mirror of
https://github.com/arc53/DocsGPT.git
synced 2025-11-29 16:43:16 +00:00
* feat: template-based prompt rendering with dynamic namespace injection * refactor: improve template engine initialization with clearer formatting * refactor: streamline ReActAgent methods and improve content extraction logic feat: enhance error handling in NamespaceManager and TemplateEngine fix: update NewAgent component to ensure consistent form data submission test: modify tests for ReActAgent and prompt renderer to reflect method changes and improve coverage * feat: tools namespace + three-tier token budget * refactor: remove unused variable assignment in message building tests * Enhance prompt customization and tool pre-fetching functionality * ruff lint fix * refactor: cleaner error handling and reduce code clutter --------- Co-authored-by: Alex <a@tushynski.me>
151 lines
4.7 KiB
Python
151 lines
4.7 KiB
Python
import logging
|
|
from abc import ABC, abstractmethod
|
|
|
|
from application.cache import gen_cache, stream_cache
|
|
|
|
from application.core.settings import settings
|
|
from application.usage import gen_token_usage, stream_token_usage
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class BaseLLM(ABC):
|
|
def __init__(
|
|
self,
|
|
decoded_token=None,
|
|
):
|
|
self.decoded_token = decoded_token
|
|
self.token_usage = {"prompt_tokens": 0, "generated_tokens": 0}
|
|
self.fallback_provider = settings.FALLBACK_LLM_PROVIDER
|
|
self.fallback_model_name = settings.FALLBACK_LLM_NAME
|
|
self.fallback_llm_api_key = settings.FALLBACK_LLM_API_KEY
|
|
self._fallback_llm = None
|
|
|
|
@property
|
|
def fallback_llm(self):
|
|
"""Lazy-loaded fallback LLM instance."""
|
|
if (
|
|
self._fallback_llm is None
|
|
and self.fallback_provider
|
|
and self.fallback_model_name
|
|
):
|
|
try:
|
|
from application.llm.llm_creator import LLMCreator
|
|
|
|
self._fallback_llm = LLMCreator.create_llm(
|
|
self.fallback_provider,
|
|
self.fallback_llm_api_key,
|
|
None,
|
|
self.decoded_token,
|
|
)
|
|
except Exception as e:
|
|
logger.error(
|
|
f"Failed to initialize fallback LLM: {str(e)}", exc_info=True
|
|
)
|
|
return self._fallback_llm
|
|
|
|
@staticmethod
|
|
def _remove_null_values(args_dict):
|
|
if not isinstance(args_dict, dict):
|
|
return args_dict
|
|
return {k: v for k, v in args_dict.items() if v is not None}
|
|
|
|
def _execute_with_fallback(
|
|
self, method_name: str, decorators: list, *args, **kwargs
|
|
):
|
|
"""
|
|
Unified method execution with fallback support.
|
|
|
|
Args:
|
|
method_name: Name of the raw method ('_raw_gen' or '_raw_gen_stream')
|
|
decorators: List of decorators to apply
|
|
*args: Positional arguments
|
|
**kwargs: Keyword arguments
|
|
"""
|
|
|
|
def decorated_method():
|
|
method = getattr(self, method_name)
|
|
for decorator in decorators:
|
|
method = decorator(method)
|
|
return method(self, *args, **kwargs)
|
|
|
|
try:
|
|
return decorated_method()
|
|
except Exception as e:
|
|
if not self.fallback_llm:
|
|
logger.error(f"Primary LLM failed and no fallback available: {str(e)}")
|
|
raise
|
|
logger.warning(
|
|
f"Falling back to {self.fallback_provider}/{self.fallback_model_name}. Error: {str(e)}"
|
|
)
|
|
|
|
fallback_method = getattr(
|
|
self.fallback_llm, method_name.replace("_raw_", "")
|
|
)
|
|
return fallback_method(*args, **kwargs)
|
|
|
|
def gen(self, model, messages, stream=False, tools=None, *args, **kwargs):
|
|
decorators = [gen_token_usage, gen_cache]
|
|
return self._execute_with_fallback(
|
|
"_raw_gen",
|
|
decorators,
|
|
model=model,
|
|
messages=messages,
|
|
stream=stream,
|
|
tools=tools,
|
|
*args,
|
|
**kwargs,
|
|
)
|
|
|
|
def gen_stream(self, model, messages, stream=True, tools=None, *args, **kwargs):
|
|
decorators = [stream_cache, stream_token_usage]
|
|
return self._execute_with_fallback(
|
|
"_raw_gen_stream",
|
|
decorators,
|
|
model=model,
|
|
messages=messages,
|
|
stream=stream,
|
|
tools=tools,
|
|
*args,
|
|
**kwargs,
|
|
)
|
|
|
|
@abstractmethod
|
|
def _raw_gen(self, model, messages, stream, tools, *args, **kwargs):
|
|
pass
|
|
|
|
@abstractmethod
|
|
def _raw_gen_stream(self, model, messages, stream, *args, **kwargs):
|
|
pass
|
|
|
|
def supports_tools(self):
|
|
return hasattr(self, "_supports_tools") and callable(
|
|
getattr(self, "_supports_tools")
|
|
)
|
|
|
|
def _supports_tools(self):
|
|
raise NotImplementedError("Subclass must implement _supports_tools method")
|
|
|
|
def supports_structured_output(self):
|
|
"""Check if the LLM supports structured output/JSON schema enforcement"""
|
|
return hasattr(self, "_supports_structured_output") and callable(
|
|
getattr(self, "_supports_structured_output")
|
|
)
|
|
|
|
def _supports_structured_output(self):
|
|
return False
|
|
|
|
def prepare_structured_output_format(self, json_schema):
|
|
"""Prepare structured output format specific to the LLM provider"""
|
|
_ = json_schema
|
|
return None
|
|
|
|
def get_supported_attachment_types(self):
|
|
"""
|
|
Return a list of MIME types supported by this LLM for file uploads.
|
|
|
|
Returns:
|
|
list: List of supported MIME types
|
|
"""
|
|
return []
|