Files
chandra/chandra_app.py
Vik Paruchuri 17b1b03bde Initial commit
2025-10-08 17:34:01 -04:00

114 lines
2.6 KiB
Python

import pypdfium2 as pdfium
import streamlit as st
from PIL import Image
from chandra.layout import parse_layout, draw_layout
from chandra.load import load_pdf_images
from chandra.model import load, BatchItem, generate
@st.cache_resource()
def load_model():
return load()
@st.cache_data()
def get_page_image(pdf_file, page_num):
return load_pdf_images(pdf_file, [page_num])[0]
@st.cache_data()
def page_counter(pdf_file):
doc = pdfium.PdfDocument(pdf_file)
doc_len = len(doc)
doc.close()
return doc_len
# Function for OCR
def ocr_layout(
img: Image.Image,
) -> (Image.Image, str):
batch = BatchItem(
images=[img],
prompt_type="ocr_layout",
)
html = generate([batch], model=model)[0]
print(f"Generated HTML: {html[:500]}...")
layout = parse_layout(html, img)
layout_image = draw_layout(img, layout)
return html, layout_image
def ocr(
img: Image.Image,
) -> str:
batch = BatchItem(
images=[img],
prompt_type="ocr"
)
return generate([batch], model=model)[0]
st.set_page_config(layout="wide")
col1, col2 = st.columns([0.5, 0.5])
model = load_model()
st.markdown("""
# Chandra OCR Demo
This app will let you try chandra, a multilingual OCR toolkit.
""")
in_file = st.sidebar.file_uploader(
"PDF file or image:", type=["pdf", "png", "jpg", "jpeg", "gif", "webp"]
)
if in_file is None:
st.stop()
filetype = in_file.type
page_count = None
if "pdf" in filetype:
page_count = page_counter(in_file)
page_number = st.sidebar.number_input(
f"Page number out of {page_count}:", min_value=0, value=0, max_value=page_count
)
pil_image = get_page_image(in_file, page_number)
else:
pil_image = Image.open(in_file).convert("RGB")
page_number = None
run_ocr = st.sidebar.button("Run OCR")
prompt_type = st.sidebar.selectbox(
"Prompt type",
["ocr_layout", "ocr"],
index=0,
help="Select the prompt type for OCR.",
)
if pil_image is None:
st.stop()
if run_ocr:
if prompt_type == "ocr_layout":
pred, layout_image = ocr_layout(
pil_image,
)
else:
pred = ocr(
pil_image,
)
layout_image = None
with col1:
html_tab, text_tab, layout_tab = st.tabs(["HTML", "HTML as text", "Layout Image"])
with html_tab:
st.markdown(pred, unsafe_allow_html=True)
with text_tab:
st.text(pred)
if layout_image:
with layout_tab:
st.image(layout_image, caption="Detected Layout", use_container_width=True)
with col2:
st.image(pil_image, caption="Uploaded Image", use_container_width=True)