Files
DocsGPT/application/vectorstore/base.py

161 lines
5.8 KiB
Python

import logging
import os
from abc import ABC, abstractmethod
from langchain_openai import OpenAIEmbeddings
from sentence_transformers import SentenceTransformer
from application.core.settings import settings
class EmbeddingsWrapper:
def __init__(self, model_name, *args, **kwargs):
logging.info(f"Initializing EmbeddingsWrapper with model: {model_name}")
try:
kwargs.setdefault("trust_remote_code", True)
self.model = SentenceTransformer(
model_name,
config_kwargs={"allow_dangerous_deserialization": True},
*args,
**kwargs,
)
if self.model is None or self.model._first_module() is None:
raise ValueError(
f"SentenceTransformer model failed to load properly for: {model_name}"
)
self.dimension = self.model.get_sentence_embedding_dimension()
logging.info(f"Successfully loaded model with dimension: {self.dimension}")
except Exception as e:
logging.error(
f"Failed to initialize SentenceTransformer with model {model_name}: {str(e)}",
exc_info=True,
)
raise
def embed_query(self, query: str):
return self.model.encode(query).tolist()
def embed_documents(self, documents: list):
return self.model.encode(documents).tolist()
def __call__(self, text):
if isinstance(text, str):
return self.embed_query(text)
elif isinstance(text, list):
return self.embed_documents(text)
else:
raise ValueError("Input must be a string or a list of strings")
class EmbeddingsSingleton:
_instances = {}
@staticmethod
def get_instance(embeddings_name, *args, **kwargs):
if embeddings_name not in EmbeddingsSingleton._instances:
EmbeddingsSingleton._instances[embeddings_name] = (
EmbeddingsSingleton._create_instance(embeddings_name, *args, **kwargs)
)
return EmbeddingsSingleton._instances[embeddings_name]
@staticmethod
def _create_instance(embeddings_name, *args, **kwargs):
embeddings_factory = {
"openai_text-embedding-ada-002": OpenAIEmbeddings,
"huggingface_sentence-transformers/all-mpnet-base-v2": lambda: EmbeddingsWrapper(
"sentence-transformers/all-mpnet-base-v2"
),
"huggingface_sentence-transformers-all-mpnet-base-v2": lambda: EmbeddingsWrapper(
"sentence-transformers/all-mpnet-base-v2"
),
"huggingface_hkunlp/instructor-large": lambda: EmbeddingsWrapper(
"hkunlp/instructor-large"
),
}
if embeddings_name in embeddings_factory:
return embeddings_factory[embeddings_name](*args, **kwargs)
else:
return EmbeddingsWrapper(embeddings_name, *args, **kwargs)
class BaseVectorStore(ABC):
def __init__(self):
pass
@abstractmethod
def search(self, *args, **kwargs):
"""Search for similar documents/chunks in the vectorstore"""
pass
@abstractmethod
def add_texts(self, texts, metadatas=None, *args, **kwargs):
"""Add texts with their embeddings to the vectorstore"""
pass
def delete_index(self, *args, **kwargs):
"""Delete the entire index/collection"""
pass
def save_local(self, *args, **kwargs):
"""Save vectorstore to local storage"""
pass
def get_chunks(self, *args, **kwargs):
"""Get all chunks from the vectorstore"""
pass
def add_chunk(self, text, metadata=None, *args, **kwargs):
"""Add a single chunk to the vectorstore"""
pass
def delete_chunk(self, chunk_id, *args, **kwargs):
"""Delete a specific chunk from the vectorstore"""
pass
def is_azure_configured(self):
return (
settings.OPENAI_API_BASE
and settings.OPENAI_API_VERSION
and settings.AZURE_DEPLOYMENT_NAME
)
def _get_embeddings(self, embeddings_name, embeddings_key=None):
if embeddings_name == "openai_text-embedding-ada-002":
if self.is_azure_configured():
os.environ["OPENAI_API_TYPE"] = "azure"
embedding_instance = EmbeddingsSingleton.get_instance(
embeddings_name, model=settings.AZURE_EMBEDDINGS_DEPLOYMENT_NAME
)
else:
embedding_instance = EmbeddingsSingleton.get_instance(
embeddings_name, openai_api_key=embeddings_key
)
elif embeddings_name == "huggingface_sentence-transformers/all-mpnet-base-v2":
possible_paths = [
"/app/models/all-mpnet-base-v2", # Docker absolute path
"./models/all-mpnet-base-v2", # Relative path
]
local_model_path = None
for path in possible_paths:
if os.path.exists(path):
local_model_path = path
logging.info(f"Found local model at path: {path}")
break
else:
logging.info(f"Path does not exist: {path}")
if local_model_path:
embedding_instance = EmbeddingsSingleton.get_instance(
local_model_path,
)
else:
logging.warning(
f"Local model not found in any of the paths: {possible_paths}. Falling back to HuggingFace download."
)
embedding_instance = EmbeddingsSingleton.get_instance(
embeddings_name,
)
else:
embedding_instance = EmbeddingsSingleton.get_instance(embeddings_name)
return embedding_instance