mirror of
https://github.com/arc53/DocsGPT.git
synced 2025-11-29 08:33:20 +00:00
* feat: Implement model registry and capabilities for multi-provider support - Added ModelRegistry to manage available models and their capabilities. - Introduced ModelProvider enum for different LLM providers. - Created ModelCapabilities dataclass to define model features. - Implemented methods to load models based on API keys and settings. - Added utility functions for model management in model_utils.py. - Updated settings.py to include provider-specific API keys. - Refactored LLM classes (Anthropic, OpenAI, Google, etc.) to utilize new model registry. - Enhanced utility functions to handle token limits and model validation. - Improved code structure and logging for better maintainability. * feat: Add model selection feature with API integration and UI component * feat: Add model selection and default model functionality in agent management * test: Update assertions and formatting in stream processing tests * refactor(llm): Standardize model identifier to model_id * fix tests --------- Co-authored-by: Alex <a@tushynski.me>
153 lines
4.9 KiB
Python
153 lines
4.9 KiB
Python
import logging
|
|
from abc import ABC, abstractmethod
|
|
|
|
from application.cache import gen_cache, stream_cache
|
|
|
|
from application.core.settings import settings
|
|
from application.usage import gen_token_usage, stream_token_usage
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class BaseLLM(ABC):
|
|
def __init__(
|
|
self,
|
|
decoded_token=None,
|
|
model_id=None,
|
|
base_url=None,
|
|
):
|
|
self.decoded_token = decoded_token
|
|
self.model_id = model_id
|
|
self.base_url = base_url
|
|
self.token_usage = {"prompt_tokens": 0, "generated_tokens": 0}
|
|
self._fallback_llm = None
|
|
self._fallback_sequence_index = 0
|
|
|
|
@property
|
|
def fallback_llm(self):
|
|
"""Lazy-loaded fallback LLM from FALLBACK_* settings."""
|
|
if self._fallback_llm is None and settings.FALLBACK_LLM_PROVIDER:
|
|
try:
|
|
from application.llm.llm_creator import LLMCreator
|
|
|
|
self._fallback_llm = LLMCreator.create_llm(
|
|
settings.FALLBACK_LLM_PROVIDER,
|
|
api_key=settings.FALLBACK_LLM_API_KEY or settings.API_KEY,
|
|
user_api_key=None,
|
|
decoded_token=self.decoded_token,
|
|
model_id=settings.FALLBACK_LLM_NAME,
|
|
)
|
|
logger.info(
|
|
f"Fallback LLM initialized: {settings.FALLBACK_LLM_PROVIDER}/{settings.FALLBACK_LLM_NAME}"
|
|
)
|
|
except Exception as e:
|
|
logger.error(
|
|
f"Failed to initialize fallback LLM: {str(e)}", exc_info=True
|
|
)
|
|
return self._fallback_llm
|
|
|
|
@staticmethod
|
|
def _remove_null_values(args_dict):
|
|
if not isinstance(args_dict, dict):
|
|
return args_dict
|
|
return {k: v for k, v in args_dict.items() if v is not None}
|
|
|
|
def _execute_with_fallback(
|
|
self, method_name: str, decorators: list, *args, **kwargs
|
|
):
|
|
"""
|
|
Execute method with fallback support.
|
|
|
|
Args:
|
|
method_name: Name of the raw method ('_raw_gen' or '_raw_gen_stream')
|
|
decorators: List of decorators to apply
|
|
*args: Positional arguments
|
|
**kwargs: Keyword arguments
|
|
"""
|
|
|
|
def decorated_method():
|
|
method = getattr(self, method_name)
|
|
for decorator in decorators:
|
|
method = decorator(method)
|
|
return method(self, *args, **kwargs)
|
|
|
|
try:
|
|
return decorated_method()
|
|
except Exception as e:
|
|
if not self.fallback_llm:
|
|
logger.error(f"Primary LLM failed and no fallback configured: {str(e)}")
|
|
raise
|
|
logger.warning(
|
|
f"Primary LLM failed. Falling back to {settings.FALLBACK_LLM_PROVIDER}/{settings.FALLBACK_LLM_NAME}. Error: {str(e)}"
|
|
)
|
|
|
|
fallback_method = getattr(
|
|
self.fallback_llm, method_name.replace("_raw_", "")
|
|
)
|
|
return fallback_method(*args, **kwargs)
|
|
|
|
def gen(self, model, messages, stream=False, tools=None, *args, **kwargs):
|
|
decorators = [gen_token_usage, gen_cache]
|
|
return self._execute_with_fallback(
|
|
"_raw_gen",
|
|
decorators,
|
|
model=model,
|
|
messages=messages,
|
|
stream=stream,
|
|
tools=tools,
|
|
*args,
|
|
**kwargs,
|
|
)
|
|
|
|
def gen_stream(self, model, messages, stream=True, tools=None, *args, **kwargs):
|
|
decorators = [stream_cache, stream_token_usage]
|
|
return self._execute_with_fallback(
|
|
"_raw_gen_stream",
|
|
decorators,
|
|
model=model,
|
|
messages=messages,
|
|
stream=stream,
|
|
tools=tools,
|
|
*args,
|
|
**kwargs,
|
|
)
|
|
|
|
@abstractmethod
|
|
def _raw_gen(self, model, messages, stream, tools, *args, **kwargs):
|
|
pass
|
|
|
|
@abstractmethod
|
|
def _raw_gen_stream(self, model, messages, stream, *args, **kwargs):
|
|
pass
|
|
|
|
def supports_tools(self):
|
|
return hasattr(self, "_supports_tools") and callable(
|
|
getattr(self, "_supports_tools")
|
|
)
|
|
|
|
def _supports_tools(self):
|
|
raise NotImplementedError("Subclass must implement _supports_tools method")
|
|
|
|
def supports_structured_output(self):
|
|
"""Check if the LLM supports structured output/JSON schema enforcement"""
|
|
return hasattr(self, "_supports_structured_output") and callable(
|
|
getattr(self, "_supports_structured_output")
|
|
)
|
|
|
|
def _supports_structured_output(self):
|
|
return False
|
|
|
|
def prepare_structured_output_format(self, json_schema):
|
|
"""Prepare structured output format specific to the LLM provider"""
|
|
_ = json_schema
|
|
return None
|
|
|
|
def get_supported_attachment_types(self):
|
|
"""
|
|
Return a list of MIME types supported by this LLM for file uploads.
|
|
|
|
Returns:
|
|
list: List of supported MIME types
|
|
"""
|
|
return []
|