Files
DocsGPT/application/llm/anthropic.py
Alex f61d112cea feat: process pdfs synthetically im model does not support file natively (#2263)
* feat: process pdfs synthetically im model does not support file natively

* fix: small code optimisations
2026-01-15 02:30:33 +02:00

192 lines
6.6 KiB
Python

import base64
import logging
from anthropic import AI_PROMPT, Anthropic, HUMAN_PROMPT
from application.core.settings import settings
from application.llm.base import BaseLLM
from application.storage.storage_creator import StorageCreator
logger = logging.getLogger(__name__)
class AnthropicLLM(BaseLLM):
def __init__(self, api_key=None, user_api_key=None, base_url=None, *args, **kwargs):
super().__init__(*args, **kwargs)
self.api_key = api_key or settings.ANTHROPIC_API_KEY or settings.API_KEY
self.user_api_key = user_api_key
# Use custom base_url if provided
if base_url:
self.anthropic = Anthropic(api_key=self.api_key, base_url=base_url)
else:
self.anthropic = Anthropic(api_key=self.api_key)
self.HUMAN_PROMPT = HUMAN_PROMPT
self.AI_PROMPT = AI_PROMPT
self.storage = StorageCreator.get_storage()
def _raw_gen(
self,
baseself,
model,
messages,
stream=False,
tools=None,
max_tokens=300,
**kwargs,
):
context = messages[0]["content"]
user_question = messages[-1]["content"]
prompt = f"### Context \n {context} \n ### Question \n {user_question}"
if stream:
return self.gen_stream(model, prompt, stream, max_tokens, **kwargs)
completion = self.anthropic.completions.create(
model=model,
max_tokens_to_sample=max_tokens,
stream=stream,
prompt=f"{self.HUMAN_PROMPT} {prompt}{self.AI_PROMPT}",
)
return completion.completion
def _raw_gen_stream(
self,
baseself,
model,
messages,
stream=True,
tools=None,
max_tokens=300,
**kwargs,
):
context = messages[0]["content"]
user_question = messages[-1]["content"]
prompt = f"### Context \n {context} \n ### Question \n {user_question}"
stream_response = self.anthropic.completions.create(
model=model,
prompt=f"{self.HUMAN_PROMPT} {prompt}{self.AI_PROMPT}",
max_tokens_to_sample=max_tokens,
stream=True,
)
try:
for completion in stream_response:
yield completion.completion
finally:
if hasattr(stream_response, "close"):
stream_response.close()
def get_supported_attachment_types(self):
"""
Return a list of MIME types supported by Anthropic Claude for file uploads.
Claude supports images but not PDFs natively.
PDFs are synthetically supported via PDF-to-image conversion in the handler.
Returns:
list: List of supported MIME types
"""
return [
"image/png",
"image/jpeg",
"image/jpg",
"image/webp",
"image/gif",
]
def prepare_messages_with_attachments(self, messages, attachments=None):
"""
Process attachments for Anthropic Claude API.
Formats images using Claude's vision message format.
Args:
messages (list): List of message dictionaries.
attachments (list): List of attachment dictionaries with content and metadata.
Returns:
list: Messages formatted with image content for Claude API.
"""
if not attachments:
return messages
prepared_messages = messages.copy()
# Find the last user message to attach images to
user_message_index = None
for i in range(len(prepared_messages) - 1, -1, -1):
if prepared_messages[i].get("role") == "user":
user_message_index = i
break
if user_message_index is None:
user_message = {"role": "user", "content": []}
prepared_messages.append(user_message)
user_message_index = len(prepared_messages) - 1
# Convert content to list format if it's a string
if isinstance(prepared_messages[user_message_index].get("content"), str):
text_content = prepared_messages[user_message_index]["content"]
prepared_messages[user_message_index]["content"] = [
{"type": "text", "text": text_content}
]
elif not isinstance(prepared_messages[user_message_index].get("content"), list):
prepared_messages[user_message_index]["content"] = []
for attachment in attachments:
mime_type = attachment.get("mime_type")
if mime_type and mime_type.startswith("image/"):
try:
# Check if this is a pre-converted image (from PDF-to-image conversion)
# These have 'data' key with base64 already
if "data" in attachment:
base64_image = attachment["data"]
else:
base64_image = self._get_base64_image(attachment)
# Claude uses a specific format for images
prepared_messages[user_message_index]["content"].append(
{
"type": "image",
"source": {
"type": "base64",
"media_type": mime_type,
"data": base64_image,
},
}
)
except Exception as e:
logger.error(
f"Error processing image attachment: {e}", exc_info=True
)
if "content" in attachment:
prepared_messages[user_message_index]["content"].append(
{
"type": "text",
"text": f"[Image could not be processed: {attachment.get('path', 'unknown')}]",
}
)
return prepared_messages
def _get_base64_image(self, attachment):
"""
Convert an image file to base64 encoding.
Args:
attachment (dict): Attachment dictionary with path and metadata.
Returns:
str: Base64-encoded image data.
"""
file_path = attachment.get("path")
if not file_path:
raise ValueError("No file path provided in attachment")
try:
with self.storage.get_file(file_path) as image_file:
return base64.b64encode(image_file.read()).decode("utf-8")
except FileNotFoundError:
raise FileNotFoundError(f"File not found: {file_path}")