max_completion_tokens": 200,
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
- the `ibm-granite/granite-vision-3.2-2b` model
|
||||
|
||||
```json
|
||||
{
|
||||
"url": "http://localhost:8000/v1/chat/completions",
|
||||
"params": {
|
||||
"model": "ibm-granite/granite-vision-3.2-2b",
|
||||
"max_completion_tokens": 200,
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
- `http://localhost:11434/v1/chat/completions` for the local ollama api, with example `params`:
|
||||
- `http://localhost:11434/v1/chat/completions` for the local Ollama api, with example `picture_description_api`:
|
||||
- the `granite3.2-vision:2b` model
|
||||
|
||||
```json
|
||||
{
|
||||
"url": "http://localhost:11434/v1/chat/completions",
|
||||
"params": {
|
||||
"model": "granite3.2-vision:2b"
|
||||
}
|
||||
}
|
||||
```
|
||||
```
|
||||
|
||||
Note that when using `picture_description_api`, the server must be launched with `DOCLING_SERVE_ENABLE_REMOTE_SERVICES=true`.
|
||||
|
||||
@@ -342,9 +348,97 @@ The response can be a JSON Document or a File.
|
||||
`processing_time` is the Docling processing time in seconds, and `timings` (when enabled in the backend) provides the detailed
|
||||
timing of all the internal Docling components.
|
||||
|
||||
- If you set the parameter `return_as_file` to True, the response will be a zip file.
|
||||
- If multiple files are generated (multiple inputs, or one input but multiple outputs with `return_as_file` True), the response will be a zip file.
|
||||
- If you set the parameter `target` to the zip mode, the response will be a zip file.
|
||||
- If multiple files are generated (multiple inputs, or one input but multiple outputs with the zip target mode), the response will be a zip file.
|
||||
|
||||
## Asynchronous API
|
||||
|
||||
TBA
|
||||
Both `/v1/convert/source` and `/v1/convert/file` endpoints are available as asynchronous variants.
|
||||
The advantage of the asynchronous endpoints is the possible to interrupt the connection, check for the progress update and fetch the result.
|
||||
This approach is more resilient against network instabilities and allows the client application logic to easily interleave conversion with other tasks.
|
||||
|
||||
Launch an asynchronous conversion with:
|
||||
|
||||
- `POST /v1/convert/source/async` when providing the input as sources.
|
||||
- `POST /v1/convert/file/async` when providing the input as multipart-form files.
|
||||
|
||||
The response format is a task detail:
|
||||
|
||||
```jsonc
|
||||
{
|
||||
"task_id": "<task_id>", // the task_id which can be used for the next operations
|
||||
"task_status": "pending|started|success|failure", // the task status
|
||||
"task_position": 1, // the position in the queue
|
||||
"task_meta": null, // metadata e.g. how many documents are in the total job and how many have been converted
|
||||
}
|
||||
```
|
||||
|
||||
### Polling status
|
||||
|
||||
For checking the progress of the conversion task and wait for its completion, use the endpoint:
|
||||
|
||||
- `GET /v1/status/poll/{task_id}`
|
||||
|
||||
<details>
|
||||
<summary>Example waiting loop:</summary>
|
||||
|
||||
```python
|
||||
import time
|
||||
import httpx
|
||||
|
||||
# ...
|
||||
# response from the async task submission
|
||||
task = response.json()
|
||||
|
||||
while task["task_status"] not in ("success", "failure"):
|
||||
response = httpx.get(f"{base_url}/status/poll/{task['task_id']}")
|
||||
task = response.json()
|
||||
|
||||
time.sleep(5)
|
||||
```
|
||||
|
||||
<details>
|
||||
|
||||
### Subscribe with websockets
|
||||
|
||||
Using websocket you can get the client application being notified about updates of the conversion task.
|
||||
To start the websocket connection, use the endpoint:
|
||||
|
||||
- `/v1/status/ws/{task_id}`
|
||||
|
||||
Websocket messages are JSON object with the following structure:
|
||||
|
||||
```jsonc
|
||||
{
|
||||
"message": "connection|update|error", // type of message being sent
|
||||
"task": {}, // the same content of the task description
|
||||
"error": "", // description of the error
|
||||
}
|
||||
```
|
||||
|
||||
<details>
|
||||
<summary>Example websocket usage:</summary>
|
||||
|
||||
```python
|
||||
from websockets.sync.client import connect
|
||||
|
||||
uri = f"ws://{base_url}/v1/status/ws/{task['task_id']}"
|
||||
with connect(uri) as websocket:
|
||||
for message in websocket:
|
||||
try:
|
||||
payload = json.loads(message)
|
||||
if payload["message"] == "error":
|
||||
break
|
||||
if payload["message"] == "error" and payload["task"]["task_status"] in ("success", "failure"):
|
||||
break
|
||||
except:
|
||||
break
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
### Fetch results
|
||||
|
||||
When the task is completed, the result can be fetched with the endpoint:
|
||||
|
||||
- `GET /v1/result/{task_id}`
|
||||
|
||||
80
docs/v1_migration.md
Normal file
80
docs/v1_migration.md
Normal file
@@ -0,0 +1,80 @@
|
||||
# Migration to the `v1` API
|
||||
|
||||
Docling Serve from the initial prototype `v1alpha` API to the stable `v1` API.
|
||||
This page provides simple instructions to upgrade your application to the new API.
|
||||
|
||||
## API changes
|
||||
|
||||
The breaking changes introduced in the `v1` release of Docling Serve are designed to provide a stable schema which
|
||||
allows the project to provide new capabilities as new type of input sources, targets and also the definition of callback for event-driven applications.
|
||||
|
||||
### Endpoint names
|
||||
|
||||
All endpoints are renamed from `/v1alpha/` to `/v1/`.
|
||||
|
||||
### Sources
|
||||
|
||||
When using the `/v1/convert/source` endpoint, input documents have to be specified with the `sources: []` argument, which is replacing the usage of `file_sources` and `http_sources`.
|
||||
|
||||
Old version:
|
||||
|
||||
```jsonc
|
||||
{
|
||||
"options": {}, // conversion options
|
||||
"file_sources": [ // input documents provided as base64-encoded strings
|
||||
{"base64_string": "abc123...", "filename": "file.pdf"}
|
||||
],
|
||||
"http_sources": [ // input documents provided as http urls
|
||||
{"url": "https://..."}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
New version:
|
||||
|
||||
```jsonc
|
||||
{
|
||||
"options": {}, // conversion options
|
||||
"sources": [
|
||||
// input document provided as base64-encoded string
|
||||
{"kind": "file", "base64_string": "abc123...", "filename": "file.pdf"},
|
||||
// input document provided as http urls
|
||||
{"kind": "http", "url": "https://..."},
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
### Targets
|
||||
|
||||
Switching between output formats, i.e. from the JSON inbody response to the zip archive response, users have to specify the `target` argument, which is replacing the usage of `options.return_as_file`.
|
||||
|
||||
Old version:
|
||||
|
||||
```jsonc
|
||||
{
|
||||
"options": {
|
||||
"return_as_file": true // <-- to be removed
|
||||
},
|
||||
// ...
|
||||
}
|
||||
```
|
||||
|
||||
New version:
|
||||
|
||||
```jsonc
|
||||
{
|
||||
"options": {},
|
||||
"target": {"kind": "zip"}, // <-- add this
|
||||
// ...
|
||||
}
|
||||
```
|
||||
|
||||
## Continue with the old API
|
||||
|
||||
If you are not able to apply the changes above to your application, please consider pinning of the previous `v0.x` container images, e.g.
|
||||
|
||||
```sh
|
||||
podman run -p 5001:5001 -e DOCLING_SERVE_ENABLE_UI=1 quay.io/docling-project/docling-serve:v0.16.1
|
||||
```
|
||||
|
||||
_Note that the old prototype API will not be supported in new `v1.x` versions._
|
||||
BIN
img/fastapi-ui.png
Normal file
BIN
img/fastapi-ui.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 226 KiB |
BIN
img/swagger.png
BIN
img/swagger.png
Binary file not shown.
|
Before Width: | Height: | Size: 24 KiB |
@@ -1,6 +1,7 @@
|
||||
tesseract
|
||||
tesseract-devel
|
||||
tesseract-langpack-eng
|
||||
tesseract-osd
|
||||
leptonica-devel
|
||||
libglvnd-glx
|
||||
glib2
|
||||
|
||||
115
pyproject.toml
115
pyproject.toml
@@ -1,6 +1,6 @@
|
||||
[project]
|
||||
name = "docling-serve"
|
||||
version = "0.10.0" # DO NOT EDIT, updated automatically
|
||||
version = "1.2.1" # DO NOT EDIT, updated automatically
|
||||
description = "Running Docling as a service"
|
||||
license = {text = "MIT"}
|
||||
authors = [
|
||||
@@ -8,7 +8,6 @@ authors = [
|
||||
{name="Guillaume Moutier", email="gmoutier@redhat.com"},
|
||||
{name="Anil Vishnoi", email="avishnoi@redhat.com"},
|
||||
{name="Panos Vagenas", email="pva@zurich.ibm.com"},
|
||||
{name="Panos Vagenas", email="pva@zurich.ibm.com"},
|
||||
{name="Christoph Auer", email="cau@zurich.ibm.com"},
|
||||
{name="Peter Staar", email="taa@zurich.ibm.com"},
|
||||
]
|
||||
@@ -23,24 +22,30 @@ readme = "README.md"
|
||||
classifiers = [
|
||||
"License :: OSI Approved :: MIT License",
|
||||
"Operating System :: OS Independent",
|
||||
# "Development Status :: 5 - Production/Stable",
|
||||
"Development Status :: 5 - Production/Stable",
|
||||
"Intended Audience :: Developers",
|
||||
"Typing :: Typed",
|
||||
"Programming Language :: Python :: 3"
|
||||
"Programming Language :: Python :: 3",
|
||||
"Programming Language :: Python :: 3.10",
|
||||
"Programming Language :: Python :: 3.11",
|
||||
"Programming Language :: Python :: 3.12",
|
||||
"Programming Language :: Python :: 3.13",
|
||||
]
|
||||
requires-python = ">=3.10"
|
||||
dependencies = [
|
||||
"docling[vlm]~=2.28",
|
||||
"mlx-vlm~=0.1.12; sys_platform == 'darwin' and platform_machine == 'arm64'",
|
||||
"docling~=2.38",
|
||||
"docling-core>=2.44.1",
|
||||
"docling-jobkit[kfp,vlm]>=1.3.1,<2.0.0",
|
||||
"fastapi[standard]~=0.115",
|
||||
"httpx~=0.28",
|
||||
"kfp[kubernetes]>=2.10.0",
|
||||
"pydantic~=2.10",
|
||||
"pydantic-settings~=2.4",
|
||||
"python-multipart>=0.0.14,<0.1.0",
|
||||
"typer~=0.12",
|
||||
"uvicorn[standard]>=0.29.0,<1.0.0",
|
||||
"websockets~=14.0",
|
||||
"scalar-fastapi>=1.0.3",
|
||||
"docling-mcp>=1.0.0",
|
||||
]
|
||||
|
||||
[project.optional-dependencies]
|
||||
@@ -55,13 +60,8 @@ rapidocr = [
|
||||
"rapidocr-onnxruntime~=1.4; python_version<'3.13'",
|
||||
"onnxruntime~=1.7",
|
||||
]
|
||||
cpu = [
|
||||
"torch>=2.6.0",
|
||||
"torchvision>=0.21.0",
|
||||
]
|
||||
cu124 = [
|
||||
"torch>=2.6.0",
|
||||
"torchvision>=0.21.0",
|
||||
flash-attn = [
|
||||
"flash-attn~=2.8.2; sys_platform == 'linux' and platform_machine == 'x86_64'"
|
||||
]
|
||||
|
||||
[dependency-groups]
|
||||
@@ -76,12 +76,48 @@ dev = [
|
||||
"ruff>=0.9.6",
|
||||
]
|
||||
|
||||
pypi = [
|
||||
"torch>=2.7.1",
|
||||
"torchvision>=0.22.1",
|
||||
]
|
||||
|
||||
cpu = [
|
||||
"torch>=2.7.1",
|
||||
"torchvision>=0.22.1",
|
||||
]
|
||||
|
||||
cu124 = [
|
||||
"torch>=2.6.0 ; sys_platform == 'linux' and platform_machine == 'x86_64' and python_version < '3.13'",
|
||||
"torchvision>=0.21.0 ; sys_platform == 'linux' and platform_machine == 'x86_64' and python_version < '3.13'",
|
||||
]
|
||||
|
||||
cu126 = [
|
||||
"torch>=2.7.1 ; sys_platform == 'linux' and platform_machine == 'x86_64' and python_version < '3.13'",
|
||||
"torchvision>=0.22.1 ; sys_platform == 'linux' and platform_machine == 'x86_64' and python_version < '3.13'",
|
||||
]
|
||||
|
||||
cu128 = [
|
||||
"torch>=2.7.1 ; sys_platform == 'linux' and platform_machine == 'x86_64' and python_version < '3.13'",
|
||||
"torchvision>=0.22.1 ; sys_platform == 'linux' and platform_machine == 'x86_64' and python_version < '3.13'",
|
||||
]
|
||||
|
||||
rocm = [
|
||||
"torch>=2.7.1 ; sys_platform == 'linux' and platform_machine == 'x86_64' and python_version < '3.13'",
|
||||
"torchvision>=0.22.1 ; sys_platform == 'linux' and platform_machine == 'x86_64' and python_version < '3.13'",
|
||||
"pytorch-triton-rocm>=3.3.1 ; sys_platform == 'linux' and platform_machine == 'x86_64' and python_version < '3.13'",
|
||||
]
|
||||
|
||||
[tool.uv]
|
||||
package = true
|
||||
default-groups = ["dev", "pypi"]
|
||||
conflicts = [
|
||||
[
|
||||
{ extra = "cpu" },
|
||||
{ extra = "cu124" },
|
||||
{ group = "pypi" },
|
||||
{ group = "cpu" },
|
||||
{ group = "cu124" },
|
||||
{ group = "cu126" },
|
||||
{ group = "cu128" },
|
||||
{ group = "rocm" },
|
||||
],
|
||||
]
|
||||
environments = ["sys_platform != 'darwin' or platform_machine != 'x86_64'"]
|
||||
@@ -91,14 +127,35 @@ override-dependencies = [
|
||||
|
||||
[tool.uv.sources]
|
||||
torch = [
|
||||
{ index = "pytorch-cpu", extra = "cpu" },
|
||||
{ index = "pytorch-cu124", extra = "cu124" },
|
||||
{ index = "pytorch-pypi", group = "pypi" },
|
||||
{ index = "pytorch-cpu", group = "cpu" },
|
||||
{ index = "pytorch-cu124", group = "cu124", marker = "sys_platform == 'linux'" },
|
||||
{ index = "pytorch-cu126", group = "cu126", marker = "sys_platform == 'linux'" },
|
||||
{ index = "pytorch-cu128", group = "cu128", marker = "sys_platform == 'linux'" },
|
||||
{ index = "pytorch-rocm", group = "rocm", marker = "sys_platform == 'linux'" },
|
||||
]
|
||||
|
||||
torchvision = [
|
||||
{ index = "pytorch-cpu", extra = "cpu" },
|
||||
{ index = "pytorch-cu124", extra = "cu124" },
|
||||
{ index = "pytorch-pypi", group = "pypi" },
|
||||
{ index = "pytorch-cpu", group = "cpu" },
|
||||
{ index = "pytorch-cu124", group = "cu124", marker = "sys_platform == 'linux'" },
|
||||
{ index = "pytorch-cu126", group = "cu126", marker = "sys_platform == 'linux'" },
|
||||
{ index = "pytorch-cu128", group = "cu128", marker = "sys_platform == 'linux'" },
|
||||
{ index = "pytorch-rocm", group = "rocm", marker = "sys_platform == 'linux'" },
|
||||
]
|
||||
|
||||
pytorch-triton-rocm = [
|
||||
{ index = "pytorch-rocm", marker = "sys_platform == 'linux'" },
|
||||
]
|
||||
|
||||
# docling-jobkit = { git = "https://github.com/docling-project/docling-jobkit/", rev = "main" }
|
||||
# docling-jobkit = { path = "../docling-jobkit", editable = true }
|
||||
|
||||
[[tool.uv.index]]
|
||||
name = "pytorch-pypi"
|
||||
url = "https://pypi.org/simple"
|
||||
explicit = true
|
||||
|
||||
[[tool.uv.index]]
|
||||
name = "pytorch-cpu"
|
||||
url = "https://download.pytorch.org/whl/cpu"
|
||||
@@ -109,6 +166,21 @@ name = "pytorch-cu124"
|
||||
url = "https://download.pytorch.org/whl/cu124"
|
||||
explicit = true
|
||||
|
||||
[[tool.uv.index]]
|
||||
name = "pytorch-cu126"
|
||||
url = "https://download.pytorch.org/whl/cu126"
|
||||
explicit = true
|
||||
|
||||
[[tool.uv.index]]
|
||||
name = "pytorch-cu128"
|
||||
url = "https://download.pytorch.org/whl/cu128"
|
||||
explicit = true
|
||||
|
||||
[[tool.uv.index]]
|
||||
name = "pytorch-rocm"
|
||||
url = "https://download.pytorch.org/whl/rocm6.3"
|
||||
explicit = true
|
||||
|
||||
[tool.setuptools.packages.find]
|
||||
include = ["docling_serve*"]
|
||||
namespaces = true
|
||||
@@ -177,7 +249,7 @@ ignore = [
|
||||
max-complexity = 15
|
||||
|
||||
[tool.ruff.lint.isort.sections]
|
||||
"docling" = ["docling", "docling_core"]
|
||||
"docling" = ["docling", "docling_core", "docling_jobkit"]
|
||||
|
||||
[tool.ruff.lint.isort]
|
||||
combine-as-imports = true
|
||||
@@ -206,6 +278,7 @@ module = [
|
||||
"kfp.*",
|
||||
"kfp_server_api.*",
|
||||
"mlx_vlm.*",
|
||||
"scalar_fastapi.*",
|
||||
]
|
||||
ignore_missing_imports = true
|
||||
|
||||
|
||||
@@ -16,7 +16,7 @@ async def async_client():
|
||||
@pytest.mark.asyncio
|
||||
async def test_convert_file(async_client):
|
||||
"""Test convert single file to all outputs"""
|
||||
url = "http://localhost:5001/v1alpha/convert/file"
|
||||
url = "http://localhost:5001/v1/convert/file"
|
||||
options = {
|
||||
"from_formats": [
|
||||
"docx",
|
||||
@@ -37,7 +37,6 @@ async def test_convert_file(async_client):
|
||||
"pdf_backend": "dlparse_v2",
|
||||
"table_mode": "fast",
|
||||
"abort_on_error": False,
|
||||
"return_as_file": False,
|
||||
}
|
||||
|
||||
current_dir = os.path.dirname(__file__)
|
||||
|
||||
@@ -17,13 +17,12 @@ async def async_client():
|
||||
async def test_convert_url(async_client):
|
||||
"""Test convert URL to all outputs"""
|
||||
|
||||
base_url = "http://localhost:5001/v1alpha"
|
||||
base_url = "http://localhost:5001/v1"
|
||||
payload = {
|
||||
"to_formats": ["md", "json", "html"],
|
||||
"image_export_mode": "placeholder",
|
||||
"ocr": False,
|
||||
"abort_on_error": False,
|
||||
"return_as_file": False,
|
||||
}
|
||||
|
||||
file_path = Path(__file__).parent / "2206.01062v1.pdf"
|
||||
@@ -51,10 +50,12 @@ async def test_convert_url(async_client):
|
||||
time.sleep(2)
|
||||
|
||||
assert task["task_status"] == "success"
|
||||
print(f"Task completed with status {task['task_status']=}")
|
||||
|
||||
result_resp = await async_client.get(f"{base_url}/result/{task['task_id']}")
|
||||
assert result_resp.status_code == 200, "Response should be 200 OK"
|
||||
result = result_resp.json()
|
||||
print("Got result.")
|
||||
|
||||
assert "md_content" in result["document"]
|
||||
assert result["document"]["md_content"] is not None
|
||||
|
||||
@@ -15,7 +15,7 @@ async def async_client():
|
||||
@pytest.mark.asyncio
|
||||
async def test_convert_url(async_client):
|
||||
"""Test convert URL to all outputs"""
|
||||
url = "http://localhost:5001/v1alpha/convert/source"
|
||||
url = "http://localhost:5001/v1/convert/source"
|
||||
payload = {
|
||||
"options": {
|
||||
"from_formats": [
|
||||
@@ -37,9 +37,8 @@ async def test_convert_url(async_client):
|
||||
"pdf_backend": "dlparse_v2",
|
||||
"table_mode": "fast",
|
||||
"abort_on_error": False,
|
||||
"return_as_file": False,
|
||||
},
|
||||
"http_sources": [{"url": "https://arxiv.org/pdf/2206.01062"}],
|
||||
"sources": [{"kind": "http", "url": "https://arxiv.org/pdf/2206.01062"}],
|
||||
}
|
||||
print(json.dumps(payload, indent=2))
|
||||
|
||||
|
||||
@@ -20,14 +20,13 @@ async def test_convert_url(async_client: httpx.AsyncClient):
|
||||
doc_filename = Path("tests/2408.09869v5.pdf")
|
||||
encoded_doc = base64.b64encode(doc_filename.read_bytes()).decode()
|
||||
|
||||
base_url = "http://localhost:5001/v1alpha"
|
||||
base_url = "http://localhost:5001/v1"
|
||||
payload = {
|
||||
"options": {
|
||||
"to_formats": ["md", "json"],
|
||||
"image_export_mode": "placeholder",
|
||||
"ocr": True,
|
||||
"abort_on_error": False,
|
||||
"return_as_file": False,
|
||||
# "do_picture_description": True,
|
||||
# "picture_description_api": {
|
||||
# "url": "http://localhost:11434/v1/chat/completions",
|
||||
@@ -39,8 +38,14 @@ async def test_convert_url(async_client: httpx.AsyncClient):
|
||||
# "repo_id": "HuggingFaceTB/SmolVLM-256M-Instruct",
|
||||
# },
|
||||
},
|
||||
# "http_sources": [{"url": "https://arxiv.org/pdf/2501.17887"}],
|
||||
"file_sources": [{"base64_string": encoded_doc, "filename": doc_filename.name}],
|
||||
# "sources": [{"kind": "http", "url": "https://arxiv.org/pdf/2501.17887"}],
|
||||
"sources": [
|
||||
{
|
||||
"kind": "file",
|
||||
"base64_string": encoded_doc,
|
||||
"filename": doc_filename.name,
|
||||
}
|
||||
],
|
||||
}
|
||||
# print(json.dumps(payload, indent=2))
|
||||
|
||||
@@ -52,7 +57,7 @@ async def test_convert_url(async_client: httpx.AsyncClient):
|
||||
|
||||
task = response.json()
|
||||
|
||||
uri = f"ws://localhost:5001/v1alpha/status/ws/{task['task_id']}"
|
||||
uri = f"ws://localhost:5001/v1/status/ws/{task['task_id']}"
|
||||
with connect(uri) as websocket:
|
||||
for message in websocket:
|
||||
print(message)
|
||||
|
||||
@@ -25,16 +25,15 @@ async def test_convert_url(async_client):
|
||||
"https://arxiv.org/pdf/2311.18481",
|
||||
]
|
||||
|
||||
base_url = "http://localhost:5001/v1alpha"
|
||||
base_url = "http://localhost:5001/v1"
|
||||
payload = {
|
||||
"options": {
|
||||
"to_formats": ["md", "json"],
|
||||
"image_export_mode": "placeholder",
|
||||
"ocr": True,
|
||||
"abort_on_error": False,
|
||||
"return_as_file": False,
|
||||
},
|
||||
"http_sources": [{"url": random.choice(example_docs)}],
|
||||
"sources": [{"kind": "http", "url": random.choice(example_docs)}],
|
||||
}
|
||||
print(json.dumps(payload, indent=2))
|
||||
|
||||
|
||||
@@ -15,7 +15,7 @@ async def async_client():
|
||||
@pytest.mark.asyncio
|
||||
async def test_convert_file(async_client):
|
||||
"""Test convert single file to all outputs"""
|
||||
url = "http://localhost:5001/v1alpha/convert/file"
|
||||
url = "http://localhost:5001/v1/convert/file"
|
||||
options = {
|
||||
"from_formats": [
|
||||
"docx",
|
||||
@@ -36,7 +36,6 @@ async def test_convert_file(async_client):
|
||||
"pdf_backend": "dlparse_v2",
|
||||
"table_mode": "fast",
|
||||
"abort_on_error": False,
|
||||
"return_as_file": False,
|
||||
}
|
||||
|
||||
current_dir = os.path.dirname(__file__)
|
||||
|
||||
@@ -13,7 +13,7 @@ async def async_client():
|
||||
@pytest.mark.asyncio
|
||||
async def test_convert_url(async_client):
|
||||
"""Test convert URL to all outputs"""
|
||||
url = "http://localhost:5001/v1alpha/convert/source"
|
||||
url = "http://localhost:5001/v1/convert/source"
|
||||
payload = {
|
||||
"options": {
|
||||
"from_formats": [
|
||||
@@ -35,12 +35,12 @@ async def test_convert_url(async_client):
|
||||
"pdf_backend": "dlparse_v2",
|
||||
"table_mode": "fast",
|
||||
"abort_on_error": False,
|
||||
"return_as_file": False,
|
||||
},
|
||||
"http_sources": [
|
||||
{"url": "https://arxiv.org/pdf/2206.01062"},
|
||||
{"url": "https://arxiv.org/pdf/2408.09869"},
|
||||
"sources": [
|
||||
{"kind": "http", "url": "https://arxiv.org/pdf/2206.01062"},
|
||||
{"kind": "http", "url": "https://arxiv.org/pdf/2408.09869"},
|
||||
],
|
||||
"target": {"kind": "zip"},
|
||||
}
|
||||
|
||||
response = await async_client.post(url, json=payload)
|
||||
|
||||
@@ -16,7 +16,7 @@ async def async_client():
|
||||
@pytest.mark.asyncio
|
||||
async def test_convert_url(async_client):
|
||||
"""Test convert URL to all outputs"""
|
||||
base_url = "http://localhost:5001/v1alpha"
|
||||
base_url = "http://localhost:5001/v1"
|
||||
payload = {
|
||||
"options": {
|
||||
"from_formats": [
|
||||
@@ -38,12 +38,12 @@ async def test_convert_url(async_client):
|
||||
"pdf_backend": "dlparse_v2",
|
||||
"table_mode": "fast",
|
||||
"abort_on_error": False,
|
||||
"return_as_file": False,
|
||||
},
|
||||
"http_sources": [
|
||||
{"url": "https://arxiv.org/pdf/2206.01062"},
|
||||
{"url": "https://arxiv.org/pdf/2408.09869"},
|
||||
"sources": [
|
||||
{"kind": "http", "url": "https://arxiv.org/pdf/2206.01062"},
|
||||
{"kind": "http", "url": "https://arxiv.org/pdf/2408.09869"},
|
||||
],
|
||||
"target": {"kind": "zip"},
|
||||
}
|
||||
|
||||
response = await async_client.post(f"{base_url}/convert/source/async", json=payload)
|
||||
|
||||
@@ -1,6 +1,8 @@
|
||||
import asyncio
|
||||
import io
|
||||
import json
|
||||
import os
|
||||
import zipfile
|
||||
|
||||
import pytest
|
||||
import pytest_asyncio
|
||||
@@ -8,6 +10,8 @@ from asgi_lifespan import LifespanManager
|
||||
from httpx import ASGITransport, AsyncClient
|
||||
from pytest_check import check
|
||||
|
||||
from docling_core.types.doc import DoclingDocument, PictureItem
|
||||
|
||||
from docling_serve.app import create_app
|
||||
|
||||
|
||||
@@ -45,7 +49,7 @@ async def test_health(client: AsyncClient):
|
||||
async def test_convert_file(client: AsyncClient):
|
||||
"""Test convert single file to all outputs"""
|
||||
|
||||
endpoint = "/v1alpha/convert/file"
|
||||
endpoint = "/v1/convert/file"
|
||||
options = {
|
||||
"from_formats": [
|
||||
"docx",
|
||||
@@ -66,7 +70,6 @@ async def test_convert_file(client: AsyncClient):
|
||||
"pdf_backend": "dlparse_v2",
|
||||
"table_mode": "fast",
|
||||
"abort_on_error": False,
|
||||
"return_as_file": False,
|
||||
}
|
||||
|
||||
current_dir = os.path.dirname(__file__)
|
||||
@@ -154,3 +157,37 @@ async def test_convert_file(client: AsyncClient):
|
||||
data["document"]["doctags_content"],
|
||||
msg=f"DocTags document should contain '<doctag><page_header>'. Received: {safe_slice(data['document']['doctags_content'])}",
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_referenced_artifacts(client: AsyncClient):
|
||||
"""Test that paths in the zip file are relative to the zip file root."""
|
||||
|
||||
endpoint = "/v1/convert/file"
|
||||
options = {
|
||||
"to_formats": ["json"],
|
||||
"image_export_mode": "referenced",
|
||||
"target_type": "zip",
|
||||
"ocr": False,
|
||||
}
|
||||
|
||||
current_dir = os.path.dirname(__file__)
|
||||
file_path = os.path.join(current_dir, "2206.01062v1.pdf")
|
||||
|
||||
files = {
|
||||
"files": ("2206.01062v1.pdf", open(file_path, "rb"), "application/pdf"),
|
||||
}
|
||||
|
||||
response = await client.post(endpoint, files=files, data=options)
|
||||
assert response.status_code == 200, "Response should be 200 OK"
|
||||
|
||||
with zipfile.ZipFile(io.BytesIO(response.content)) as zip_file:
|
||||
namelist = zip_file.namelist()
|
||||
for file in namelist:
|
||||
if file.endswith(".json"):
|
||||
doc = DoclingDocument.model_validate(json.loads(zip_file.read(file)))
|
||||
for item, _level in doc.iterate_items():
|
||||
if isinstance(item, PictureItem):
|
||||
assert item.image is not None
|
||||
print(f"{item.image.uri}=")
|
||||
assert str(item.image.uri) in namelist
|
||||
|
||||
77
tests/test_file_opts.py
Normal file
77
tests/test_file_opts.py
Normal file
@@ -0,0 +1,77 @@
|
||||
import asyncio
|
||||
import json
|
||||
import os
|
||||
|
||||
import pytest
|
||||
import pytest_asyncio
|
||||
from asgi_lifespan import LifespanManager
|
||||
from httpx import ASGITransport, AsyncClient
|
||||
|
||||
from docling_core.types import DoclingDocument
|
||||
from docling_core.types.doc.document import PictureDescriptionData
|
||||
|
||||
from docling_serve.app import create_app
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def event_loop():
|
||||
return asyncio.get_event_loop()
|
||||
|
||||
|
||||
@pytest_asyncio.fixture(scope="session")
|
||||
async def app():
|
||||
app = create_app()
|
||||
|
||||
async with LifespanManager(app) as manager:
|
||||
print("Launching lifespan of app.")
|
||||
yield manager.app
|
||||
|
||||
|
||||
@pytest_asyncio.fixture(scope="session")
|
||||
async def client(app):
|
||||
async with AsyncClient(
|
||||
transport=ASGITransport(app=app), base_url="http://app.io"
|
||||
) as client:
|
||||
print("Client is ready")
|
||||
yield client
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_convert_file(client: AsyncClient):
|
||||
"""Test convert single file to all outputs"""
|
||||
|
||||
endpoint = "/v1/convert/file"
|
||||
options = {
|
||||
"to_formats": ["md", "json"],
|
||||
"image_export_mode": "placeholder",
|
||||
"ocr": False,
|
||||
"do_picture_description": True,
|
||||
"picture_description_api": json.dumps(
|
||||
{
|
||||
"url": "http://localhost:11434/v1/chat/completions", # ollama
|
||||
"params": {"model": "granite3.2-vision:2b"},
|
||||
"timeout": 60,
|
||||
"prompt": "Describe this image in a few sentences. ",
|
||||
}
|
||||
),
|
||||
}
|
||||
|
||||
current_dir = os.path.dirname(__file__)
|
||||
file_path = os.path.join(current_dir, "2206.01062v1.pdf")
|
||||
|
||||
files = {
|
||||
"files": ("2206.01062v1.pdf", open(file_path, "rb"), "application/pdf"),
|
||||
}
|
||||
|
||||
response = await client.post(endpoint, files=files, data=options)
|
||||
assert response.status_code == 200, "Response should be 200 OK"
|
||||
|
||||
data = response.json()
|
||||
|
||||
doc = DoclingDocument.model_validate(data["document"]["json_content"])
|
||||
|
||||
for pic in doc.pictures:
|
||||
for ann in pic.annotations:
|
||||
if isinstance(ann, PictureDescriptionData):
|
||||
print(f"{pic.self_ref}")
|
||||
print(ann.text)
|
||||
133
tests/test_results_clear.py
Normal file
133
tests/test_results_clear.py
Normal file
@@ -0,0 +1,133 @@
|
||||
import asyncio
|
||||
import base64
|
||||
import json
|
||||
from pathlib import Path
|
||||
|
||||
import pytest
|
||||
import pytest_asyncio
|
||||
from asgi_lifespan import LifespanManager
|
||||
from httpx import ASGITransport, AsyncClient
|
||||
|
||||
from docling_serve.app import create_app
|
||||
from docling_serve.settings import docling_serve_settings
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def event_loop():
|
||||
return asyncio.get_event_loop()
|
||||
|
||||
|
||||
@pytest_asyncio.fixture(scope="session")
|
||||
async def app():
|
||||
app = create_app()
|
||||
|
||||
async with LifespanManager(app) as manager:
|
||||
print("Launching lifespan of app.")
|
||||
yield manager.app
|
||||
|
||||
|
||||
@pytest_asyncio.fixture(scope="session")
|
||||
async def client(app):
|
||||
async with AsyncClient(
|
||||
transport=ASGITransport(app=app), base_url="http://app.io"
|
||||
) as client:
|
||||
print("Client is ready")
|
||||
yield client
|
||||
|
||||
|
||||
async def convert_file(client: AsyncClient):
|
||||
doc_filename = Path("tests/2408.09869v5.pdf")
|
||||
encoded_doc = base64.b64encode(doc_filename.read_bytes()).decode()
|
||||
|
||||
payload = {
|
||||
"options": {
|
||||
"to_formats": ["json"],
|
||||
},
|
||||
"sources": [
|
||||
{
|
||||
"kind": "file",
|
||||
"base64_string": encoded_doc,
|
||||
"filename": doc_filename.name,
|
||||
}
|
||||
],
|
||||
}
|
||||
|
||||
response = await client.post("/v1/convert/source/async", json=payload)
|
||||
assert response.status_code == 200, "Response should be 200 OK"
|
||||
|
||||
task = response.json()
|
||||
|
||||
print(json.dumps(task, indent=2))
|
||||
|
||||
while task["task_status"] not in ("success", "failure"):
|
||||
response = await client.get(f"/v1/status/poll/{task['task_id']}")
|
||||
assert response.status_code == 200, "Response should be 200 OK"
|
||||
task = response.json()
|
||||
print(f"{task['task_status']=}")
|
||||
print(f"{task['task_position']=}")
|
||||
|
||||
await asyncio.sleep(2)
|
||||
|
||||
assert task["task_status"] == "success"
|
||||
|
||||
return task
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_clear_results(client: AsyncClient):
|
||||
"""Test removal of task."""
|
||||
|
||||
# Set long delay deletion
|
||||
docling_serve_settings.result_removal_delay = 100
|
||||
|
||||
# Convert and wait for completion
|
||||
task = await convert_file(client)
|
||||
|
||||
# Get result once
|
||||
result_response = await client.get(f"/v1/result/{task['task_id']}")
|
||||
assert result_response.status_code == 200, "Response should be 200 OK"
|
||||
print("Result 1 ok.")
|
||||
result = result_response.json()
|
||||
assert result["document"]["json_content"]["schema_name"] == "DoclingDocument"
|
||||
|
||||
# Get result twice
|
||||
result_response = await client.get(f"/v1/result/{task['task_id']}")
|
||||
assert result_response.status_code == 200, "Response should be 200 OK"
|
||||
print("Result 2 ok.")
|
||||
result = result_response.json()
|
||||
assert result["document"]["json_content"]["schema_name"] == "DoclingDocument"
|
||||
|
||||
# Clear
|
||||
clear_response = await client.get("/v1/clear/results?older_then=0")
|
||||
assert clear_response.status_code == 200, "Response should be 200 OK"
|
||||
print("Clear ok.")
|
||||
|
||||
# Get deleted result
|
||||
result_response = await client.get(f"/v1/result/{task['task_id']}")
|
||||
assert result_response.status_code == 404, "Response should be removed"
|
||||
print("Result was no longer found.")
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_delay_remove(client: AsyncClient):
|
||||
"""Test automatic removal of task with delay."""
|
||||
|
||||
# Set short delay deletion
|
||||
docling_serve_settings.result_removal_delay = 5
|
||||
|
||||
# Convert and wait for completion
|
||||
task = await convert_file(client)
|
||||
|
||||
# Get result once
|
||||
result_response = await client.get(f"/v1/result/{task['task_id']}")
|
||||
assert result_response.status_code == 200, "Response should be 200 OK"
|
||||
print("Result ok.")
|
||||
result = result_response.json()
|
||||
assert result["document"]["json_content"]["schema_name"] == "DoclingDocument"
|
||||
|
||||
print("Sleeping to wait the automatic task deletion.")
|
||||
await asyncio.sleep(10)
|
||||
|
||||
# Get deleted result
|
||||
result_response = await client.get(f"/v1/result/{task['task_id']}")
|
||||
assert result_response.status_code == 404, "Response should be removed"
|
||||
Reference in New Issue
Block a user