mirror of
https://github.com/arc53/DocsGPT.git
synced 2025-11-29 16:43:16 +00:00
51 lines
2.2 KiB
Python
51 lines
2.2 KiB
Python
from langchain_community.vectorstores import FAISS
|
|
from application.vectorstore.base import BaseVectorStore
|
|
from application.core.settings import settings
|
|
import os
|
|
|
|
def get_vectorstore(path: str) -> str:
|
|
if path:
|
|
vectorstore = os.path.join("application", "indexes", path)
|
|
else:
|
|
vectorstore = os.path.join("application")
|
|
return vectorstore
|
|
|
|
class FaissStore(BaseVectorStore):
|
|
def __init__(self, source_id: str, embeddings_key: str, docs_init=None):
|
|
super().__init__()
|
|
self.path = get_vectorstore(source_id)
|
|
embeddings = self._get_embeddings(settings.EMBEDDINGS_NAME, embeddings_key)
|
|
|
|
try:
|
|
if docs_init:
|
|
self.docsearch = FAISS.from_documents(docs_init, embeddings)
|
|
else:
|
|
self.docsearch = FAISS.load_local(self.path, embeddings, allow_dangerous_deserialization=True)
|
|
except Exception:
|
|
raise # Just re-raise the exception without assigning to e
|
|
|
|
self.assert_embedding_dimensions(embeddings)
|
|
|
|
def search(self, *args, **kwargs):
|
|
return self.docsearch.similarity_search(*args, **kwargs)
|
|
|
|
def add_texts(self, *args, **kwargs):
|
|
return self.docsearch.add_texts(*args, **kwargs)
|
|
|
|
def save_local(self, *args, **kwargs):
|
|
return self.docsearch.save_local(*args, **kwargs)
|
|
|
|
def delete_index(self, *args, **kwargs):
|
|
return self.docsearch.delete(*args, **kwargs)
|
|
|
|
def assert_embedding_dimensions(self, embeddings):
|
|
"""Check that the word embedding dimension of the docsearch index matches the dimension of the word embeddings used."""
|
|
if settings.EMBEDDINGS_NAME == "huggingface_sentence-transformers/all-mpnet-base-v2":
|
|
word_embedding_dimension = getattr(embeddings, 'dimension', None)
|
|
if word_embedding_dimension is None:
|
|
raise AttributeError("'dimension' attribute not found in embeddings instance.")
|
|
|
|
docsearch_index_dimension = self.docsearch.index.d
|
|
if word_embedding_dimension != docsearch_index_dimension:
|
|
raise ValueError(f"Embedding dimension mismatch: embeddings.dimension ({word_embedding_dimension}) != docsearch index dimension ({docsearch_index_dimension})")
|