Files
DocsGPT/tests/test_token_management.py
2025-11-24 10:39:27 +00:00

315 lines
9.9 KiB
Python

"""
Tests for token management and compression features.
NOTE: These tests are for future planned features that are not yet implemented.
They are skipped until the following modules are created:
- application.compression (DocumentCompressor, HistoryCompressor, etc.)
- application.core.token_budget (TokenBudgetManager)
"""
# ruff: noqa: F821
import pytest
pytest.skip(
"Token management features not yet implemented - planned for future release",
allow_module_level=True,
)
class TestTokenBudgetManager:
"""Test TokenBudgetManager functionality"""
def test_calculate_budget(self):
"""Test budget calculation"""
manager = TokenBudgetManager(model_id="gpt-4o")
budget = manager.calculate_budget()
assert budget.total_budget > 0
assert budget.system_prompt > 0
assert budget.chat_history > 0
assert budget.retrieved_docs > 0
def test_measure_usage(self):
"""Test token usage measurement"""
manager = TokenBudgetManager(model_id="gpt-4o")
usage = manager.measure_usage(
system_prompt="You are a helpful assistant.",
current_query="What is Python?",
chat_history=[
{"prompt": "Hello", "response": "Hi there!"},
{"prompt": "How are you?", "response": "I'm doing well, thanks!"},
],
)
assert usage.total > 0
assert usage.system_prompt > 0
assert usage.current_query > 0
assert usage.chat_history > 0
def test_compression_recommendation(self):
"""Test compression recommendation generation"""
manager = TokenBudgetManager(model_id="gpt-4o")
# Create scenario with excessive history
large_history = [
{"prompt": f"Question {i}" * 100, "response": f"Answer {i}" * 100}
for i in range(100)
]
budget, usage, recommendation = manager.check_and_recommend(
system_prompt="You are a helpful assistant.",
current_query="What is Python?",
chat_history=large_history,
)
# Should recommend compression
assert recommendation.needs_compression()
assert recommendation.compress_history
class TestHistoryCompressor:
"""Test HistoryCompressor functionality"""
def test_sliding_window_compression(self):
"""Test sliding window compression strategy"""
compressor = HistoryCompressor()
history = [
{"prompt": f"Question {i}", "response": f"Answer {i}"} for i in range(20)
]
compressed, metadata = compressor.compress(
history, target_tokens=500, strategy="sliding_window"
)
assert len(compressed) < len(history)
assert metadata["original_messages"] == 20
assert metadata["compressed_messages"] < 20
assert metadata["strategy"] == "sliding_window"
def test_preserve_tool_calls(self):
"""Test that tool calls are preserved during compression"""
compressor = HistoryCompressor()
history = [
{"prompt": "Question 1", "response": "Answer 1"},
{
"prompt": "Use a tool",
"response": "Tool used",
"tool_calls": [{"tool_name": "search", "result": "Found something"}],
},
{"prompt": "Question 3", "response": "Answer 3"},
]
compressed, metadata = compressor.compress(
history, target_tokens=200, strategy="sliding_window", preserve_tool_calls=True
)
# Tool call message should be preserved
has_tool_calls = any("tool_calls" in msg for msg in compressed)
assert has_tool_calls
class TestDocumentCompressor:
"""Test DocumentCompressor functionality"""
def test_rerank_compression(self):
"""Test re-ranking compression strategy"""
compressor = DocumentCompressor()
docs = [
{"text": f"Document {i} with some content here" * 20, "title": f"Doc {i}"}
for i in range(10)
]
compressed, metadata = compressor.compress(
docs, target_tokens=500, query="Document 5", strategy="rerank"
)
assert len(compressed) < len(docs)
assert metadata["original_docs"] == 10
assert metadata["strategy"] == "rerank"
def test_excerpt_extraction(self):
"""Test excerpt extraction strategy"""
compressor = DocumentCompressor()
docs = [
{
"text": "This is a long document. " * 100
+ "Python is great. "
+ "More text here. " * 100,
"title": "Python Guide",
}
]
compressed, metadata = compressor.compress(
docs, target_tokens=300, query="Python", strategy="excerpt"
)
assert metadata["excerpts_created"] > 0
# Excerpt should contain the query term
assert "python" in compressed[0]["text"].lower()
class TestToolResultCompressor:
"""Test ToolResultCompressor functionality"""
def test_truncate_large_results(self):
"""Test truncation of large tool results"""
compressor = ToolResultCompressor()
tool_results = [
{
"tool_name": "search",
"result": "Very long result " * 1000,
"arguments": {},
}
]
compressed, metadata = compressor.compress(
tool_results, target_tokens=100, strategy="truncate"
)
assert metadata["results_truncated"] > 0
# Result should be shorter
compressed_result_len = len(str(compressed[0]["result"]))
original_result_len = len(tool_results[0]["result"])
assert compressed_result_len < original_result_len
def test_extract_json_fields(self):
"""Test extraction of key fields from JSON results"""
compressor = ToolResultCompressor()
tool_results = [
{
"tool_name": "api_call",
"result": {
"data": {"important": "value"},
"metadata": {"verbose": "information" * 100},
"debug": {"lots": "of data" * 100},
},
"arguments": {},
}
]
compressed, metadata = compressor.compress(
tool_results, target_tokens=100, strategy="extract"
)
# Should keep important fields, discard verbose ones
assert "data" in compressed[0]["result"]
class TestPromptOptimizer:
"""Test PromptOptimizer functionality"""
def test_compress_tool_descriptions(self):
"""Test compression of tool descriptions"""
optimizer = PromptOptimizer()
tools = [
{
"type": "function",
"function": {
"name": f"tool_{i}",
"description": "This is a very long description " * 50,
"parameters": {},
},
}
for i in range(10)
]
optimized, metadata = optimizer.optimize_tools(
tools, target_tokens=500, strategy="compress"
)
assert metadata["optimized_tokens"] < metadata["original_tokens"]
assert metadata["descriptions_compressed"] > 0
def test_lazy_load_tools(self):
"""Test lazy loading of tools based on query"""
optimizer = PromptOptimizer()
tools = [
{
"type": "function",
"function": {
"name": "search_tool",
"description": "Search for information",
"parameters": {},
},
},
{
"type": "function",
"function": {
"name": "calculate_tool",
"description": "Perform calculations",
"parameters": {},
},
},
{
"type": "function",
"function": {
"name": "other_tool",
"description": "Do something else",
"parameters": {},
},
},
]
optimized, metadata = optimizer.optimize_tools(
tools, target_tokens=200, query="I want to search for something", strategy="lazy_load"
)
# Should prefer search tool
assert len(optimized) < len(tools)
tool_names = [t["function"]["name"] for t in optimized]
# Search tool should be included due to query relevance
assert any("search" in name for name in tool_names)
def test_integration_compression_workflow():
"""Test complete compression workflow"""
# Simulate a scenario with large inputs
manager = TokenBudgetManager(model_id="gpt-4o")
history_compressor = HistoryCompressor()
doc_compressor = DocumentCompressor()
# Large chat history
history = [
{"prompt": f"Question {i}" * 50, "response": f"Answer {i}" * 50}
for i in range(50)
]
# Large documents
docs = [
{"text": f"Document {i} content" * 100, "title": f"Doc {i}"} for i in range(20)
]
# Check budget
budget, usage, recommendation = manager.check_and_recommend(
system_prompt="You are a helpful assistant.",
current_query="What is Python?",
chat_history=history,
retrieved_docs=docs,
)
# Should need compression
assert recommendation.needs_compression()
# Apply compression
if recommendation.compress_history:
compressed_history, hist_meta = history_compressor.compress(
history, recommendation.target_history_tokens or budget.chat_history
)
assert len(compressed_history) < len(history)
if recommendation.compress_docs:
compressed_docs, doc_meta = doc_compressor.compress(
docs,
recommendation.target_docs_tokens or budget.retrieved_docs,
query="Python",
)
assert len(compressed_docs) < len(docs)