Files
DocsGPT/application/llm/openai.py

144 lines
5.0 KiB
Python

import json
from application.core.settings import settings
from application.llm.base import BaseLLM
class OpenAILLM(BaseLLM):
def __init__(self, api_key=None, user_api_key=None, *args, **kwargs):
from openai import OpenAI
super().__init__(*args, **kwargs)
if settings.OPENAI_BASE_URL:
self.client = OpenAI(api_key=api_key, base_url=settings.OPENAI_BASE_URL)
else:
self.client = OpenAI(api_key=api_key)
self.api_key = api_key
self.user_api_key = user_api_key
def _clean_messages_openai(self, messages):
cleaned_messages = []
for message in messages:
role = message.get("role")
content = message.get("content")
if role == "model":
role = "assistant"
if role and content is not None:
if isinstance(content, str):
cleaned_messages.append({"role": role, "content": content})
elif isinstance(content, list):
for item in content:
if "text" in item:
cleaned_messages.append(
{"role": role, "content": item["text"]}
)
elif "function_call" in item:
tool_call = {
"id": item["function_call"]["call_id"],
"type": "function",
"function": {
"name": item["function_call"]["name"],
"arguments": json.dumps(
item["function_call"]["args"]
),
},
}
cleaned_messages.append(
{
"role": "assistant",
"content": None,
"tool_calls": [tool_call],
}
)
elif "function_response" in item:
cleaned_messages.append(
{
"role": "tool",
"tool_call_id": item["function_response"][
"call_id"
],
"content": json.dumps(
item["function_response"]["response"]["result"]
),
}
)
else:
raise ValueError(
f"Unexpected content dictionary format: {item}"
)
else:
raise ValueError(f"Unexpected content type: {type(content)}")
return cleaned_messages
def _raw_gen(
self,
baseself,
model,
messages,
stream=False,
tools=None,
engine=settings.AZURE_DEPLOYMENT_NAME,
**kwargs,
):
messages = self._clean_messages_openai(messages)
print(messages)
if tools:
response = self.client.chat.completions.create(
model=model,
messages=messages,
stream=stream,
tools=tools,
**kwargs,
)
return response.choices[0]
else:
response = self.client.chat.completions.create(
model=model, messages=messages, stream=stream, **kwargs
)
return response.choices[0].message.content
def _raw_gen_stream(
self,
baseself,
model,
messages,
stream=True,
tools=None,
engine=settings.AZURE_DEPLOYMENT_NAME,
**kwargs,
):
messages = self._clean_messages_openai(messages)
response = self.client.chat.completions.create(
model=model, messages=messages, stream=stream, **kwargs
)
for line in response:
if line.choices[0].delta.content is not None:
yield line.choices[0].delta.content
def _supports_tools(self):
return True
class AzureOpenAILLM(OpenAILLM):
def __init__(
self, openai_api_key, openai_api_base, openai_api_version, deployment_name
):
super().__init__(openai_api_key)
self.api_base = (settings.OPENAI_API_BASE,)
self.api_version = (settings.OPENAI_API_VERSION,)
self.deployment_name = (settings.AZURE_DEPLOYMENT_NAME,)
from openai import AzureOpenAI
self.client = AzureOpenAI(
api_key=openai_api_key,
api_version=settings.OPENAI_API_VERSION,
api_base=settings.OPENAI_API_BASE,
deployment_name=settings.AZURE_DEPLOYMENT_NAME,
)