Files
DocsGPT/application/core/settings.py
Pavel 3ea137bfef Manage apikeys in settings
1. More pydantic management of api keys.
2. Clean up of variable declarations from docker compose files, used to block .env imports. Now should be managed ether by settings.py defaults or .env
2026-01-16 13:02:02 +03:00

196 lines
7.4 KiB
Python

import os
from pathlib import Path
from typing import Optional
from pydantic import field_validator
from pydantic_settings import BaseSettings, SettingsConfigDict
current_dir = os.path.dirname(
os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
)
class Settings(BaseSettings):
model_config = SettingsConfigDict(extra="ignore")
AUTH_TYPE: Optional[str] = None # simple_jwt, session_jwt, or None
LLM_PROVIDER: str = "docsgpt"
LLM_NAME: Optional[str] = (
None # if LLM_PROVIDER is openai, LLM_NAME can be gpt-4 or gpt-3.5-turbo
)
EMBEDDINGS_NAME: str = "huggingface_sentence-transformers/all-mpnet-base-v2"
EMBEDDINGS_BASE_URL: Optional[str] = None # Remote embeddings API URL (OpenAI-compatible)
EMBEDDINGS_KEY: Optional[str] = (
None # api key for embeddings (if using openai, just copy API_KEY)
)
CELERY_BROKER_URL: str = "redis://localhost:6379/0"
CELERY_RESULT_BACKEND: str = "redis://localhost:6379/1"
MONGO_URI: str = "mongodb://localhost:27017/docsgpt"
MONGO_DB_NAME: str = "docsgpt"
LLM_PATH: str = os.path.join(current_dir, "models/docsgpt-7b-f16.gguf")
DEFAULT_MAX_HISTORY: int = 150
DEFAULT_LLM_TOKEN_LIMIT: int = 128000 # Fallback when model not found in registry
RESERVED_TOKENS: dict = {
"system_prompt": 500,
"current_query": 500,
"safety_buffer": 1000,
}
DEFAULT_AGENT_LIMITS: dict = {
"token_limit": 50000,
"request_limit": 500,
}
UPLOAD_FOLDER: str = "inputs"
PARSE_PDF_AS_IMAGE: bool = False
PARSE_IMAGE_REMOTE: bool = False
DOCLING_OCR_ENABLED: bool = False # Enable OCR for docling parsers (PDF, images)
DOCLING_OCR_ATTACHMENTS_ENABLED: bool = False # Enable OCR for docling when parsing attachments
VECTOR_STORE: str = (
"faiss" # "faiss" or "elasticsearch" or "qdrant" or "milvus" or "lancedb" or "pgvector"
)
RETRIEVERS_ENABLED: list = ["classic_rag"]
AGENT_NAME: str = "classic"
FALLBACK_LLM_PROVIDER: Optional[str] = None # provider for fallback llm
FALLBACK_LLM_NAME: Optional[str] = None # model name for fallback llm
FALLBACK_LLM_API_KEY: Optional[str] = None # api key for fallback llm
# Google Drive integration
GOOGLE_CLIENT_ID: Optional[str] = (
None # Replace with your actual Google OAuth client ID
)
GOOGLE_CLIENT_SECRET: Optional[str] = (
None # Replace with your actual Google OAuth client secret
)
CONNECTOR_REDIRECT_BASE_URI: Optional[str] = (
"http://127.0.0.1:7091/api/connectors/callback" ##add redirect url as it is to your provider's console(gcp)
)
# GitHub source
GITHUB_ACCESS_TOKEN: Optional[str] = None # PAT token with read repo access
# LLM Cache
CACHE_REDIS_URL: str = "redis://localhost:6379/2"
API_URL: str = "http://localhost:7091" # backend url for celery worker
INTERNAL_KEY: Optional[str] = None # internal api key for worker-to-backend auth
API_KEY: Optional[str] = None # LLM api key (used by LLM_PROVIDER)
# Provider-specific API keys (for multi-model support)
OPENAI_API_KEY: Optional[str] = None
ANTHROPIC_API_KEY: Optional[str] = None
GOOGLE_API_KEY: Optional[str] = None
GROQ_API_KEY: Optional[str] = None
HUGGINGFACE_API_KEY: Optional[str] = None
OPENAI_API_BASE: Optional[str] = None # azure openai api base url
OPENAI_API_VERSION: Optional[str] = None # azure openai api version
AZURE_DEPLOYMENT_NAME: Optional[str] = None # azure deployment name for answering
AZURE_EMBEDDINGS_DEPLOYMENT_NAME: Optional[str] = (
None # azure deployment name for embeddings
)
OPENAI_BASE_URL: Optional[str] = (
None # openai base url for open ai compatable models
)
# elasticsearch
ELASTIC_CLOUD_ID: Optional[str] = None # cloud id for elasticsearch
ELASTIC_USERNAME: Optional[str] = None # username for elasticsearch
ELASTIC_PASSWORD: Optional[str] = None # password for elasticsearch
ELASTIC_URL: Optional[str] = None # url for elasticsearch
ELASTIC_INDEX: Optional[str] = "docsgpt" # index name for elasticsearch
# SageMaker config
SAGEMAKER_ENDPOINT: Optional[str] = None # SageMaker endpoint name
SAGEMAKER_REGION: Optional[str] = None # SageMaker region name
SAGEMAKER_ACCESS_KEY: Optional[str] = None # SageMaker access key
SAGEMAKER_SECRET_KEY: Optional[str] = None # SageMaker secret key
# prem ai project id
PREMAI_PROJECT_ID: Optional[str] = None
# Qdrant vectorstore config
QDRANT_COLLECTION_NAME: Optional[str] = "docsgpt"
QDRANT_LOCATION: Optional[str] = None
QDRANT_URL: Optional[str] = None
QDRANT_PORT: Optional[int] = 6333
QDRANT_GRPC_PORT: int = 6334
QDRANT_PREFER_GRPC: bool = False
QDRANT_HTTPS: Optional[bool] = None
QDRANT_API_KEY: Optional[str] = None
QDRANT_PREFIX: Optional[str] = None
QDRANT_TIMEOUT: Optional[float] = None
QDRANT_HOST: Optional[str] = None
QDRANT_PATH: Optional[str] = None
QDRANT_DISTANCE_FUNC: str = "Cosine"
# PGVector vectorstore config
PGVECTOR_CONNECTION_STRING: Optional[str] = None
# Milvus vectorstore config
MILVUS_COLLECTION_NAME: Optional[str] = "docsgpt"
MILVUS_URI: Optional[str] = "./milvus_local.db" # milvus lite version as default
MILVUS_TOKEN: Optional[str] = ""
# LanceDB vectorstore config
LANCEDB_PATH: str = "./data/lancedb" # Path where LanceDB stores its local data
LANCEDB_TABLE_NAME: Optional[str] = (
"docsgpts" # Name of the table to use for storing vectors
)
FLASK_DEBUG_MODE: bool = False
STORAGE_TYPE: str = "local" # local or s3
URL_STRATEGY: str = "backend" # backend or s3
JWT_SECRET_KEY: str = ""
# Encryption settings
ENCRYPTION_SECRET_KEY: str = "default-docsgpt-encryption-key"
TTS_PROVIDER: str = "google_tts" # google_tts or elevenlabs
ELEVENLABS_API_KEY: Optional[str] = None
# Tool pre-fetch settings
ENABLE_TOOL_PREFETCH: bool = True
# Conversation Compression Settings
ENABLE_CONVERSATION_COMPRESSION: bool = True
COMPRESSION_THRESHOLD_PERCENTAGE: float = 0.8 # Trigger at 80% of context
COMPRESSION_MODEL_OVERRIDE: Optional[str] = None # Use different model for compression
COMPRESSION_PROMPT_VERSION: str = "v1.0" # Track prompt iterations
COMPRESSION_MAX_HISTORY_POINTS: int = 3 # Keep only last N compression points to prevent DB bloat
@field_validator(
"API_KEY",
"OPENAI_API_KEY",
"ANTHROPIC_API_KEY",
"GOOGLE_API_KEY",
"GROQ_API_KEY",
"HUGGINGFACE_API_KEY",
"EMBEDDINGS_KEY",
"FALLBACK_LLM_API_KEY",
"QDRANT_API_KEY",
"ELEVENLABS_API_KEY",
"INTERNAL_KEY",
mode="before",
)
@classmethod
def normalize_api_key(cls, v: Optional[str]) -> Optional[str]:
"""
Normalize API keys: convert 'None', 'none', empty strings,
and whitespace-only strings to actual None.
Handles Pydantic loading 'None' from .env as string "None".
"""
if v is None:
return None
if not isinstance(v, str):
return v
stripped = v.strip()
if stripped == "" or stripped.lower() == "none":
return None
return stripped
# Project root is one level above application/
path = Path(__file__).parent.parent.parent.absolute()
settings = Settings(_env_file=path.joinpath(".env"), _env_file_encoding="utf-8")