This commit is contained in:
Vik Paruchuri
2025-10-15 16:06:57 -04:00
parent d511d5f9a6
commit a9ffa789c6
15 changed files with 724 additions and 177 deletions

View File

@@ -2,19 +2,23 @@ import pypdfium2 as pdfium
import streamlit as st
from PIL import Image
from chandra.layout import parse_layout, draw_layout
from chandra.load import load_pdf_images
from chandra.model import load, BatchItem, generate
from chandra.model import InferenceManager
from chandra.util import draw_layout
from chandra.input import load_pdf_images
from chandra.model.schema import BatchInputItem
from chandra.output import parse_layout
@st.cache_resource()
def load_model():
return load()
def load_model(method: str):
return InferenceManager(method=method)
@st.cache_data()
def get_page_image(pdf_file, page_num):
return load_pdf_images(pdf_file, [page_num])[0]
@st.cache_data()
def page_counter(pdf_file):
doc = pdfium.PdfDocument(pdf_file)
@@ -22,40 +26,45 @@ def page_counter(pdf_file):
doc.close()
return doc_len
# Function for OCR
def ocr_layout(
img: Image.Image,
model=None,
) -> (Image.Image, str):
batch = BatchItem(
images=[img],
batch = BatchInputItem(
image=img,
prompt_type="ocr_layout",
)
html = generate([batch], model=model)[0]
print(f"Generated HTML: {html[:500]}...")
layout = parse_layout(html, img)
result = model.generate([batch])[0]
layout = parse_layout(result.raw, img)
layout_image = draw_layout(img, layout)
return html, layout_image
return result.html, layout_image, result.markdown
def ocr(
img: Image.Image,
) -> str:
batch = BatchItem(
images=[img],
prompt_type="ocr"
)
return generate([batch], model=model)[0]
st.set_page_config(layout="wide")
col1, col2 = st.columns([0.5, 0.5])
model = load_model()
st.markdown("""
# Chandra OCR Demo
This app will let you try chandra, a multilingual OCR toolkit.
This app will let you try chandra, a layout-aware vision language model.
""")
# Get model mode selection
model_mode = st.sidebar.selectbox(
"Model Mode",
["None", "hf", "vllm"],
index=0,
help="Select how to run inference: hf loads the model in memory using huggingface transformers, vllm connects to a running vLLM server."
)
# Only load model if a mode is selected
model = None
if model_mode == "None":
st.warning("Please select a model mode (Local Model or vLLM Server) to run OCR.")
else:
model = load_model(model_mode)
in_file = st.sidebar.file_uploader(
"PDF file or image:", type=["pdf", "png", "jpg", "jpeg", "gif", "webp"]
)
@@ -77,37 +86,35 @@ else:
page_number = None
run_ocr = st.sidebar.button("Run OCR")
prompt_type = st.sidebar.selectbox(
"Prompt type",
["ocr_layout", "ocr"],
index=0,
help="Select the prompt type for OCR.",
)
if pil_image is None:
st.stop()
if run_ocr:
if prompt_type == "ocr_layout":
pred, layout_image = ocr_layout(
pil_image,
)
if model_mode == "None":
st.error("Please select a model mode (hf or vllm) to run OCR.")
else:
pred = ocr(
pred, layout_image, markdown = ocr_layout(
pil_image,
model,
)
layout_image = None
with col1:
html_tab, text_tab, layout_tab = st.tabs(["HTML", "HTML as text", "Layout Image"])
with html_tab:
st.markdown(pred, unsafe_allow_html=True)
with text_tab:
st.text(pred)
with col1:
html_tab, text_tab, layout_tab = st.tabs(["HTML", "HTML as text", "Layout Image"])
with html_tab:
st.markdown(markdown, unsafe_allow_html=True)
st.download_button(
label="Download Markdown",
data=markdown,
file_name=f"{in_file.name.rsplit('.', 1)[0]}_page{page_number if page_number is not None else 0}.md",
mime="text/markdown",
)
with text_tab:
st.text(pred)
if layout_image:
with layout_tab:
st.image(layout_image, caption="Detected Layout", use_container_width=True)
if layout_image:
with layout_tab:
st.image(layout_image, caption="Detected Layout", use_container_width=True)
with col2:
st.image(pil_image, caption="Uploaded Image", use_container_width=True)