Files
DocsGPT/application/llm/llama_cpp.py
2025-06-06 15:29:53 +05:30

61 lines
2.1 KiB
Python

from application.llm.base import BaseLLM
from application.core.settings import settings
import threading
class LlamaSingleton:
_instances = {}
_lock = threading.Lock() # Add a lock for thread synchronization
@classmethod
def get_instance(cls, llm_name):
if llm_name not in cls._instances:
try:
from llama_cpp import Llama
except ImportError:
raise ImportError(
"Please install llama_cpp using pip install llama-cpp-python"
)
cls._instances[llm_name] = Llama(model_path=llm_name, n_ctx=2048)
return cls._instances[llm_name]
@classmethod
def query_model(cls, llm, prompt, **kwargs):
with cls._lock:
return llm(prompt, **kwargs)
class LlamaCpp(BaseLLM):
def __init__(
self,
api_key=None,
user_api_key=None,
llm_name=settings.LLM_PATH,
*args,
**kwargs,
):
super().__init__(*args, **kwargs)
self.api_key = api_key
self.user_api_key = user_api_key
self.llama = LlamaSingleton.get_instance(llm_name)
def _raw_gen(self, baseself, model, messages, stream=False, **kwargs):
context = messages[0]["content"]
user_question = messages[-1]["content"]
prompt = f"### Instruction \n {user_question} \n ### Context \n {context} \n ### Answer \n"
result = LlamaSingleton.query_model(
self.llama, prompt, max_tokens=150, echo=False
)
return result["choices"][0]["text"].split("### Answer \n")[-1]
def _raw_gen_stream(self, baseself, model, messages, stream=True, **kwargs):
context = messages[0]["content"]
user_question = messages[-1]["content"]
prompt = f"### Instruction \n {user_question} \n ### Context \n {context} \n ### Answer \n"
result = LlamaSingleton.query_model(
self.llama, prompt, max_tokens=150, echo=False, stream=stream
)
for item in result:
for choice in item["choices"]:
yield choice["text"]