Files
DocsGPT/application/worker.py

313 lines
9.4 KiB
Python
Executable File

import logging
import os
import shutil
import string
import zipfile
from collections import Counter
from urllib.parse import urljoin
import requests
from bson.objectid import ObjectId
from pymongo import MongoClient
from application.core.settings import settings
from application.parser.file.bulk import SimpleDirectoryReader
from application.parser.open_ai_func import call_openai_api
from application.parser.remote.remote_creator import RemoteCreator
from application.parser.schema.base import Document
from application.parser.token_func import group_split
from application.utils import count_tokens_docs
mongo = MongoClient(settings.MONGO_URI)
db = mongo["docsgpt"]
sources_collection = db["sources"]
# Define a function to extract metadata from a given filename.
def metadata_from_filename(title):
return {"title": title}
# Define a function to generate a random string of a given length.
def generate_random_string(length):
return "".join([string.ascii_letters[i % 52] for i in range(length)])
current_dir = os.path.dirname(
os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
)
def extract_zip_recursive(zip_path, extract_to, current_depth=0, max_depth=5):
"""
Recursively extract zip files with a limit on recursion depth.
Args:
zip_path (str): Path to the zip file to be extracted.
extract_to (str): Destination path for extracted files.
current_depth (int): Current depth of recursion.
max_depth (int): Maximum allowed depth of recursion to prevent infinite loops.
"""
if current_depth > max_depth:
logging.warning(f"Reached maximum recursion depth of {max_depth}")
return
with zipfile.ZipFile(zip_path, "r") as zip_ref:
zip_ref.extractall(extract_to)
os.remove(zip_path) # Remove the zip file after extracting
# Check for nested zip files and extract them
for root, dirs, files in os.walk(extract_to):
for file in files:
if file.endswith(".zip"):
# If a nested zip file is found, extract it recursively
file_path = os.path.join(root, file)
extract_zip_recursive(file_path, root, current_depth + 1, max_depth)
# Define the main function for ingesting and processing documents.
def ingest_worker(
self, directory, formats, name_job, filename, user, retriever="classic"
):
"""
Ingest and process documents.
Args:
self: Reference to the instance of the task.
directory (str): Specifies the directory for ingesting ('inputs' or 'temp').
formats (list of str): List of file extensions to consider for ingestion (e.g., [".rst", ".md"]).
name_job (str): Name of the job for this ingestion task.
filename (str): Name of the file to be ingested.
user (str): Identifier for the user initiating the ingestion.
retriever (str): Type of retriever to use for processing the documents.
Returns:
dict: Information about the completed ingestion task, including input parameters and a "limited" flag.
"""
# directory = 'inputs' or 'temp'
# formats = [".rst", ".md"]
input_files = None
recursive = True
limit = None
exclude = True
# name_job = 'job1'
# filename = 'install.rst'
# user = 'local'
sample = False
token_check = True
min_tokens = 150
max_tokens = 1250
recursion_depth = 2
full_path = os.path.join(directory, user, name_job)
logging.info(f"Ingest file: {full_path}", extra={"user": user, "job": name_job})
# check if API_URL env variable is set
file_data = {"name": name_job, "file": filename, "user": user}
response = requests.get(
urljoin(settings.API_URL, "/api/download"), params=file_data
)
file = response.content
if not os.path.exists(full_path):
os.makedirs(full_path)
with open(os.path.join(full_path, filename), "wb") as f:
f.write(file)
# check if file is .zip and extract it
if filename.endswith(".zip"):
extract_zip_recursive(
os.path.join(full_path, filename), full_path, 0, recursion_depth
)
self.update_state(state="PROGRESS", meta={"current": 1})
raw_docs = SimpleDirectoryReader(
input_dir=full_path,
input_files=input_files,
recursive=recursive,
required_exts=formats,
num_files_limit=limit,
exclude_hidden=exclude,
file_metadata=metadata_from_filename,
).load_data()
raw_docs = group_split(
documents=raw_docs,
min_tokens=min_tokens,
max_tokens=max_tokens,
token_check=token_check,
)
docs = [Document.to_langchain_format(raw_doc) for raw_doc in raw_docs]
id = ObjectId()
call_openai_api(docs, full_path, id, self)
tokens = count_tokens_docs(docs)
self.update_state(state="PROGRESS", meta={"current": 100})
if sample:
for i in range(min(5, len(raw_docs))):
logging.info(f"Sample document {i}: {raw_docs[i]}")
# get files from outputs/inputs/index.faiss and outputs/inputs/index.pkl
# and send them to the server (provide user and name in form)
file_data = {
"name": name_job,
"user": user,
"tokens": tokens,
"retriever": retriever,
"id": str(id),
"type": "local",
}
if settings.VECTOR_STORE == "faiss":
files = {
"file_faiss": open(full_path + "/index.faiss", "rb"),
"file_pkl": open(full_path + "/index.pkl", "rb"),
}
response = requests.post(
urljoin(settings.API_URL, "/api/upload_index"), files=files, data=file_data
)
else:
response = requests.post(
urljoin(settings.API_URL, "/api/upload_index"), data=file_data
)
# delete local
shutil.rmtree(full_path)
return {
"directory": directory,
"formats": formats,
"name_job": name_job,
"filename": filename,
"user": user,
"limited": False,
}
def remote_worker(
self,
source_data,
name_job,
user,
loader,
directory="temp",
retriever="classic",
sync_frequency="never",
operation_mode="upload",
doc_id=None,
):
token_check = True
min_tokens = 150
max_tokens = 1250
full_path = directory + "/" + user + "/" + name_job
if not os.path.exists(full_path):
os.makedirs(full_path)
self.update_state(state="PROGRESS", meta={"current": 1})
logging.info(
f"Remote job: {full_path}",
extra={"user": user, "job": name_job, source_data: source_data},
)
remote_loader = RemoteCreator.create_loader(loader)
raw_docs = remote_loader.load_data(source_data)
docs = group_split(
documents=raw_docs,
min_tokens=min_tokens,
max_tokens=max_tokens,
token_check=token_check,
)
# docs = [Document.to_langchain_format(raw_doc) for raw_doc in raw_docs]
tokens = count_tokens_docs(docs)
if operation_mode == "upload":
id = ObjectId()
call_openai_api(docs, full_path, id, self)
elif operation_mode == "sync":
if not doc_id or not ObjectId.is_valid(doc_id):
raise ValueError("doc_id must be provided for sync operation.")
id = ObjectId(doc_id)
call_openai_api(docs, full_path, id, self)
self.update_state(state="PROGRESS", meta={"current": 100})
# Proceed with uploading and cleaning as in the original function
file_data = {
"name": name_job,
"user": user,
"tokens": tokens,
"retriever": retriever,
"id": str(id),
"type": loader,
"remote_data": source_data,
"sync_frequency": sync_frequency,
}
if settings.VECTOR_STORE == "faiss":
files = {
"file_faiss": open(full_path + "/index.faiss", "rb"),
"file_pkl": open(full_path + "/index.pkl", "rb"),
}
requests.post(
urljoin(settings.API_URL, "/api/upload_index"), files=files, data=file_data
)
else:
requests.post(urljoin(settings.API_URL, "/api/upload_index"), data=file_data)
shutil.rmtree(full_path)
return {"urls": source_data, "name_job": name_job, "user": user, "limited": False}
def sync(
self,
source_data,
name_job,
user,
loader,
sync_frequency,
retriever,
doc_id=None,
directory="temp",
):
try:
remote_worker(
self,
source_data,
name_job,
user,
loader,
directory,
retriever,
sync_frequency,
"sync",
doc_id,
)
except Exception as e:
return {"status": "error", "error": str(e)}
return {"status": "success"}
def sync_worker(self, frequency):
sync_counts = Counter()
sources = sources_collection.find()
for doc in sources:
if doc.get("sync_frequency") == frequency:
name = doc.get("name")
user = doc.get("user")
source_type = doc.get("type")
source_data = doc.get("remote_data")
retriever = doc.get("retriever")
doc_id = str(doc.get("_id"))
resp = sync(
self, source_data, name, user, source_type, frequency, retriever, doc_id
)
sync_counts["total_sync_count"] += 1
sync_counts[
"sync_success" if resp["status"] == "success" else "sync_failure"
] += 1
return {
key: sync_counts[key]
for key in ["total_sync_count", "sync_success", "sync_failure"]
}