Files
DocsGPT/application/llm/google_ai.py
2025-01-28 09:53:32 +05:30

160 lines
5.5 KiB
Python

from google import genai
from google.genai import types
from application.llm.base import BaseLLM
class GoogleLLM(BaseLLM):
def __init__(self, api_key=None, user_api_key=None, *args, **kwargs):
super().__init__(*args, **kwargs)
self.api_key = api_key
self.user_api_key = user_api_key
def _clean_messages_google(self, messages):
cleaned_messages = []
for message in messages:
role = message.get("role")
content = message.get("content")
if role == "assistant":
role = "model"
parts = []
if role and content is not None:
if isinstance(content, str):
parts = [types.Part.from_text(content)]
elif isinstance(content, list):
for item in content:
if "text" in item:
parts.append(types.Part.from_text(item["text"]))
elif "function_call" in item:
parts.append(
types.Part.from_function_call(
name=item["function_call"]["name"],
args=item["function_call"]["args"],
)
)
elif "function_response" in item:
parts.append(
types.Part.from_function_response(
name=item["function_response"]["name"],
response=item["function_response"]["response"],
)
)
else:
raise ValueError(
f"Unexpected content dictionary format:{item}"
)
else:
raise ValueError(f"Unexpected content type: {type(content)}")
cleaned_messages.append(types.Content(role=role, parts=parts))
return cleaned_messages
def _clean_tools_format(self, tools_list):
genai_tools = []
for tool_data in tools_list:
if tool_data["type"] == "function":
function = tool_data["function"]
parameters = function["parameters"]
properties = parameters.get("properties", {})
if properties:
genai_function = dict(
name=function["name"],
description=function["description"],
parameters={
"type": "OBJECT",
"properties": {
k: {
**v,
"type": v["type"].upper() if v["type"] else None,
}
for k, v in properties.items()
},
"required": (
parameters["required"]
if "required" in parameters
else []
),
},
)
else:
genai_function = dict(
name=function["name"],
description=function["description"],
)
genai_tool = types.Tool(function_declarations=[genai_function])
genai_tools.append(genai_tool)
return genai_tools
def _raw_gen(
self,
baseself,
model,
messages,
stream=False,
tools=None,
formatting="openai",
**kwargs,
):
client = genai.Client(api_key=self.api_key)
if formatting == "openai":
messages = self._clean_messages_google(messages)
config = types.GenerateContentConfig()
if messages[0].role == "system":
config.system_instruction = messages[0].parts[0].text
messages = messages[1:]
if tools:
cleaned_tools = self._clean_tools_format(tools)
config.tools = cleaned_tools
response = client.models.generate_content(
model=model,
contents=messages,
config=config,
)
return response
else:
response = client.models.generate_content(
model=model, contents=messages, config=config
)
return response.text
def _raw_gen_stream(
self,
baseself,
model,
messages,
stream=True,
tools=None,
formatting="openai",
**kwargs,
):
client = genai.Client(api_key=self.api_key)
if formatting == "openai":
messages = self._clean_messages_google(messages)
config = types.GenerateContentConfig()
if messages[0].role == "system":
config.system_instruction = messages[0].parts[0].text
messages = messages[1:]
if tools:
cleaned_tools = self._clean_tools_format(tools)
config.tools = cleaned_tools
response = client.models.generate_content_stream(
model=model,
contents=messages,
config=config,
)
for chunk in response:
if chunk.text is not None:
yield chunk.text
def _supports_tools(self):
return True