mirror of
https://github.com/arc53/DocsGPT.git
synced 2025-11-29 16:43:16 +00:00
39 lines
1.7 KiB
Python
39 lines
1.7 KiB
Python
from application.vectorstore.base import BaseVectorStore
|
|
from langchain.vectorstores import FAISS
|
|
from application.core.settings import settings
|
|
|
|
HUGGINGFACE_MODEL_NAME = "huggingface_sentence-transformers/all-mpnet-base-v2"
|
|
class FaissStore(BaseVectorStore):
|
|
|
|
def __init__(self, path, embeddings_key, docs_init=None):
|
|
super().__init__()
|
|
self.path = path
|
|
if docs_init:
|
|
self.docsearch = FAISS.from_documents(
|
|
docs_init, self._get_embeddings(settings.EMBEDDINGS_NAME, embeddings_key)
|
|
)
|
|
else:
|
|
embeddings = self._get_embeddings(settings.EMBEDDINGS_NAME, embeddings_key)
|
|
self.docsearch = FAISS.load_local(
|
|
self.path, embeddings
|
|
)
|
|
|
|
# Check that the word_embedding_dimension of the index matches
|
|
# the word_embedding_dimension of the embeddings
|
|
if settings.EMBEDDINGS_NAME == HUGGINGFACE_MODEL_NAME:
|
|
try:
|
|
word_embedding_dimension = embeddings.client[1].word_embedding_dimension
|
|
except AttributeError as e:
|
|
raise AttributeError("word_embedding_dimension not found in embeddings.client[1]") from e
|
|
if word_embedding_dimension != self.docsearch.index.d:
|
|
raise ValueError("word_embedding_dimension != docsearch_index_word_embedding_dimension")
|
|
|
|
def search(self, *args, **kwargs):
|
|
return self.docsearch.similarity_search(*args, **kwargs)
|
|
|
|
def add_texts(self, *args, **kwargs):
|
|
return self.docsearch.add_texts(*args, **kwargs)
|
|
|
|
def save_local(self, *args, **kwargs):
|
|
return self.docsearch.save_local(*args, **kwargs)
|