Files
DocsGPT/application/agents/classic_agent.py
Siddhant Rai 7c69e99914 feat: Enhance agent selection and conversation handling
- Added functionality to select agents in the Navigation component, allowing users to reset conversations and set the selected agent.
- Updated the MessageInput component to conditionally show source and tool buttons based on the selected agent.
- Modified the Conversation component to handle agent-specific queries and manage file uploads.
- Improved conversation fetching logic to include agent IDs and handle attachments.
- Introduced new types for conversation summaries and results to streamline API responses.
- Refactored Redux slices to manage selected agent state and improve overall state management.
- Enhanced error handling and loading states across components for better user experience.
2025-04-15 11:53:53 +05:30

60 lines
1.9 KiB
Python

from typing import Dict, Generator
from application.agents.base import BaseAgent
from application.logging import LogContext
from application.retriever.base import BaseRetriever
import logging
logger = logging.getLogger(__name__)
class ClassicAgent(BaseAgent):
def _gen_inner(
self, query: str, retriever: BaseRetriever, log_context: LogContext
) -> Generator[Dict, None, None]:
retrieved_data = self._retriever_search(retriever, query, log_context)
if self.user_api_key:
tools_dict = self._get_tools(self.user_api_key)
else:
tools_dict = self._get_user_tools(self.user)
self._prepare_tools(tools_dict)
messages = self._build_messages(self.prompt, query, retrieved_data)
resp = self._llm_gen(messages, log_context)
attachments = self.attachments
if isinstance(resp, str):
yield {"answer": resp}
return
if (
hasattr(resp, "message")
and hasattr(resp.message, "content")
and resp.message.content is not None
):
yield {"answer": resp.message.content}
return
resp = self._llm_handler(resp, tools_dict, messages, log_context, attachments)
if isinstance(resp, str):
yield {"answer": resp}
elif (
hasattr(resp, "message")
and hasattr(resp.message, "content")
and resp.message.content is not None
):
yield {"answer": resp.message.content}
else:
completion = self.llm.gen_stream(
model=self.gpt_model, messages=messages, tools=self.tools
)
for line in completion:
if isinstance(line, str):
yield {"answer": line}
yield {"sources": retrieved_data}
yield {"tool_calls": self.tool_calls.copy()}