Files
DocsGPT/application/vectorstore/milvus.py
2024-09-05 23:41:51 +01:00

38 lines
1.3 KiB
Python

from typing import List, Optional
from uuid import uuid4
from application.core.settings import settings
from application.vectorstore.base import BaseVectorStore
class MilvusStore(BaseVectorStore):
def __init__(self, path: str = "", embeddings_key: str = "embeddings"):
super().__init__()
from langchain_milvus import Milvus
connection_args = {
"uri": settings.MILVUS_URI,
"token": settings.MILVUS_TOKEN,
}
self._docsearch = Milvus(
embedding_function=self._get_embeddings(settings.EMBEDDINGS_NAME, embeddings_key),
collection_name=settings.MILVUS_COLLECTION_NAME,
connection_args=connection_args,
)
self._path = path
def search(self, question, k=2, *args, **kwargs):
return self._docsearch.similarity_search(query=question, k=k, filter={"path": self._path} *args, **kwargs)
def add_texts(self, texts: List[str], metadatas: Optional[List[dict]], *args, **kwargs):
ids = [str(uuid4()) for _ in range(len(texts))]
return self._docsearch.add_texts(texts=texts, metadatas=metadatas, ids=ids, *args, **kwargs)
def save_local(self, *args, **kwargs):
pass
def delete_index(self, *args, **kwargs):
pass