mirror of
https://github.com/arc53/DocsGPT.git
synced 2025-11-29 16:43:16 +00:00
181 lines
6.5 KiB
Python
181 lines
6.5 KiB
Python
import logging
|
|
|
|
from application.core.settings import settings
|
|
from application.llm.llm_creator import LLMCreator
|
|
from application.retriever.base import BaseRetriever
|
|
|
|
from application.vectorstore.vector_creator import VectorCreator
|
|
|
|
|
|
class ClassicRAG(BaseRetriever):
|
|
def __init__(
|
|
self,
|
|
source,
|
|
chat_history=None,
|
|
prompt="",
|
|
chunks=2,
|
|
token_limit=150,
|
|
gpt_model="docsgpt",
|
|
user_api_key=None,
|
|
llm_name=settings.LLM_PROVIDER,
|
|
api_key=settings.API_KEY,
|
|
decoded_token=None,
|
|
):
|
|
"""Initialize ClassicRAG retriever with vectorstore sources and LLM configuration"""
|
|
self.original_question = source.get("question", "")
|
|
self.chat_history = chat_history if chat_history is not None else []
|
|
self.prompt = prompt
|
|
if isinstance(chunks, str):
|
|
try:
|
|
self.chunks = int(chunks)
|
|
except ValueError:
|
|
logging.warning(
|
|
f"Invalid chunks value '{chunks}', using default value 2"
|
|
)
|
|
self.chunks = 2
|
|
else:
|
|
self.chunks = chunks
|
|
self.gpt_model = gpt_model
|
|
self.token_limit = (
|
|
token_limit
|
|
if token_limit
|
|
< settings.LLM_TOKEN_LIMITS.get(
|
|
self.gpt_model, settings.DEFAULT_MAX_HISTORY
|
|
)
|
|
else settings.LLM_TOKEN_LIMITS.get(
|
|
self.gpt_model, settings.DEFAULT_MAX_HISTORY
|
|
)
|
|
)
|
|
self.user_api_key = user_api_key
|
|
self.llm_name = llm_name
|
|
self.api_key = api_key
|
|
self.llm = LLMCreator.create_llm(
|
|
self.llm_name,
|
|
api_key=self.api_key,
|
|
user_api_key=self.user_api_key,
|
|
decoded_token=decoded_token,
|
|
)
|
|
|
|
if "active_docs" in source and source["active_docs"] is not None:
|
|
if isinstance(source["active_docs"], list):
|
|
self.vectorstores = source["active_docs"]
|
|
else:
|
|
self.vectorstores = [source["active_docs"]]
|
|
else:
|
|
self.vectorstores = []
|
|
self.question = self._rephrase_query()
|
|
self.decoded_token = decoded_token
|
|
self._validate_vectorstore_config()
|
|
|
|
def _validate_vectorstore_config(self):
|
|
"""Validate vectorstore IDs and remove any empty/invalid entries"""
|
|
if not self.vectorstores:
|
|
logging.warning("No vectorstores configured for retrieval")
|
|
return
|
|
invalid_ids = [
|
|
vs_id for vs_id in self.vectorstores if not vs_id or not vs_id.strip()
|
|
]
|
|
if invalid_ids:
|
|
logging.warning(f"Found invalid vectorstore IDs: {invalid_ids}")
|
|
self.vectorstores = [
|
|
vs_id for vs_id in self.vectorstores if vs_id and vs_id.strip()
|
|
]
|
|
|
|
def _rephrase_query(self):
|
|
"""Rephrase user query with chat history context for better retrieval"""
|
|
if (
|
|
not self.original_question
|
|
or not self.chat_history
|
|
or self.chat_history == []
|
|
or self.chunks == 0
|
|
or not self.vectorstores
|
|
):
|
|
return self.original_question
|
|
prompt = f"""Given the following conversation history:
|
|
|
|
{self.chat_history}
|
|
|
|
|
|
|
|
Rephrase the following user question to be a standalone search query
|
|
|
|
that captures all relevant context from the conversation:
|
|
|
|
"""
|
|
|
|
messages = [
|
|
{"role": "system", "content": prompt},
|
|
{"role": "user", "content": self.original_question},
|
|
]
|
|
|
|
try:
|
|
rephrased_query = self.llm.gen(model=self.gpt_model, messages=messages)
|
|
print(f"Rephrased query: {rephrased_query}")
|
|
return rephrased_query if rephrased_query else self.original_question
|
|
except Exception as e:
|
|
logging.error(f"Error rephrasing query: {e}", exc_info=True)
|
|
return self.original_question
|
|
|
|
def _get_data(self):
|
|
"""Retrieve relevant documents from configured vectorstores"""
|
|
if self.chunks == 0 or not self.vectorstores:
|
|
return []
|
|
all_docs = []
|
|
chunks_per_source = max(1, self.chunks // len(self.vectorstores))
|
|
|
|
for vectorstore_id in self.vectorstores:
|
|
if vectorstore_id:
|
|
try:
|
|
docsearch = VectorCreator.create_vectorstore(
|
|
settings.VECTOR_STORE, vectorstore_id, settings.EMBEDDINGS_KEY
|
|
)
|
|
docs_temp = docsearch.search(self.question, k=chunks_per_source)
|
|
|
|
for doc in docs_temp:
|
|
if hasattr(doc, "page_content") and hasattr(doc, "metadata"):
|
|
page_content = doc.page_content
|
|
metadata = doc.metadata
|
|
else:
|
|
page_content = doc.get("text", doc.get("page_content", ""))
|
|
metadata = doc.get("metadata", {})
|
|
title = metadata.get(
|
|
"title", metadata.get("post_title", page_content)
|
|
)
|
|
if isinstance(title, str):
|
|
title = title.split("/")[-1]
|
|
else:
|
|
title = str(title).split("/")[-1]
|
|
all_docs.append(
|
|
{
|
|
"title": title,
|
|
"text": page_content,
|
|
"source": metadata.get("source") or vectorstore_id,
|
|
}
|
|
)
|
|
except Exception as e:
|
|
logging.error(
|
|
f"Error searching vectorstore {vectorstore_id}: {e}",
|
|
exc_info=True,
|
|
)
|
|
continue
|
|
return all_docs
|
|
|
|
def search(self, query: str = ""):
|
|
"""Search for documents using optional query override"""
|
|
if query:
|
|
self.original_question = query
|
|
self.question = self._rephrase_query()
|
|
return self._get_data()
|
|
|
|
def get_params(self):
|
|
"""Return current retriever configuration parameters"""
|
|
return {
|
|
"question": self.original_question,
|
|
"rephrased_question": self.question,
|
|
"sources": self.vectorstores,
|
|
"chunks": self.chunks,
|
|
"token_limit": self.token_limit,
|
|
"gpt_model": self.gpt_model,
|
|
"user_api_key": self.user_api_key,
|
|
}
|