Files
DocsGPT/application/llm/base.py

34 lines
1.3 KiB
Python

from abc import ABC, abstractmethod
from application.usage import gen_token_usage, stream_token_usage
from application.cache import gen_cache, stream_cache
class BaseLLM(ABC):
def __init__(self):
self.token_usage = {"prompt_tokens": 0, "generated_tokens": 0}
def _apply_decorator(self, method, decorators, *args, **kwargs):
for decorator in decorators:
method = decorator(method)
return method(self, *args, **kwargs)
@abstractmethod
def _raw_gen(self, model, messages, stream, *args, **kwargs):
pass
def gen(self, model, messages, stream=False, *args, **kwargs):
decorators = [gen_cache, gen_token_usage]
return self._apply_decorator(self._raw_gen, decorators=decorators, model=model, messages=messages, stream=stream, *args, **kwargs)
@abstractmethod
def _raw_gen_stream(self, model, messages, stream, *args, **kwargs):
pass
def gen_stream(self, model, messages, stream=True, *args, **kwargs):
"""
Stream a response from the LLM with caching and token usage tracking.
"""
# List of decorators to apply for streaming generation
decorators = [stream_cache, stream_token_usage]
return self._apply_decorator(self._raw_gen_stream, decorators=decorators, model=model, messages=messages, stream=stream, *args, **kwargs)