Files
DocsGPT/application/llm/base.py
2024-12-05 22:44:40 +00:00

35 lines
1.4 KiB
Python

from abc import ABC, abstractmethod
from application.usage import gen_token_usage, stream_token_usage
from application.cache import stream_cache, gen_cache
class BaseLLM(ABC):
def __init__(self):
self.token_usage = {"prompt_tokens": 0, "generated_tokens": 0}
def _apply_decorator(self, method, decorators, *args, **kwargs):
for decorator in decorators:
method = decorator(method)
return method(self, *args, **kwargs)
@abstractmethod
def _raw_gen(self, model, messages, stream, tools, *args, **kwargs):
pass
def gen(self, model, messages, stream=False, tools=None, *args, **kwargs):
decorators = [gen_token_usage, gen_cache]
return self._apply_decorator(self._raw_gen, decorators=decorators, model=model, messages=messages, stream=stream, tools=tools, *args, **kwargs)
@abstractmethod
def _raw_gen_stream(self, model, messages, stream, *args, **kwargs):
pass
def gen_stream(self, model, messages, stream=True, *args, **kwargs):
decorators = [stream_cache, stream_token_usage]
return self._apply_decorator(self._raw_gen_stream, decorators=decorators, model=model, messages=messages, stream=stream, *args, **kwargs)
def supports_tools(self):
return hasattr(self, '_supports_tools') and callable(getattr(self, '_supports_tools'))
def _supports_tools(self):
raise NotImplementedError("Subclass must implement _supports_tools method")