Files
DocsGPT/application/llm/handlers/base.py

352 lines
12 KiB
Python

import logging
from abc import ABC, abstractmethod
from dataclasses import dataclass
from typing import Any, Dict, Generator, List, Optional, Union
from application.logging import build_stack_data
logger = logging.getLogger(__name__)
@dataclass
class ToolCall:
"""Represents a tool/function call from the LLM."""
id: str
name: str
arguments: Union[str, Dict]
index: Optional[int] = None
@classmethod
def from_dict(cls, data: Dict) -> "ToolCall":
"""Create ToolCall from dictionary."""
return cls(
id=data.get("id", ""),
name=data.get("name", ""),
arguments=data.get("arguments", {}),
index=data.get("index"),
)
@dataclass
class LLMResponse:
"""Represents a response from the LLM."""
content: str
tool_calls: List[ToolCall]
finish_reason: str
raw_response: Any
@property
def requires_tool_call(self) -> bool:
"""Check if the response requires tool calls."""
return bool(self.tool_calls) and self.finish_reason == "tool_calls"
class LLMHandler(ABC):
"""Abstract base class for LLM handlers."""
def __init__(self):
self.llm_calls = []
self.tool_calls = []
@abstractmethod
def parse_response(self, response: Any) -> LLMResponse:
"""Parse raw LLM response into standardized format."""
pass
@abstractmethod
def create_tool_message(self, tool_call: ToolCall, result: Any) -> Dict:
"""Create a tool result message for the conversation history."""
pass
@abstractmethod
def _iterate_stream(self, response: Any) -> Generator:
"""Iterate through streaming response chunks."""
pass
def process_message_flow(
self,
agent,
initial_response,
tools_dict: Dict,
messages: List[Dict],
attachments: Optional[List] = None,
stream: bool = False,
) -> Union[str, Generator]:
"""
Main orchestration method for processing LLM message flow.
Args:
agent: The agent instance
initial_response: Initial LLM response
tools_dict: Dictionary of available tools
messages: Conversation history
attachments: Optional attachments
stream: Whether to use streaming
Returns:
Final response or generator for streaming
"""
messages = self.prepare_messages(agent, messages, attachments)
if stream:
return self.handle_streaming(agent, initial_response, tools_dict, messages)
else:
return self.handle_non_streaming(
agent, initial_response, tools_dict, messages
)
def prepare_messages(
self, agent, messages: List[Dict], attachments: Optional[List] = None
) -> List[Dict]:
"""
Prepare messages with attachments and provider-specific formatting.
Args:
agent: The agent instance
messages: Original messages
attachments: List of attachments
Returns:
Prepared messages list
"""
if not attachments:
return messages
logger.info(f"Preparing messages with {len(attachments)} attachments")
supported_types = agent.llm.get_supported_attachment_types()
supported_attachments = [
a for a in attachments if a.get("mime_type") in supported_types
]
unsupported_attachments = [
a for a in attachments if a.get("mime_type") not in supported_types
]
# Process supported attachments with the LLM's custom method
if supported_attachments:
logger.info(
f"Processing {len(supported_attachments)} supported attachments"
)
messages = agent.llm.prepare_messages_with_attachments(
messages, supported_attachments
)
# Process unsupported attachments with default method
if unsupported_attachments:
logger.info(
f"Processing {len(unsupported_attachments)} unsupported attachments"
)
messages = self._append_unsupported_attachments(
messages, unsupported_attachments
)
return messages
def _append_unsupported_attachments(
self, messages: List[Dict], attachments: List[Dict]
) -> List[Dict]:
"""
Default method to append unsupported attachment content to system prompt.
Args:
messages: Current messages
attachments: List of unsupported attachments
Returns:
Updated messages list
"""
prepared_messages = messages.copy()
attachment_texts = []
for attachment in attachments:
logger.info(f"Adding attachment {attachment.get('id')} to context")
if "content" in attachment:
attachment_texts.append(
f"Attached file content:\n\n{attachment['content']}"
)
if attachment_texts:
combined_text = "\n\n".join(attachment_texts)
system_msg = next(
(msg for msg in prepared_messages if msg.get("role") == "system"),
{"role": "system", "content": ""},
)
if system_msg not in prepared_messages:
prepared_messages.insert(0, system_msg)
system_msg["content"] += f"\n\n{combined_text}"
return prepared_messages
def handle_tool_calls(
self, agent, tool_calls: List[ToolCall], tools_dict: Dict, messages: List[Dict]
) -> Generator:
"""
Execute tool calls and update conversation history.
Args:
agent: The agent instance
tool_calls: List of tool calls to execute
tools_dict: Available tools dictionary
messages: Current conversation history
Returns:
Updated messages list
"""
updated_messages = messages.copy()
for call in tool_calls:
try:
self.tool_calls.append(call)
tool_executor_gen = agent._execute_tool_action(tools_dict, call)
while True:
try:
yield next(tool_executor_gen)
except StopIteration as e:
tool_response, call_id = e.value
break
updated_messages.append(
{
"role": "assistant",
"content": [
{
"function_call": {
"name": call.name,
"args": call.arguments,
"call_id": call_id,
}
}
],
}
)
updated_messages.append(self.create_tool_message(call, tool_response))
except Exception as e:
logger.error(f"Error executing tool: {str(e)}", exc_info=True)
error_call = ToolCall(
id=call.id, name=call.name, arguments=call.arguments
)
error_response = f"Error executing tool: {str(e)}"
error_message = self.create_tool_message(error_call, error_response)
updated_messages.append(error_message)
call_parts = call.name.split("_")
if len(call_parts) >= 2:
tool_id = call_parts[-1] # Last part is tool ID (e.g., "1")
action_name = "_".join(call_parts[:-1])
tool_name = tools_dict.get(tool_id, {}).get("name", "unknown_tool")
full_action_name = f"{action_name}_{tool_id}"
else:
tool_name = "unknown_tool"
action_name = call.name
full_action_name = call.name
yield {
"type": "tool_call",
"data": {
"tool_name": tool_name,
"call_id": call.id,
"action_name": full_action_name,
"arguments": call.arguments,
"error": error_response,
"status": "error",
},
}
return updated_messages
def handle_non_streaming(
self, agent, response: Any, tools_dict: Dict, messages: List[Dict]
) -> Generator:
"""
Handle non-streaming response flow.
Args:
agent: The agent instance
response: Current LLM response
tools_dict: Available tools dictionary
messages: Conversation history
Returns:
Final response after processing all tool calls
"""
parsed = self.parse_response(response)
self.llm_calls.append(build_stack_data(agent.llm))
while parsed.requires_tool_call:
tool_handler_gen = self.handle_tool_calls(
agent, parsed.tool_calls, tools_dict, messages
)
while True:
try:
yield next(tool_handler_gen)
except StopIteration as e:
messages = e.value
break
response = agent.llm.gen(
model=agent.gpt_model, messages=messages, tools=agent.tools
)
parsed = self.parse_response(response)
self.llm_calls.append(build_stack_data(agent.llm))
return parsed.content
def handle_streaming(
self, agent, response: Any, tools_dict: Dict, messages: List[Dict]
) -> Generator:
"""
Handle streaming response flow.
Args:
agent: The agent instance
response: Current LLM response
tools_dict: Available tools dictionary
messages: Conversation history
Yields:
Streaming response chunks
"""
buffer = ""
tool_calls = {}
for chunk in self._iterate_stream(response):
if isinstance(chunk, str):
yield chunk
continue
parsed = self.parse_response(chunk)
if parsed.tool_calls:
for call in parsed.tool_calls:
if call.index not in tool_calls:
tool_calls[call.index] = call
else:
existing = tool_calls[call.index]
if call.id:
existing.id = call.id
if call.name:
existing.name = call.name
if call.arguments:
existing.arguments += call.arguments
if parsed.finish_reason == "tool_calls":
tool_handler_gen = self.handle_tool_calls(
agent, list(tool_calls.values()), tools_dict, messages
)
while True:
try:
yield next(tool_handler_gen)
except StopIteration as e:
messages = e.value
break
tool_calls = {}
response = agent.llm.gen_stream(
model=agent.gpt_model, messages=messages, tools=agent.tools
)
self.llm_calls.append(build_stack_data(agent.llm))
yield from self.handle_streaming(agent, response, tools_dict, messages)
return
if parsed.content:
buffer += parsed.content
yield buffer
buffer = ""
if parsed.finish_reason == "stop":
return