docs: Example and instructions on how to load model weights to persistent volume (#197)

Signed-off-by: Viktor Kuropiatnyk <vku@zurich.ibm.com>
This commit is contained in:
VIktor Kuropiantnyk
2025-05-21 13:04:46 +02:00
committed by GitHub
parent 21c1791e42
commit 3f090b7d15
5 changed files with 195 additions and 1 deletions

View File

@@ -70,7 +70,7 @@ An easy to use UI is available at the `/ui` endpoint.
## Documentation and advance usages ## Documentation and advance usages
Visit the [Docling Serve documentation](./docs/README.md) for learning how to [configure the webserver](./docs/configuration.md), use all the [runtime options](./docs/usage.md) of the API and [deployment examples](./docs/deployment.md). Visit the [Docling Serve documentation](./docs/README.md) for learning how to [configure the webserver](./docs/configuration.md), use all the [runtime options](./docs/usage.md) of the API and [deployment examples](./docs/deployment.md), pre-load model weights into a persistent volume [model weights on persistent volume](./docs/pre-loading-models.md)
## Get help and support ## Get help and support

View File

@@ -0,0 +1,47 @@
kind: Deployment
apiVersion: apps/v1
metadata:
name: docling-serve
labels:
app: docling-serve
component: docling-serve-api
spec:
replicas: 1
selector:
matchLabels:
app: docling-serve
component: docling-serve-api
template:
metadata:
labels:
app: docling-serve
component: docling-serve-api
spec:
restartPolicy: Always
containers:
- name: api
resources:
limits:
cpu: 500m
memory: 2Gi
requests:
cpu: 250m
memory: 1Gi
env:
- name: DOCLING_SERVE_ENABLE_UI
value: 'true'
- name: DOCLING_SERVE_ARTIFACTS_PATH
value: '/modelcache'
ports:
- name: http
containerPort: 5001
protocol: TCP
imagePullPolicy: Always
image: 'ghcr.io/docling-project/docling-serve-cpu'
volumeMounts:
- name: docling-model-cache
mountPath: /modelcache
volumes:
- name: docling-model-cache
persistentVolumeClaim:
claimName: docling-model-cache-pvc

View File

@@ -0,0 +1,33 @@
apiVersion: batch/v1
kind: Job
metadata:
name: docling-model-cache-load
spec:
selector: {}
template:
metadata:
name: docling-model-load
spec:
containers:
- name: loader
image: ghcr.io/docling-project/docling-serve-cpu:main
command:
- docling-tools
- models
- download
- '--output-dir=/modelcache'
- 'layout'
- 'tableformer'
- 'code_formula'
- 'picture_classifier'
- 'smolvlm'
- 'granite_vision'
- 'easyocr'
volumeMounts:
- name: docling-model-cache
mountPath: /modelcache
volumes:
- name: docling-model-cache
persistentVolumeClaim:
claimName: docling-model-cache-pvc
restartPolicy: Never

View File

@@ -0,0 +1,11 @@
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: docling-model-cache-pvc
spec:
accessModes:
- ReadWriteOnce
volumeMode: Filesystem
resources:
requests:
storage: 10Gi

103
docs/pre-loading-models.md Normal file
View File

@@ -0,0 +1,103 @@
# Pre-loading models for docling
This document provides examples for pre-loading docling models to a persistent volume and re-using it for docling-serve deployments.
1. We need to create a persistent volume that will store models weights:
```yaml
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: docling-model-cache-pvc
spec:
accessModes:
- ReadWriteOnce
volumeMode: Filesystem
resources:
requests:
storage: 10Gi
```
If you don't want to use default storage class, set your custom storage class with following:
```yaml
spec:
...
storageClassName: <Storage Class Name>
```
Manifest example: [docling-model-cache-pvc.yaml](./deploy-examples/docling-model-cache-pvc.yaml)
2. In order to load model weights, we can use docling-toolkit to download them, as this is a one time operation we can use kubernetes job for this:
```yaml
apiVersion: batch/v1
kind: Job
metadata:
name: docling-model-cache-load
spec:
selector: {}
template:
metadata:
name: docling-model-load
spec:
containers:
- name: loader
image: ghcr.io/docling-project/docling-serve-cpu:main
command:
- docling-tools
- models
- download
- '--output-dir=/modelcache'
- 'layout'
- 'tableformer'
- 'code_formula'
- 'picture_classifier'
- 'smolvlm'
- 'granite_vision'
- 'easyocr'
volumeMounts:
- name: docling-model-cache
mountPath: /modelcache
volumes:
- name: docling-model-cache
persistentVolumeClaim:
claimName: docling-model-cache-pvc
restartPolicy: Never
```
The job will mount previously created persistent volume and execute command similar to how we would load models locally:
`docling-tools models download --output-dir <MOUNT-PATH> [LIST_OF_MODELS]`
In manifest, we specify desired models individually, or we can use `--all` parameter to download all models.
Manifest example: [docling-model-cache-job.yaml](./deploy-examples/docling-model-cache-job.yaml)
3. Now we can mount volume in the docling-serve deployment and set env `DOCLING_SERVE_ARTIFACTS_PATH` to point to it.
Following additions to deploymeny should be made:
```yaml
spec:
template:
spec:
containers:
- name: api
env:
...
- name: DOCLING_SERVE_ARTIFACTS_PATH
value: '/modelcache'
volumeMounts:
- name: docling-model-cache
mountPath: /modelcache
...
volumes:
- name: docling-model-cache
persistentVolumeClaim:
claimName: docling-model-cache-pvc
```
Make sure that value of `DOCLING_SERVE_ARTIFACTS_PATH` is the same as where models were downloaded and where volume is mounted.
Now when docling-serve is executing tasks, the underlying docling installation will load model weights from mouted volume.
Manifest example: [docling-model-cache-deployment.yaml](./deploy-examples/docling-model-cache-deployment.yaml)