mirror of
https://github.com/arc53/DocsGPT.git
synced 2025-11-30 17:13:15 +00:00
99 lines
3.5 KiB
Python
99 lines
3.5 KiB
Python
from application.llm.llm_creator import LLMCreator
|
|
from application.core.settings import settings
|
|
from application.tools.tool_manager import ToolManager
|
|
import json
|
|
|
|
tool_tg = {
|
|
"name": "telegram_send_message",
|
|
"description": "Send a notification to telegram about current chat",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"text": {
|
|
"type": "string",
|
|
"description": "Text to send in the notification"
|
|
}
|
|
},
|
|
"required": ["text"],
|
|
"additionalProperties": False
|
|
}
|
|
}
|
|
|
|
tool_crypto = {
|
|
"name": "cryptoprice_get",
|
|
"description": "Retrieve the price of a specified cryptocurrency in a given currency",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"symbol": {
|
|
"type": "string",
|
|
"description": "The cryptocurrency symbol (e.g. BTC)"
|
|
},
|
|
"currency": {
|
|
"type": "string",
|
|
"description": "The currency in which you want the price (e.g. USD)"
|
|
}
|
|
},
|
|
"required": ["symbol", "currency"],
|
|
"additionalProperties": False
|
|
}
|
|
}
|
|
|
|
class Agent:
|
|
def __init__(self, llm_name, gpt_model, api_key, user_api_key=None):
|
|
# Initialize the LLM with the provided parameters
|
|
self.llm = LLMCreator.create_llm(llm_name, api_key=api_key, user_api_key=user_api_key)
|
|
self.gpt_model = gpt_model
|
|
# Static tool configuration (to be replaced later)
|
|
self.tools = [
|
|
{
|
|
"type": "function",
|
|
"function": tool_crypto
|
|
}
|
|
]
|
|
self.tool_config = {
|
|
}
|
|
|
|
def gen(self, messages):
|
|
# Generate initial response from the LLM
|
|
resp = self.llm.gen(model=self.gpt_model, messages=messages, tools=self.tools)
|
|
|
|
if isinstance(resp, str):
|
|
# Yield the response if it's a string and exit
|
|
yield resp
|
|
return
|
|
|
|
while resp.finish_reason == "tool_calls":
|
|
# Append the assistant's message to the conversation
|
|
messages.append(json.loads(resp.model_dump_json())['message'])
|
|
# Handle each tool call
|
|
tool_calls = resp.message.tool_calls
|
|
for call in tool_calls:
|
|
tm = ToolManager(config={})
|
|
call_name = call.function.name
|
|
call_args = json.loads(call.function.arguments)
|
|
call_id = call.id
|
|
# Determine the tool name and load it
|
|
tool_name = call_name.split("_")[0]
|
|
tool = tm.load_tool(tool_name, tool_config=self.tool_config)
|
|
# Execute the tool's action
|
|
resp_tool = tool.execute_action(call_name, **call_args)
|
|
# Append the tool's response to the conversation
|
|
messages.append(
|
|
{
|
|
"role": "tool",
|
|
"content": str(resp_tool),
|
|
"tool_call_id": call_id
|
|
}
|
|
)
|
|
# Generate a new response from the LLM after processing tools
|
|
resp = self.llm.gen(model=self.gpt_model, messages=messages, tools=self.tools)
|
|
|
|
# If no tool calls are needed, generate the final response
|
|
if isinstance(resp, str):
|
|
yield resp
|
|
else:
|
|
completion = self.llm.gen_stream(model=self.gpt_model, messages=messages, tools=self.tools)
|
|
for line in completion:
|
|
yield line
|