Files
DocsGPT/application/tools/agent.py
2025-01-13 10:37:53 +00:00

180 lines
7.0 KiB
Python

import json
import logging
from application.core.mongo_db import MongoDB
from application.llm.llm_creator import LLMCreator
from application.tools.tool_manager import ToolManager
class Agent:
def __init__(self, llm_name, gpt_model, api_key, user_api_key=None):
# Initialize the LLM with the provided parameters
self.llm = LLMCreator.create_llm(
llm_name, api_key=api_key, user_api_key=user_api_key
)
self.gpt_model = gpt_model
# Static tool configuration (to be replaced later)
self.tools = []
self.tool_config = {}
def _get_user_tools(self, user="local"):
mongo = MongoDB.get_client()
db = mongo["docsgpt"]
user_tools_collection = db["user_tools"]
user_tools = user_tools_collection.find({"user": user, "status": True})
user_tools = list(user_tools)
tools_by_id = {str(tool["_id"]): tool for tool in user_tools}
return tools_by_id
def _prepare_tools(self, tools_dict):
self.tools = [
{
"type": "function",
"function": {
"name": f"{action['name']}_{tool_id}",
"description": action["description"],
"parameters": {
**action["parameters"],
"properties": {
k: {
key: value
for key, value in v.items()
if key != "filled_by_llm" and key != "value"
}
for k, v in action["parameters"]["properties"].items()
if v.get("filled_by_llm", False)
},
"required": [
key
for key in action["parameters"]["required"]
if key in action["parameters"]["properties"]
and action["parameters"]["properties"][key].get(
"filled_by_llm", False
)
],
},
},
}
for tool_id, tool in tools_dict.items()
for action in tool["actions"]
if action["active"]
]
def _execute_tool_action(self, tools_dict, call):
call_id = call.id
call_args = json.loads(call.function.arguments)
tool_id = call.function.name.split("_")[-1]
action_name = call.function.name.rsplit("_", 1)[0]
tool_data = tools_dict[tool_id]
action_data = next(
action for action in tool_data["actions"] if action["name"] == action_name
)
for param, details in action_data["parameters"]["properties"].items():
if param not in call_args and "value" in details:
call_args[param] = details["value"]
tm = ToolManager(config={})
tool = tm.load_tool(tool_data["name"], tool_config=tool_data["config"])
print(f"Executing tool: {action_name} with args: {call_args}")
return tool.execute_action(action_name, **call_args), call_id
def _execute_tool_action_google(self, tools_dict, call):
call_args = json.loads(call.args)
tool_id = call.name.split("_")[-1]
action_name = call.name.rsplit("_", 1)[0]
tool_data = tools_dict[tool_id]
action_data = next(
action for action in tool_data["actions"] if action["name"] == action_name
)
for param, details in action_data["parameters"]["properties"].items():
if param not in call_args and "value" in details:
call_args[param] = details["value"]
tm = ToolManager(config={})
tool = tm.load_tool(tool_data["name"], tool_config=tool_data["config"])
print(f"Executing tool: {action_name} with args: {call_args}")
return tool.execute_action(action_name, **call_args)
def _simple_tool_agent(self, messages):
tools_dict = self._get_user_tools()
self._prepare_tools(tools_dict)
resp = self.llm.gen(model=self.gpt_model, messages=messages, tools=self.tools)
if isinstance(resp, str):
yield resp
return
if resp.message.content:
yield resp.message.content
return
# check if self.llm class is GoogleLLM
while self.llm.__class__.__name__ == "GoogleLLM" and resp.content.parts[0].function_call:
from google.genai import types
function_call_part = resp.candidates[0].content.parts[0]
tool_response = self._execute_tool_action_google(tools_dict, function_call_part.function_call)
function_response_part = types.Part.from_function_response(
name=function_call_part.function_call.name,
response=tool_response
)
while self.llm.__class__.__name__ == "OpenAILLM" and resp.finish_reason == "tool_calls":
message = json.loads(resp.model_dump_json())["message"]
keys_to_remove = {"audio", "function_call", "refusal"}
filtered_data = {
k: v for k, v in message.items() if k not in keys_to_remove
}
messages.append(filtered_data)
tool_calls = resp.message.tool_calls
for call in tool_calls:
try:
tool_response, call_id = self._execute_tool_action(tools_dict, call)
messages.append(
{
"role": "tool",
"content": str(tool_response),
"tool_call_id": call_id,
}
)
except Exception as e:
messages.append(
{
"role": "tool",
"content": f"Error executing tool: {str(e)}",
"tool_call_id": call.id,
}
)
# Generate a new response from the LLM after processing tools
resp = self.llm.gen(
model=self.gpt_model, messages=messages, tools=self.tools
)
# If no tool calls are needed, generate the final response
if isinstance(resp, str):
yield resp
elif resp.message.content:
yield resp.message.content
else:
completion = self.llm.gen_stream(
model=self.gpt_model, messages=messages, tools=self.tools
)
for line in completion:
yield line
return
def gen(self, messages):
# Generate initial response from the LLM
if self.llm.supports_tools():
resp = self._simple_tool_agent(messages)
for line in resp:
yield line
else:
resp = self.llm.gen_stream(model=self.gpt_model, messages=messages)
for line in resp:
yield line