Files
DocsGPT/setup.sh
Pavel e7d2af2405 Setup plus env fixes (#2265)
* fixes setup scripts

fixes to env handling in setup script plus other minor fixes

* Remove var declarations

Declarations such as `LLM_PROVIDER=$LLM_PROVIDER` override .env variables in compose

Similar issue is present in the frontend - need to choose either to switch to separate frontend env or keep as is.

* Manage apikeys in settings

1. More pydantic management of api keys.
2. Clean up of variable declarations from docker compose files, used to block .env imports. Now should be managed ether by settings.py defaults or .env
2026-01-22 12:21:01 +02:00

506 lines
20 KiB
Bash
Executable File

#!/bin/bash
# Color codes
GREEN='\033[0;32m'
YELLOW='\033[1;33m'
DEFAULT_FG='\033[39m'
RED='\033[0;31m'
NC='\033[0m'
BOLD='\033[1m'
# Base Compose file (relative to script location)
COMPOSE_FILE="$(dirname "$(readlink -f "$0")")/deployment/docker-compose-hub.yaml"
COMPOSE_FILE_LOCAL="$(dirname "$(readlink -f "$0")")/deployment/docker-compose.yaml"
ENV_FILE="$(dirname "$(readlink -f "$0")")/.env"
# Animation function
animate_dino() {
tput civis # Hide cursor
local dino_lines=(
" ######### "
" ############# "
" ##################"
" ####################"
" ######################"
" ####################### ######"
" ############################### "
" ################################## "
" ################ ############ "
" ################## ########## "
" ##################### ######## "
" ###################### ###### ### "
" ############ ########## #### ## "
" ############# ######### ##### "
" ############## ######### "
" ############## ########## "
"############ ####### "
" ###### ###### #### "
" ################ "
" ################# "
)
# Static DocsGPT text
local static_text=(
" ____ ____ ____ _____ "
" | _ \\ ___ ___ ___ / ___| _ \\_ _|"
" | | | |/ _ \\ / __/ __| | _| |_) || | "
" | |_| | (_) | (__\\__ \\ |_| | __/ | | "
" |____/ \\___/ \\___|___/\\____|_| |_| "
" "
)
# Print static text
clear
for line in "${static_text[@]}"; do
echo "$line"
done
tput sc
# Build-up animation
for i in "${!dino_lines[@]}"; do
tput rc
for ((j=0; j<=i; j++)); do
echo "${dino_lines[$j]}"
done
sleep 0.05
done
sleep 0.5
tput rc
tput ed
tput cnorm
}
# Check and start Docker function
check_and_start_docker() {
# Check if Docker is running
if ! docker info > /dev/null 2>&1; then
echo "Docker is not running. Starting Docker..."
# Check the operating system
case "$(uname -s)" in
Darwin)
open -a Docker
;;
Linux)
sudo systemctl start docker
;;
*)
echo "Unsupported platform. Please start Docker manually."
exit 1
;;
esac
# Wait for Docker to be fully operational with animated dots
echo -n "Waiting for Docker to start"
while ! docker system info > /dev/null 2>&1; do
for i in {1..3}; do
echo -n "."
sleep 1
done
echo -ne "\rWaiting for Docker to start "
done
echo -e "\nDocker has started!"
fi
}
# Function to prompt the user for the main menu choice
prompt_main_menu() {
echo -e "\n${DEFAULT_FG}${BOLD}Welcome to DocsGPT Setup!${NC}"
echo -e "${DEFAULT_FG}How would you like to proceed?${NC}"
echo -e "${YELLOW}1) Use DocsGPT Public API Endpoint (simple and free, uses pre-built Docker images from Docker Hub for fastest setup)${NC}"
echo -e "${YELLOW}2) Serve Local (with Ollama)${NC}"
echo -e "${YELLOW}3) Connect Local Inference Engine${NC}"
echo -e "${YELLOW}4) Connect Cloud API Provider${NC}"
echo -e "${YELLOW}5) Advanced: Build images locally (for developers)${NC}"
echo
echo -e "${DEFAULT_FG}By default, DocsGPT uses pre-built images from Docker Hub for a fast, reliable, and consistent experience. This avoids local build errors and speeds up onboarding. Advanced users can choose to build images locally if needed.${NC}"
echo
read -p "$(echo -e "${DEFAULT_FG}Choose option (1-5): ${NC}")" main_choice
}
# Function to prompt for Local Inference Engine options
prompt_local_inference_engine_options() {
clear
echo -e "\n${DEFAULT_FG}${BOLD}Connect Local Inference Engine${NC}"
echo -e "${DEFAULT_FG}Choose your local inference engine:${NC}"
echo -e "${YELLOW}1) LLaMa.cpp${NC}"
echo -e "${YELLOW}2) Ollama${NC}"
echo -e "${YELLOW}3) Text Generation Inference (TGI)${NC}"
echo -e "${YELLOW}4) SGLang${NC}"
echo -e "${YELLOW}5) vLLM${NC}"
echo -e "${YELLOW}6) Aphrodite${NC}"
echo -e "${YELLOW}7) FriendliAI${NC}"
echo -e "${YELLOW}8) LMDeploy${NC}"
echo -e "${YELLOW}b) Back to Main Menu${NC}"
echo
read -p "$(echo -e "${DEFAULT_FG}Choose option (1-8, or b): ${NC}")" engine_choice
}
# Function to prompt for Cloud API Provider options
prompt_cloud_api_provider_options() {
clear
echo -e "\n${DEFAULT_FG}${BOLD}Connect Cloud API Provider${NC}"
echo -e "${DEFAULT_FG}Choose your Cloud API Provider:${NC}"
echo -e "${YELLOW}1) OpenAI${NC}"
echo -e "${YELLOW}2) Google (Vertex AI, Gemini)${NC}"
echo -e "${YELLOW}3) Anthropic (Claude)${NC}"
echo -e "${YELLOW}4) Groq${NC}"
echo -e "${YELLOW}5) HuggingFace Inference API${NC}"
echo -e "${YELLOW}6) Azure OpenAI${NC}"
echo -e "${YELLOW}7) Novita${NC}"
echo -e "${YELLOW}b) Back to Main Menu${NC}"
echo
read -p "$(echo -e "${DEFAULT_FG}Choose option (1-6, or b): ${NC}")" provider_choice
}
# Function to prompt for Ollama CPU/GPU options
prompt_ollama_options() {
clear
echo -e "\n${DEFAULT_FG}${BOLD}Serve Local with Ollama${NC}"
echo -e "${DEFAULT_FG}Choose how to serve Ollama:${NC}"
echo -e "${YELLOW}1) CPU${NC}"
echo -e "${YELLOW}2) GPU${NC}"
echo -e "${YELLOW}b) Back to Main Menu${NC}"
echo
read -p "$(echo -e "${DEFAULT_FG}Choose option (1-2, or b): ${NC}")" ollama_choice
}
# 1) Use DocsGPT Public API Endpoint (simple and free)
use_docs_public_api_endpoint() {
echo -e "\n${NC}Setting up DocsGPT Public API Endpoint...${NC}"
echo "LLM_PROVIDER=docsgpt" > "$ENV_FILE"
echo "VITE_API_STREAMING=true" >> "$ENV_FILE"
echo -e "${GREEN}.env file configured for DocsGPT Public API.${NC}"
check_and_start_docker
echo -e "\n${NC}Starting Docker Compose...${NC}"
docker compose --env-file "${ENV_FILE}" -f "${COMPOSE_FILE}" pull && docker compose --env-file "${ENV_FILE}" -f "${COMPOSE_FILE}" up -d
docker_compose_status=$? # Capture exit status of docker compose
echo "Docker Compose Exit Status: $docker_compose_status"
if [ "$docker_compose_status" -ne 0 ]; then
echo -e "\n${RED}${BOLD}Error starting Docker Compose. Please ensure Docker Compose is installed and in your PATH.${NC}"
echo -e "${RED}Refer to Docker documentation for installation instructions: https://docs.docker.com/compose/install/${NC}"
exit 1 # Indicate failure and EXIT SCRIPT
fi
echo -e "\n${GREEN}DocsGPT is now running on http://localhost:5173${NC}"
echo -e "${YELLOW}You can stop the application by running: docker compose -f \"${COMPOSE_FILE}\" down${NC}"
}
# 2) Serve Local (with Ollama)
serve_local_ollama() {
local ollama_choice model_name
local docker_compose_file_suffix
local model_name_prompt
local default_model="llama3.2:1b"
get_model_name_ollama() {
read -p "$(echo -e "${DEFAULT_FG}Enter Ollama Model Name (leave empty for default: ${default_model} (1.3GB)): ${NC}")" model_name_input
if [ -z "$model_name_input" ]; then
model_name="$default_model" # Set default model if input is empty
else
model_name="$model_name_input" # Use user-provided model name
fi
}
while true; do
clear
prompt_ollama_options
case "$ollama_choice" in
1) # CPU
docker_compose_file_suffix="cpu"
get_model_name_ollama
break ;;
2) # GPU
echo -e "\n${YELLOW}For this option to work correctly you need to have a supported GPU and configure Docker to utilize it.${NC}"
echo -e "${YELLOW}Refer to: https://hub.docker.com/r/ollama/ollama for more information.${NC}"
read -p "$(echo -e "${DEFAULT_FG}Continue with GPU setup? (y/b): ${NC}")" confirm_gpu
case "$confirm_gpu" in
y|Y)
docker_compose_file_suffix="gpu"
get_model_name_ollama
break ;;
b|B) clear; return ;; # Back to Main Menu
*) echo -e "\n${RED}Invalid choice. Please choose y or b.${NC}" ; sleep 1 ;;
esac
;;
b|B) clear; return ;; # Back to Main Menu
*) echo -e "\n${RED}Invalid choice. Please choose 1-2, or b.${NC}" ; sleep 1 ;;
esac
done
echo -e "\n${NC}Configuring for Ollama ($(echo "$docker_compose_file_suffix" | tr '[:lower:]' '[:upper:]'))...${NC}" # Using tr for uppercase - more compatible
echo "API_KEY=xxxx" > "$ENV_FILE" # Placeholder API Key
echo "LLM_PROVIDER=openai" >> "$ENV_FILE"
echo "LLM_NAME=$model_name" >> "$ENV_FILE"
echo "VITE_API_STREAMING=true" >> "$ENV_FILE"
echo "OPENAI_BASE_URL=http://ollama:11434/v1" >> "$ENV_FILE"
echo "EMBEDDINGS_NAME=huggingface_sentence-transformers/all-mpnet-base-v2" >> "$ENV_FILE"
echo -e "${GREEN}.env file configured for Ollama ($(echo "$docker_compose_file_suffix" | tr '[:lower:]' '[:upper:]')${NC}${GREEN}).${NC}"
check_and_start_docker
local compose_files=(
-f "${COMPOSE_FILE}"
-f "$(dirname "${COMPOSE_FILE}")/optional/docker-compose.optional.ollama-${docker_compose_file_suffix}.yaml"
)
echo -e "\n${NC}Starting Docker Compose with Ollama (${docker_compose_file_suffix})...${NC}"
docker compose --env-file "${ENV_FILE}" "${compose_files[@]}" pull
docker compose --env-file "${ENV_FILE}" "${compose_files[@]}" up -d
docker_compose_status=$?
echo "Docker Compose Exit Status: $docker_compose_status" # Debug output
if [ "$docker_compose_status" -ne 0 ]; then
echo -e "\n${RED}${BOLD}Error starting Docker Compose. Please ensure Docker Compose is installed and in your PATH.${NC}"
echo -e "${RED}Refer to Docker documentation for installation instructions: https://docs.docker.com/compose/install/${NC}"
exit 1 # Indicate failure and EXIT SCRIPT
fi
echo "Waiting for Ollama container to be ready..."
OLLAMA_READY=false
while ! $OLLAMA_READY; do
CONTAINER_STATUS=$(docker compose "${compose_files[@]}" ps --services --filter "status=running" --format '{{.Service}}')
if [[ "$CONTAINER_STATUS" == *"ollama"* ]]; then # Check if 'ollama' service is in running services
OLLAMA_READY=true
echo "Ollama container is running."
else
echo "Ollama container not yet ready, waiting..."
sleep 5
fi
done
echo "Pulling $model_name model for Ollama..."
docker compose --env-file "${ENV_FILE}" "${compose_files[@]}" exec -it ollama ollama pull "$model_name"
echo -e "\n${GREEN}DocsGPT is now running with Ollama (${docker_compose_file_suffix}) on http://localhost:5173${NC}"
printf -v compose_files_escaped "%q " "${compose_files[@]}"
echo -e "${YELLOW}You can stop the application by running: docker compose ${compose_files_escaped}down${NC}"
}
# 3) Connect Local Inference Engine
connect_local_inference_engine() {
local engine_choice
local model_name_prompt model_name openai_base_url
get_model_name() {
read -p "$(echo -e "${DEFAULT_FG}Enter Model Name (leave empty to set later as None): ${NC}")" model_name
if [ -z "$model_name" ]; then
model_name="None"
fi
}
while true; do
clear
prompt_local_inference_engine_options
case "$engine_choice" in
1) # LLaMa.cpp
engine_name="LLaMa.cpp"
openai_base_url="http://host.docker.internal:8000/v1"
get_model_name
break ;;
2) # Ollama
engine_name="Ollama"
openai_base_url="http://host.docker.internal:11434/v1"
get_model_name
break ;;
3) # TGI
engine_name="TGI"
openai_base_url="http://host.docker.internal:8080/v1"
get_model_name
break ;;
4) # SGLang
engine_name="SGLang"
openai_base_url="http://host.docker.internal:30000/v1"
get_model_name
break ;;
5) # vLLM
engine_name="vLLM"
openai_base_url="http://host.docker.internal:8000/v1"
get_model_name
break ;;
6) # Aphrodite
engine_name="Aphrodite"
openai_base_url="http://host.docker.internal:2242/v1"
get_model_name
break ;;
7) # FriendliAI
engine_name="FriendliAI"
openai_base_url="http://host.docker.internal:8997/v1"
get_model_name
break ;;
8) # LMDeploy
engine_name="LMDeploy"
openai_base_url="http://host.docker.internal:23333/v1"
get_model_name
break ;;
b|B) clear; return ;; # Back to Main Menu
*) echo -e "\n${RED}Invalid choice. Please choose 1-8, or b.${NC}" ; sleep 1 ;;
esac
done
echo -e "\n${NC}Configuring for Local Inference Engine: ${BOLD}${engine_name}...${NC}"
echo "API_KEY=None" > "$ENV_FILE"
echo "LLM_PROVIDER=openai" >> "$ENV_FILE"
echo "LLM_NAME=$model_name" >> "$ENV_FILE"
echo "VITE_API_STREAMING=true" >> "$ENV_FILE"
echo "OPENAI_BASE_URL=$openai_base_url" >> "$ENV_FILE"
echo "EMBEDDINGS_NAME=huggingface_sentence-transformers/all-mpnet-base-v2" >> "$ENV_FILE"
echo -e "${GREEN}.env file configured for ${BOLD}${engine_name}${NC}${GREEN} with OpenAI API format.${NC}"
echo -e "${YELLOW}Note: MODEL_NAME is set to '${BOLD}$model_name${NC}${YELLOW}'. You can change it later in the .env file.${NC}"
check_and_start_docker
echo -e "\n${NC}Starting Docker Compose...${NC}"
docker compose --env-file "${ENV_FILE}" -f "${COMPOSE_FILE}" pull && docker compose --env-file "${ENV_FILE}" -f "${COMPOSE_FILE}" up -d
docker_compose_status=$?
echo "Docker Compose Exit Status: $docker_compose_status" # Debug output
if [ "$docker_compose_status" -ne 0 ]; then
echo -e "\n${RED}${BOLD}Error starting Docker Compose. Please ensure Docker Compose is installed and in your PATH.${NC}"
echo -e "${RED}Refer to Docker documentation for installation instructions: https://docs.docker.com/compose/install/${NC}"
exit 1 # Indicate failure and EXIT SCRIPT
fi
echo -e "\n${GREEN}DocsGPT is now configured to connect to ${BOLD}${engine_name}${NC}${GREEN} at ${BOLD}$openai_base_url${NC}"
echo -e "${YELLOW}Ensure your ${BOLD}${engine_name} inference server is running at that address${NC}"
echo -e "\n${GREEN}DocsGPT is running at http://localhost:5173${NC}"
echo -e "${YELLOW}You can stop the application by running: docker compose -f \"${COMPOSE_FILE}\" down${NC}"
}
# 4) Connect Cloud API Provider
connect_cloud_api_provider() {
local provider_choice api_key llm_provider
local setup_result # Variable to store the return status
get_api_key() {
echo -e "${YELLOW}Your API key will be stored locally in the .env file and will not be sent anywhere else${NC}"
read -p "$(echo -e "${DEFAULT_FG}Please enter your API key: ${NC}")" api_key
}
while true; do
clear
prompt_cloud_api_provider_options
case "$provider_choice" in
1) # OpenAI
provider_name="OpenAI"
llm_provider="openai"
model_name="gpt-4o"
get_api_key
break ;;
2) # Google
provider_name="Google (Vertex AI, Gemini)"
llm_provider="google"
model_name="gemini-2.0-flash"
get_api_key
break ;;
3) # Anthropic
provider_name="Anthropic (Claude)"
llm_provider="anthropic"
model_name="claude-3-5-sonnet-latest"
get_api_key
break ;;
4) # Groq
provider_name="Groq"
llm_provider="groq"
model_name="llama-3.1-8b-instant"
get_api_key
break ;;
5) # HuggingFace Inference API
provider_name="HuggingFace Inference API"
llm_provider="huggingface"
model_name="meta-llama/Llama-3.1-8B-Instruct"
get_api_key
break ;;
6) # Azure OpenAI
provider_name="Azure OpenAI"
llm_provider="azure_openai"
model_name="gpt-4o"
get_api_key
break ;;
7) # Novita
provider_name="Novita"
llm_provider="novita"
model_name="deepseek/deepseek-r1"
get_api_key
break ;;
b|B) clear; return ;; # Clear screen and Back to Main Menu
*) echo -e "\n${RED}Invalid choice. Please choose 1-6, or b.${NC}" ; sleep 1 ;;
esac
done
echo -e "\n${NC}Configuring for Cloud API Provider: ${BOLD}${provider_name}...${NC}"
echo "API_KEY=$api_key" > "$ENV_FILE"
echo "LLM_PROVIDER=$llm_provider" >> "$ENV_FILE"
echo "LLM_NAME=$model_name" >> "$ENV_FILE"
echo "VITE_API_STREAMING=true" >> "$ENV_FILE"
echo -e "${GREEN}.env file configured for ${BOLD}${provider_name}${NC}${GREEN}.${NC}"
check_and_start_docker
echo -e "\n${NC}Starting Docker Compose...${NC}"
docker compose --env-file "${ENV_FILE}" -f "${COMPOSE_FILE}" pull && docker compose --env-file "${ENV_FILE}" -f "${COMPOSE_FILE}" up -d
docker_compose_status=$?
echo "Docker Compose Exit Status: $docker_compose_status" # Debug output
if [ "$docker_compose_status" -ne 0 ]; then
echo -e "\n${RED}${BOLD}Error starting Docker Compose. Please ensure Docker Compose is installed and in your PATH.${NC}"
echo -e "${RED}Refer to Docker documentation for installation instructions: https://docs.docker.com/compose/install/${NC}"
exit 1 # Indicate failure and EXIT SCRIPT
fi
echo -e "\n${GREEN}DocsGPT is now configured to use ${BOLD}${provider_name}${NC}${GREEN} on http://localhost:5173${NC}"
echo -e "${YELLOW}You can stop the application by running: docker compose -f \"${COMPOSE_FILE}\" down${NC}"
}
# Main script execution
animate_dino
while true; do # Main menu loop
clear # Clear screen before showing main menu again
prompt_main_menu
case $main_choice in
1) # Use DocsGPT Public API Endpoint (Docker Hub images)
COMPOSE_FILE="$(dirname "$(readlink -f "$0")")/deployment/docker-compose-hub.yaml"
use_docs_public_api_endpoint
break ;;
2) # Serve Local (with Ollama)
serve_local_ollama
break ;;
3) # Connect Local Inference Engine
connect_local_inference_engine
break ;;
4) # Connect Cloud API Provider
connect_cloud_api_provider
break ;;
5) # Advanced: Build images locally
echo -e "\n${YELLOW}You have selected to build images locally. This is recommended for developers or if you want to test local changes.${NC}"
COMPOSE_FILE="$COMPOSE_FILE_LOCAL"
use_docs_public_api_endpoint
break ;;
*)
echo -e "\n${RED}Invalid choice. Please choose 1-5.${NC}" ; sleep 1 ;;
esac
done
echo -e "\n${GREEN}${BOLD}DocsGPT Setup Complete.${NC}"
exit 0