docs: Expand automatic docs to nested objects. More complete usage docs. (#426)

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
This commit is contained in:
Michele Dolfi
2025-10-31 15:02:20 +01:00
committed by GitHub
parent f3957aeb57
commit 35319b0da7
3 changed files with 110 additions and 26 deletions

View File

@@ -4,6 +4,7 @@ asgi
async
(?i)urls
uvicorn
Config
[Ww]ebserver
RQ
(?i)url

View File

@@ -7,6 +7,7 @@ The API provides two endpoints: one for urls, one for files. This is necessary t
On top of the source of file (see below), both endpoints support the same parameters.
<!-- begin: parameters-docs -->
<h4>ConvertDocumentsRequestOptions</h4>
| Field Name | Type | Description |
|------------|------|-------------|
@@ -39,6 +40,52 @@ On top of the source of file (see below), both endpoints support the same parame
| `vlm_pipeline_model_local` | VlmModelLocal or NoneType | Options for running a local vision-language model for the `vlm` pipeline. The parameters refer to a model hosted on Hugging Face. This parameter is mutually exclusive with `vlm_pipeline_model_api` and `vlm_pipeline_model`. |
| `vlm_pipeline_model_api` | VlmModelApi or NoneType | API details for using a vision-language model for the `vlm` pipeline. This parameter is mutually exclusive with `vlm_pipeline_model_local` and `vlm_pipeline_model`. |
<h4>VlmModelApi</h4>
| Field Name | Type | Description |
|------------|------|-------------|
| `url` | AnyUrl | Endpoint which accepts openai-api compatible requests. |
| `headers` | Dict[str, str] | Headers used for calling the API endpoint. For example, it could include authentication headers. |
| `params` | Dict[str, Any] | Model parameters. |
| `timeout` | float | Timeout for the API request. |
| `concurrency` | int | Maximum number of concurrent requests to the API. |
| `prompt` | str | Prompt used when calling the vision-language model. |
| `scale` | float | Scale factor of the images used. |
| `response_format` | ResponseFormat | Type of response generated by the model. |
| `temperature` | float | Temperature parameter controlling the reproducibility of the result. |
<h4>VlmModelLocal</h4>
| Field Name | Type | Description |
|------------|------|-------------|
| `repo_id` | str | Repository id from the Hugging Face Hub. |
| `prompt` | str | Prompt used when calling the vision-language model. |
| `scale` | float | Scale factor of the images used. |
| `response_format` | ResponseFormat | Type of response generated by the model. |
| `inference_framework` | InferenceFramework | Inference framework to use. |
| `transformers_model_type` | TransformersModelType | Type of transformers auto-model to use. |
| `extra_generation_config` | Dict[str, Any] | Config from https://huggingface.co/docs/transformers/en/main_classes/text_generation#transformers.GenerationConfig |
| `temperature` | float | Temperature parameter controlling the reproducibility of the result. |
<h4>PictureDescriptionApi</h4>
| Field Name | Type | Description |
|------------|------|-------------|
| `url` | AnyUrl | Endpoint which accepts openai-api compatible requests. |
| `headers` | Dict[str, str] | Headers used for calling the API endpoint. For example, it could include authentication headers. |
| `params` | Dict[str, Any] | Model parameters. |
| `timeout` | float | Timeout for the API request. |
| `concurrency` | int | Maximum number of concurrent requests to the API. |
| `prompt` | str | Prompt used when calling the vision-language model. |
<h4>PictureDescriptionLocal</h4>
| Field Name | Type | Description |
|------------|------|-------------|
| `repo_id` | str | Repository id from the Hugging Face Hub. |
| `prompt` | str | Prompt used when calling the vision-language model. |
| `generation_config` | Dict[str, Any] | Config from https://huggingface.co/docs/transformers/en/main_classes/text_generation#transformers.GenerationConfig |
<!-- end: parameters-docs -->
### Authentication

View File

@@ -1,5 +1,5 @@
import re
from typing import Annotated, Any, get_args, get_origin
from typing import Annotated, Any, Union, get_args, get_origin
from pydantic import BaseModel
@@ -90,39 +90,75 @@ def _format_type(type_hint: Any) -> str:
return str(type_hint)
def _unroll_types(tp) -> list[type]:
"""
Unrolls typing.Union and typing.Optional types into a flat list of types.
"""
origin = get_origin(tp)
if origin is Union:
# Recursively unroll each type inside the Union
types = []
for arg in get_args(tp):
types.extend(_unroll_types(arg))
# Remove duplicates while preserving order
return list(dict.fromkeys(types))
else:
# If it's not a Union, just return it as a single-element list
return [tp]
def generate_model_doc(model: type[BaseModel]) -> str:
"""Generate documentation for a Pydantic model."""
doc = "\n| Field Name | Type | Description |\n"
doc += "|------------|------|-------------|\n"
for base_model in model.__mro__:
# Check if this is a Pydantic model
if hasattr(base_model, "model_fields"):
# Iterate through fields of this model
for field_name, field in base_model.model_fields.items():
# Extract description from Annotated field if possible
description = field.description or "No description provided."
description = format_allowed_values_description(description)
description = format_variable_names(description)
models_stack = [model]
# Handle Annotated types
original_type = field.annotation
if get_origin(original_type) is Annotated:
# Extract base type and additional metadata
type_args = get_args(original_type)
base_type = type_args[0]
else:
base_type = original_type
doc = ""
while models_stack:
current_model = models_stack.pop()
field_type = _format_type(base_type)
field_type = format_variable_names(field_type)
doc += f"<h4>{current_model.__name__}</h4>\n"
doc += f"| `{field_name}` | {field_type} | {description} |\n"
doc += "\n| Field Name | Type | Description |\n"
doc += "|------------|------|-------------|\n"
# stop iterating the base classes
break
base_models = []
if hasattr(current_model, "__mro__"):
base_models = current_model.__mro__
else:
base_models = [current_model]
doc += "\n"
for base_model in base_models:
# Check if this is a Pydantic model
if hasattr(base_model, "model_fields"):
# Iterate through fields of this model
for field_name, field in base_model.model_fields.items():
# Extract description from Annotated field if possible
description = field.description or "No description provided."
description = format_allowed_values_description(description)
description = format_variable_names(description)
# Handle Annotated types
original_type = field.annotation
if get_origin(original_type) is Annotated:
# Extract base type and additional metadata
type_args = get_args(original_type)
base_type = type_args[0]
else:
base_type = original_type
field_type = _format_type(base_type)
field_type = format_variable_names(field_type)
doc += f"| `{field_name}` | {field_type} | {description} |\n"
for field_type in _unroll_types(base_type):
if issubclass(field_type, BaseModel):
models_stack.append(field_type)
# stop iterating the base classes
break
doc += "\n"
return doc