diff --git a/README.md b/README.md
index 650275f..5f38c57 100644
--- a/README.md
+++ b/README.md
@@ -1,85 +1,106 @@
# Chandra
-Chandra is a highly accurate OCR model that converts images and PDFs into structured HTML/Markdown/JSON while preserving layout information.
+[](https://discord.gg/KuZwXNGnfH)
-## Features
+An OCR model for complex documents — handwriting, tables, math equations, and messy forms.
-- Convert documents to markdown, html, or json with detailed layout information
-- Good handwriting support
-- Reconstructs forms accurately, including checkboxes
-- Good support for tables, math, and complex layouts
-- Extracts images and diagrams, with captions and structured data
-- Support for 40+ languages
-- Two inference modes: local (HuggingFace) and remote (vLLM server)
+
+
+## Benchmarks
+
+Overall scores on the [olmocr bench](https://github.com/allenai/olmocr):
+
+
## Hosted API
-- We have a hosted API for Chandra [here](https://www.datalab.to/), which also includes other accuracy improvements and document workflows.
-- There is a free playground [here](https://www.datalab.to/playground) if you want to try it out without installing.
+A hosted API with additional accuracy improvements is available at [datalab.to](https://www.datalab.to/). Try the [free playground](https://www.datalab.to/playground) without installing.
-## Quickstart
+## Community
-The easiest way to start is with the CLI tools:
+Join [Discord](https://discord.gg//KuZwXNGnfH) to discuss development and get help.
+
+## Quick Start
```shell
pip install chandra-ocr
-# With VLLM
+# Start vLLM server, then run OCR
chandra_vllm
chandra input.pdf ./output
-# With HuggingFace
+# Or use HuggingFace locally
chandra input.pdf ./output --method hf
-# Interactive streamlit app
+# Interactive web app
chandra_app
```
-## Benchmarks
+**Python:**
-These are overall scores on the olmocr bench.
+```python
+from chandra.model import InferenceManager
+from chandra.input import load_pdf_images
-
+manager = InferenceManager(method="hf")
+images = load_pdf_images("document.pdf")
+results = manager.generate(images)
+print(results[0].markdown)
+```
-See full scores [below](#benchmark-table).
+## How it Works.
+
+- **Two inference modes**: Run locally via HuggingFace Transformers, or deploy a vLLM server for production throughput
+- **Layout-aware output**: Every text block, table, and image comes with bounding box coordinates
+- **Structured formats**: Output as Markdown, HTML, or JSON with full layout metadata
+- **40+ languages** supported
+
+## What It Handles
+
+**Handwriting** — Doctor notes, filled forms, homework. Chandra reads cursive and messy print that trips up traditional OCR.
+
+**Tables** — Preserves structure including merged cells (colspan/rowspan). Works on financial filings, invoices, and data tables.
+
+**Math** — Inline and block equations rendered as LaTeX. Handles textbooks, worksheets, and research papers.
+
+**Forms** — Reconstructs checkboxes, radio buttons, and form fields with their values.
+
+**Complex Layouts** — Multi-column documents, newspapers, textbooks with figures and captions.
## Examples
-
+| | |
+|---|---|
+| 
**Handwriting** | 
**Tables** |
+| 
**Math** | 
**Newspapers** |
+
+
+More examples
| Type | Name | Link |
|------|------|------|
-| Tables | Water Damage Form | [View](https://github.com/datalab-to/chandra/blob/master/assets/examples/tables/water_damage.png) |
| Tables | 10K Filing | [View](https://github.com/datalab-to/chandra/blob/master/assets/examples/tables/10k.png) |
-| Forms | Handwritten Form | [View](https://github.com/datalab-to/chandra/blob/master/assets/examples/forms/handwritten_form.png) |
| Forms | Lease Agreement | [View](https://github.com/datalab-to/chandra/blob/master/assets/examples/forms/lease.png) |
-| Handwriting | Doctor Note | [View](https://github.com/datalab-to/chandra/blob/master/assets/examples/handwriting/doctor_note.png) |
| Handwriting | Math Homework | [View](https://github.com/datalab-to/chandra/blob/master/assets/examples/handwriting/math_hw.png) |
| Books | Geography Textbook | [View](https://github.com/datalab-to/chandra/blob/master/assets/examples/books/geo_textbook_page.png) |
| Books | Exercise Problems | [View](https://github.com/datalab-to/chandra/blob/master/assets/examples/books/exercises.png) |
| Math | Attention Diagram | [View](https://github.com/datalab-to/chandra/blob/master/assets/examples/math/attn_all.png) |
| Math | Worksheet | [View](https://github.com/datalab-to/chandra/blob/master/assets/examples/math/worksheet.png) |
-| Math | EGA Page | [View](https://github.com/datalab-to/chandra/blob/master/assets/examples/math/ega.png) |
-| Newspapers | New York Times | [View](https://github.com/datalab-to/chandra/blob/master/assets/examples/newspapers/nyt.png) |
| Newspapers | LA Times | [View](https://github.com/datalab-to/chandra/blob/master/assets/examples/newspapers/la_times.png) |
| Other | Transcript | [View](https://github.com/datalab-to/chandra/blob/master/assets/examples/other/transcript.png) |
| Other | Flowchart | [View](https://github.com/datalab-to/chandra/blob/master/assets/examples/other/flowchart.png) |
-## Community
-
-[Discord](https://discord.gg//KuZwXNGnfH) is where we discuss future development.
+
## Installation
-### Package
-
```bash
pip install chandra-ocr
```
-If you're going to use the huggingface method, we also recommend installing [flash attention](https://github.com/Dao-AILab/flash-attention).
+For HuggingFace inference, we recommend installing [flash attention](https://github.com/Dao-AILab/flash-attention) for better performance.
-### From Source
+**From source:**
```bash
git clone https://github.com/datalab-to/chandra.git
@@ -92,17 +113,15 @@ source .venv/bin/activate
### CLI
-Process single files or entire directories:
-
```bash
-# Single file, with vllm server (see below for how to launch vllm)
+# Single file with vLLM server
chandra input.pdf ./output --method vllm
-# Process all files in a directory with local model
+# Directory with local model
chandra ./documents ./output --method hf
```
-**CLI Options:**
+**Options:**
- `--method [hf|vllm]`: Inference method (default: vllm)
- `--page-range TEXT`: Page range for PDFs (e.g., "1-5,7,9-12")
- `--max-output-tokens INTEGER`: Max tokens per page
@@ -111,77 +130,49 @@ chandra ./documents ./output --method hf
- `--include-headers-footers/--no-headers-footers`: Include page headers/footers (default: exclude)
- `--batch-size INTEGER`: Pages per batch (default: 1)
-**Output Structure:**
+**Output structure:**
-Each processed file creates a subdirectory with:
-- `.md` - Markdown output
-- `.html` - HTML output
-- `_metadata.json` - Metadata (page info, token count, etc.)
-- `images/` - Extracted images from the document
-
-### Streamlit Web App
-
-Launch the interactive demo for single-page processing:
-
-```bash
-chandra_app
+```
+output/
+└── filename/
+ ├── filename.md # Markdown
+ ├── filename.html # HTML with bounding boxes
+ ├── filename_metadata.json
+ └── images/ # Extracted images
```
-### vLLM Server (Optional)
+### vLLM Server
-For production deployments or batch processing, use the vLLM server:
+For production or batch processing:
```bash
chandra_vllm
```
-This launches a Docker container with optimized inference settings. Configure via environment variables:
+Launches a Docker container with optimized inference. Configure via environment:
- `VLLM_API_BASE`: Server URL (default: `http://localhost:8000/v1`)
-- `VLLM_MODEL_NAME`: Model name for the server (default: `chandra`)
+- `VLLM_MODEL_NAME`: Model name (default: `chandra`)
- `VLLM_GPUS`: GPU device IDs (default: `0`)
-You can also start your own vllm server with the `datalab-to/chandra` model.
-
### Configuration
-Settings can be configured via environment variables or a `local.env` file:
+Settings via environment variables or `local.env`:
```bash
-# Model settings
MODEL_CHECKPOINT=datalab-to/chandra
MAX_OUTPUT_TOKENS=8192
-
-# vLLM settings
VLLM_API_BASE=http://localhost:8000/v1
-VLLM_MODEL_NAME=chandra
VLLM_GPUS=0
```
-# Commercial usage
+## Commercial Usage
-This code is Apache 2.0, and our model weights use a modified OpenRAIL-M license (free for research, personal use, and startups under $2M funding/revenue, cannot be used competitively with our API). To remove the OpenRAIL license requirements, or for broader commercial licensing, visit our pricing page [here](https://www.datalab.to/pricing?utm_source=gh-chandra).
+Code is Apache 2.0. Model weights use a modified OpenRAIL-M license: free for research, personal use, and startups under $2M funding/revenue. Cannot be used competitively with our API. For broader commercial licensing, see [pricing](https://www.datalab.to/pricing?utm_source=gh-chandra).
-# Benchmark table
-
-| **Model** | ArXiv | Old Scans Math | Tables | Old Scans | Headers and Footers | Multi column | Long tiny text | Base | Overall | Source |
-|:--------------------------|:--------:|:--------------:|:--------:|:---------:|:-------------------:|:------------:|:--------------:|:----:|:--------------:|:------:|
-| Datalab Chandra v0.1.0 | 82.2 | **80.3** | **88.0** | **50.4** | 90.8 | 81.2 | **92.3** | **99.9** | **83.1 ± 0.9** | Own benchmarks |
-| Datalab Marker v1.10.0 | **83.8** | 69.7 | 74.8 | 32.3 | 86.6 | 79.4 | 85.7 | 99.6 | 76.5 ± 1.0 | Own benchmarks |
-| Mistral OCR API | 77.2 | 67.5 | 60.6 | 29.3 | 93.6 | 71.3 | 77.1 | 99.4 | 72.0 ± 1.1 | olmocr repo |
-| Deepseek OCR | 75.2 | 72.3 | 79.7 | 33.3 | 96.1 | 66.7 | 80.1 | 99.7 | 75.4 ± 1.0 | Own benchmarks |
-| GPT-4o (Anchored) | 53.5 | 74.5 | 70.0 | 40.7 | 93.8 | 69.3 | 60.6 | 96.8 | 69.9 ± 1.1 | olmocr repo |
-| Gemini Flash 2 (Anchored) | 54.5 | 56.1 | 72.1 | 34.2 | 64.7 | 61.5 | 71.5 | 95.6 | 63.8 ± 1.2 | olmocr repo |
-| Qwen 3 VL 8B | 70.2 | 75.1 | 45.6 | 37.5 | 89.1 | 62.1 | 43.0 | 94.3 | 64.6 ± 1.1 | Own benchmarks |
-| olmOCR v0.3.0 | 78.6 | 79.9 | 72.9 | 43.9 | **95.1** | 77.3 | 81.2 | 98.9 | 78.5 ± 1.1 | olmocr repo |
-| dots.ocr | 82.1 | 64.2 | 88.3 | 40.9 | 94.1 | **82.4** | 81.2 | 99.5 | 79.1 ± 1.0 | dots.ocr repo |
-
-
-# Credits
-
-Thank you to the following open source projects:
+## Credits
- [Huggingface Transformers](https://github.com/huggingface/transformers)
-- [VLLM](https://github.com/vllm-project/vllm)
-- [olmocr](github.com/allenai/olmocr)
-- [Qwen 3 VL](https://github.com/QwenLM/Qwen3)
\ No newline at end of file
+- [vLLM](https://github.com/vllm-project/vllm)
+- [olmocr](https://github.com/allenai/olmocr)
+- [Qwen3 VL](https://github.com/QwenLM/Qwen3)
\ No newline at end of file