Files
DocsGPT/application/worker.py

305 lines
9.3 KiB
Python
Executable File

import logging
import os
import shutil
import string
import zipfile
from collections import Counter
from urllib.parse import urljoin
import requests
from bson.objectid import ObjectId
from core.mongo_db import MongoDB
from application.core.settings import settings
from application.parser.file.bulk import SimpleDirectoryReader
from application.parser.open_ai_func import call_openai_api
from application.parser.remote.remote_creator import RemoteCreator
from application.parser.schema.base import Document
from application.parser.token_func import group_split
from application.utils import count_tokens_docs
mongo = MongoDB.get_client()
db = mongo["docsgpt"]
sources_collection = db["sources"]
# Constants
MIN_TOKENS = 150
MAX_TOKENS = 1250
RECURSION_DEPTH = 2
# Define a function to extract metadata from a given filename.
def metadata_from_filename(title):
return {"title": title}
# Define a function to generate a random string of a given length.
def generate_random_string(length):
return "".join([string.ascii_letters[i % 52] for i in range(length)])
current_dir = os.path.dirname(
os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
)
def extract_zip_recursive(zip_path, extract_to, current_depth=0, max_depth=5):
"""
Recursively extract zip files with a limit on recursion depth.
Args:
zip_path (str): Path to the zip file to be extracted.
extract_to (str): Destination path for extracted files.
current_depth (int): Current depth of recursion.
max_depth (int): Maximum allowed depth of recursion to prevent infinite loops.
"""
if current_depth > max_depth:
logging.warning(f"Reached maximum recursion depth of {max_depth}")
return
try:
with zipfile.ZipFile(zip_path, "r") as zip_ref:
zip_ref.extractall(extract_to)
os.remove(zip_path) # Remove the zip file after extracting
except Exception as e:
logging.error(f"Error extracting zip file {zip_path}: {e}")
return
# Check for nested zip files and extract them
for root, dirs, files in os.walk(extract_to):
for file in files:
if file.endswith(".zip"):
# If a nested zip file is found, extract it recursively
file_path = os.path.join(root, file)
extract_zip_recursive(file_path, root, current_depth + 1, max_depth)
def download_file(url, params, dest_path):
try:
response = requests.get(url, params=params)
response.raise_for_status()
with open(dest_path, "wb") as f:
f.write(response.content)
except requests.RequestException as e:
logging.error(f"Error downloading file: {e}")
raise
def upload_index(full_path, file_data):
try:
if settings.VECTOR_STORE == "faiss":
files = {
"file_faiss": open(full_path + "/index.faiss", "rb"),
"file_pkl": open(full_path + "/index.pkl", "rb"),
}
response = requests.post(
urljoin(settings.API_URL, "/api/upload_index"), files=files, data=file_data
)
else:
response = requests.post(
urljoin(settings.API_URL, "/api/upload_index"), data=file_data
)
response.raise_for_status()
except requests.RequestException as e:
logging.error(f"Error uploading index: {e}")
raise
finally:
if settings.VECTOR_STORE == "faiss":
for file in files.values():
file.close()
# Define the main function for ingesting and processing documents.
def ingest_worker(
self, directory, formats, name_job, filename, user, retriever="classic"
):
"""
Ingest and process documents.
Args:
self: Reference to the instance of the task.
directory (str): Specifies the directory for ingesting ('inputs' or 'temp').
formats (list of str): List of file extensions to consider for ingestion (e.g., [".rst", ".md"]).
name_job (str): Name of the job for this ingestion task.
filename (str): Name of the file to be ingested.
user (str): Identifier for the user initiating the ingestion.
retriever (str): Type of retriever to use for processing the documents.
Returns:
dict: Information about the completed ingestion task, including input parameters and a "limited" flag.
"""
input_files = None
recursive = True
limit = None
exclude = True
sample = False
token_check = True
full_path = os.path.join(directory, user, name_job)
logging.info(f"Ingest file: {full_path}", extra={"user": user, "job": name_job})
file_data = {"name": name_job, "file": filename, "user": user}
if not os.path.exists(full_path):
os.makedirs(full_path)
download_file(urljoin(settings.API_URL, "/api/download"), file_data, os.path.join(full_path, filename))
# check if file is .zip and extract it
if filename.endswith(".zip"):
extract_zip_recursive(
os.path.join(full_path, filename), full_path, 0, RECURSION_DEPTH
)
self.update_state(state="PROGRESS", meta={"current": 1})
raw_docs = SimpleDirectoryReader(
input_dir=full_path,
input_files=input_files,
recursive=recursive,
required_exts=formats,
num_files_limit=limit,
exclude_hidden=exclude,
file_metadata=metadata_from_filename,
).load_data()
raw_docs = group_split(
documents=raw_docs,
min_tokens=MIN_TOKENS,
max_tokens=MAX_TOKENS,
token_check=token_check,
)
docs = [Document.to_langchain_format(raw_doc) for raw_doc in raw_docs]
id = ObjectId()
call_openai_api(docs, full_path, id, self)
tokens = count_tokens_docs(docs)
self.update_state(state="PROGRESS", meta={"current": 100})
if sample:
for i in range(min(5, len(raw_docs))):
logging.info(f"Sample document {i}: {raw_docs[i]}")
file_data.update({
"tokens": tokens,
"retriever": retriever,
"id": str(id),
"type": "local",
})
upload_index(full_path, file_data)
# delete local
shutil.rmtree(full_path)
return {
"directory": directory,
"formats": formats,
"name_job": name_job,
"filename": filename,
"user": user,
"limited": False,
}
def remote_worker(
self,
source_data,
name_job,
user,
loader,
directory="temp",
retriever="classic",
sync_frequency="never",
operation_mode="upload",
doc_id=None,
):
token_check = True
full_path = os.path.join(directory, user, name_job)
if not os.path.exists(full_path):
os.makedirs(full_path)
self.update_state(state="PROGRESS", meta={"current": 1})
logging.info(
f"Remote job: {full_path}",
extra={"user": user, "job": name_job, "source_data": source_data},
)
remote_loader = RemoteCreator.create_loader(loader)
raw_docs = remote_loader.load_data(source_data)
docs = group_split(
documents=raw_docs,
min_tokens=MIN_TOKENS,
max_tokens=MAX_TOKENS,
token_check=token_check,
)
tokens = count_tokens_docs(docs)
if operation_mode == "upload":
id = ObjectId()
call_openai_api(docs, full_path, id, self)
elif operation_mode == "sync":
if not doc_id or not ObjectId.is_valid(doc_id):
raise ValueError("doc_id must be provided for sync operation.")
id = ObjectId(doc_id)
call_openai_api(docs, full_path, id, self)
self.update_state(state="PROGRESS", meta={"current": 100})
file_data = {
"name": name_job,
"user": user,
"tokens": tokens,
"retriever": retriever,
"id": str(id),
"type": loader,
"remote_data": source_data,
"sync_frequency": sync_frequency,
}
upload_index(full_path, file_data)
shutil.rmtree(full_path)
return {"urls": source_data, "name_job": name_job, "user": user, "limited": False}
def sync(
self,
source_data,
name_job,
user,
loader,
sync_frequency,
retriever,
doc_id=None,
directory="temp",
):
try:
remote_worker(
self,
source_data,
name_job,
user,
loader,
directory,
retriever,
sync_frequency,
"sync",
doc_id,
)
except Exception as e:
logging.error(f"Error during sync: {e}")
return {"status": "error", "error": str(e)}
return {"status": "success"}
def sync_worker(self, frequency):
sync_counts = Counter()
sources = sources_collection.find()
for doc in sources:
if doc.get("sync_frequency") == frequency:
name = doc.get("name")
user = doc.get("user")
source_type = doc.get("type")
source_data = doc.get("remote_data")
retriever = doc.get("retriever")
doc_id = str(doc.get("_id"))
resp = sync(
self, source_data, name, user, source_type, frequency, retriever, doc_id
)
sync_counts["total_sync_count"] += 1
sync_counts[
"sync_success" if resp["status"] == "success" else "sync_failure"
] += 1
return {
key: sync_counts[key]
for key in ["total_sync_count", "sync_success", "sync_failure"]
}