Files
DocsGPT/application/vectorstore/faiss.py
2024-10-01 22:03:10 +05:30

51 lines
2.2 KiB
Python

from langchain_community.vectorstores import FAISS
from application.vectorstore.base import BaseVectorStore
from application.core.settings import settings
import os
def get_vectorstore(path: str) -> str:
if path:
vectorstore = os.path.join("application", "indexes", path)
else:
vectorstore = os.path.join("application")
return vectorstore
class FaissStore(BaseVectorStore):
def __init__(self, source_id: str, embeddings_key: str, docs_init=None):
super().__init__()
self.path = get_vectorstore(source_id)
embeddings = self._get_embeddings(settings.EMBEDDINGS_NAME, embeddings_key)
try:
if docs_init:
self.docsearch = FAISS.from_documents(docs_init, embeddings)
else:
self.docsearch = FAISS.load_local(self.path, embeddings, allow_dangerous_deserialization=True)
except Exception:
raise
self.assert_embedding_dimensions(embeddings)
def search(self, *args, **kwargs):
return self.docsearch.similarity_search(*args, **kwargs)
def add_texts(self, *args, **kwargs):
return self.docsearch.add_texts(*args, **kwargs)
def save_local(self, *args, **kwargs):
return self.docsearch.save_local(*args, **kwargs)
def delete_index(self, *args, **kwargs):
return self.docsearch.delete(*args, **kwargs)
def assert_embedding_dimensions(self, embeddings):
"""Check that the word embedding dimension of the docsearch index matches the dimension of the word embeddings used."""
if settings.EMBEDDINGS_NAME == "huggingface_sentence-transformers/all-mpnet-base-v2":
word_embedding_dimension = getattr(embeddings, 'dimension', None)
if word_embedding_dimension is None:
raise AttributeError("'dimension' attribute not found in embeddings instance.")
docsearch_index_dimension = self.docsearch.index.d
if word_embedding_dimension != docsearch_index_dimension:
raise ValueError(f"Embedding dimension mismatch: embeddings.dimension ({word_embedding_dimension}) != docsearch index dimension ({docsearch_index_dimension})")